函数恒成立存在性与有解问题

合集下载

恒成立存在性问题

恒成立存在性问题

1 含参数恒成立存在性问题1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、存在性(有解)问题的转化:()a f x >有解⇒()min a f x >;()a f x ≤有解()max a f x ⇒≤3.设函数()x f 、()x g ,任意[]b a x ,1∈,任意[]d c x ,2∈,使得()()12f x g x ≥,则()()min max f x g x ≥4.设函数()x f 、()x g ,任意[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5.设函数()x f 、()x g ,存在[]b a x ,1∈,任意[]d c x ,2∈,使得()()12f x g x ≥,则()()max max f x g x ≥6.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ (在各条件下()()12f x g x ≤也可推出相应的关系,自己总结)7.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则()f x 在[]b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集,即:M ⊆N 。

8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例1、任意()1,2x ∈,不等式240x mx ++<恒成立,求m 的取值范围。

第10讲 恒成立能成立3种常见题型(解析版)

第10讲 恒成立能成立3种常见题型(解析版)

第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。

(完整版)恒成立存在性问题

(完整版)恒成立存在性问题

专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

二次函数型有关的恒成立与有解问题教师版

二次函数型有关的恒成立与有解问题教师版

1 / 13二次函数型 的恒成立与有解题型归纳一、知识点形如()()()2g x a f x bf x c =++⎡⎤⎣⎦的函数称为二次型函数,与二次型函数有关的恒成立或有解问题一般利用二次函数的性质求解.二、例题赏析(一)一元二次不等式在R 上的恒成立或有解问题 对于二次函数)0(0)(2≠>++=a c bx ax x f 有:1.R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2.R x x f ∈<在0)(上恒成立00<∆<⇔且a . 基本题型:【例】 若不等式2kx 2+kx −38<0对一切实数x 都成立,则实数k 的取值范围为 A .(−3,0) B .(−3,0]C .(−∞,0]D .(−∞,−3)∪[0,+∞)【详解】当k =0时,原不等式可化为−38<0,对x ∈R 恒成立;当k ≠0时,原不等式恒成立,需{2k <0Δ=k 2−4×2k ×(−38)<0 ,解得k ∈(−3,0),综上k ∈(−3,0].故选B.【变式训练】 若关于x 的不等式221)(1)201k x k x x x -+-+>++(的解集为R ,则k 的范围为____________. 【详解】因为22131024⎛⎫++=++> ⎪⎝⎭x x x ,所以221)(1)201k x k x x x -+-+>++(等价于21)(1)20(-+-+>k x k x 恒成立,当1k =时,20>成立,当1k ≠时,则()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩ ,解得19k << , 综上:19k ≤<.故答案为:19k ≤<.2 / 13【变式训练】 若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)【解析】∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有200k <⎧⎨∆<⎩,解得-3<k <0. 【变式训练】若函数22log (28)y kx kx =-+的定义域为一切实数,则实数k 的取值范围为____________. 【详解】因为函数22log (28)y kx kx =-+的定义域为一切R ,等价于228kx kx -+>0,对任意的实数x 恒成立.当0k =时,80>,符合条件.当0k ≠时,2084320k k k k >⎧⇒<<⎨∆=-<⎩.综上08k ≤<. (二) 一元二次不等式在给定区间上的恒成立或有解问题 设(1)当时,上恒成立 上恒成立(2)当时,上恒成立上恒成立 类型一:构造二次函数分类讨论【例】设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 【分析】本题可转化为二次函数在闭区间上的最值,也可以通过分类参数求解. 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:2()(0).f x ax bx c a =++≠0>a ],[0)(βα∈>x x f 在,222()00()0.b b ba a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在()0,()0.f f αβ<⎧⇔⎨<⎩0<a ],[0)(βα∈>x x f 在()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在,222()00()0.b b ba aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或3 / 13令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. (1)当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)⇒7m -6<0,所以m <67,所以0<m <67;(2)当m =0时,-6<0恒成立;(3)当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述,m 的取值范围是{m |m <67}.【变式训练】已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,使不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.【解析】不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,f (x )=mx 2-2x -m +1为二次函数,需满足开口向下且方程mx 2-2x -m +1=0无解,即00m <⎧⎨∆<⎩,不等式组的解集为空集,即m 无解.综上可知,不存在这样的m . 类型二:分离参数法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.利用分离参数法来确定不等式(,为实参数)恒成立中参数的取值范围的基本步骤:(1)将参数与变量分离,即化为(或)恒成立的形式; (2)求在上的最大(或最小)值;(3)解不等式(或) ,得的取值范围.【例】 已知函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,则实数m 的取值范围为______. 【详解】()()3221143432f x x mx x f x x mx '=-+-∴=-+Q ,因为函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,所以240x mx -+≥在区间[]1,2上恒成立,即min 4(),[1,2]m x x x≤+∈,因为(),0f x λ≥D x ∈λλ()()g f x λ≥()()g f x λ≤()f x x D ∈()max ()g f x λ≥()()min g f x λ≤λ4 / 134y x x =+≥,当且仅当2x =时取等号,所以4y x x =+最小值为4,即4m ≤,故答案为:4m ≤ 【变式训练】已知()22xxf x -=-,若不等式()()230f x ax a f -++>对任意实数[]2,3x ∈恒成立,则实数a 的取值范围是________. 【详解】1()2222xxx x f x -=-=-,因为2xy =与12xy =-均为实数集上的增函数, 所以()f x 为实数集上的增函数,又()22()x xf x f x --=-=-,所以()f x 为实数集上的奇函数,由不等式2()(3)0f x ax a f -++>对任意实数[2,3]x ∈恒成立, 得2()(3)(3)f x ax a f f -+>-=-对任意实数[2,3]x ∈恒成立, 则23x ax a -+>-,即2(1)3x a x -<+在[2,3]x ∈时恒成立,得223(1)2(1)44(1)2111x x x a x x x x +-+-+<==-++---,因为函数4(1)21u x x =-++-在[2,3]上单调递减, 所以4(1)21u x x =-++-的最小值为2226++=,所以6a <, 所以a 的取值范围是(,6)-∞,故答案为:(,6)-∞. 类型三:主参换位——反客为主法【例】(2020·上海中学高一期中)已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________. 【答案】3(3,)2-【解析】因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0(1)0≤-⎨≤⎧⎩f f ,即2242(2)21042(2)210----+≤+---+≤⎧⎨⎩p p p p p p ,整理得222390210+-≥-⎧⎩-⎨≥p p p p ,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.5 / 13【变式训练】已知函数若对于任意,都有成立,则实数的取值范围是 .【解析】由题意可得()0f x <对于[,1]x m m ∈+上恒成立,即22()210(1)230f m m f m m m ⎧=-<⎨+=+<⎩,解得0m <<. 【变式训练】对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 【解析】由f(x)=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4, 则原问题转化为关于m 的一次函数问题.由题意知在[-1,1]上,g(m)的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x<1或x>3. 故当x 的取值范围是(-∞,1)∴(3,+∞)时,对任意的m∴[-1,1],函数f(x)的值恒大于零. (三) ()()20a f x bf x c ++>⎡⎤⎣⎦ 恒成立问题形如()()20a f x bf x c ++>⎡⎤⎣⎦的不等式恒成立问题,可设()t f x =,转化为一元二次不等式,但要注意()t f x =的范围.【例】(2019·湖南茶陵三中高一期中)函数12()2x x m f x n+-=+是R 上的奇函数,m 、n 是常数.(1)求m ,n 的值;(2)判断()f x 的单调性并证明; (3)不等式()()33920xxx f k f ⋅+--<对任意R x ∈恒成立,求实数k 的取值范围.【分析】(1)依题意()f x 时R 上的奇函数,则采用特殊值法,(0)0(1)(1)f f f =⎧⎨-=-⎩即可求出参数的值;(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可; (3)根据函数的奇偶性和单调性将函数不等式转化为自变量的不等式,即()23(1)320xx k -+⋅+>对任意R x ∈恒成立,令3(0)x t t =>,即2(1)20t k t -++>,对0t >恒成立,令2()(1)2g t t k t =-++,根据二次函数的性质分析可得;,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m6 / 13【详解】(1)∴12()2x x mf x n +-=+是R 上的奇函数,∴(0)0(1)(1)f f f =⎧⎨-=-⎩∴12m n =⎧⎨=⎩ ∴12111()22221x x xf x +-==-++. (2)()f x 在R 上递增证明:设12,x x R ∈,且12x x <,则()()()()121212121111222212212121x x x x x x f x f x --=--+=++++,∴12x x <∴12220x x -<又1210x +>,2210x +>,∴()()120f x f x -<,即()()12f x f x <,∴()f x 是R 上的增函数.(3)由题意得:()()()3392932xxx x x f k f f ⋅<---=-+对任意x ∈R 恒成立又()f x 是R 上的增函数,∴3932x x x k ⋅<-+即()23(1)320xx k -+⋅+>对任意x ∈R 恒成立,令3(0)xt t =>,即2(1)20t k t -++>,对0t >恒成立,令2()(1)2g t t k t =-++,对称轴为12k t +=, (1)当102k +≤即1k ≤-时,()g t 在(0,)+∞为增函数,∴()(0)20g t g >=>成立,∴1k ≤-符合, (2)当102k +>即1k >-时,()g t 在10,2k +⎛⎫ ⎪⎝⎭为减,1,2k +⎛⎫+∞⎪⎝⎭为增, ∴22min 1(1)(1)()20242k k k g t g +++⎛⎫==-+> ⎪⎝⎭,解得11k -<<,∴11k -<<. 综上实数k的取值范围为1k <.【变式训练】若关于x 的不等式cos2sin 0x x a ++<恒成立,则实数a 的取值范围是 . 【分析】把不等式转化为关于sin x 的一元二次不等式.【解析】2211cos 2sin 12sin sin 2sin 48x x a x x a x a ⎛⎫++=-++=--++ ⎪⎝⎭,当1sin 4x =时cos2sin x x a ++取得最小值18a +,所以实数a 的取值范围是1,8⎛⎫-∞- ⎪⎝⎭.7 / 13【变式训练】设b ∈R ,若函数f (x )=4x −2x+1+b 在[−1,1]上的最大值是3,则其在[−1,1]上的最小值是( )A .2B .1C .0D .−1【解析】f (x )=4x −2x+1+b =(2x )2−2⋅2x +b.设2x =t,则f (x )=t 2−2t +b =(t −1)2+b −1. 因为x ∈[−1,1],所以t ∈[12,2].当t =1时,f (x )min =f (1)=b −1;当t =2时,f (x )max =3,即1+b −1=3,b =3.于是f (x )min =2.故选A. (四)、其它函数:对于二次函数)0(0)(2≠>++=a c bx ax x f 有: (1)()()max x f a x f a ≥⇔≥恒成立; (2)()()min x f a x f a ≤⇔≤恒成立;(3)恒成立(注:若的最小值不存在,则恒成立的下界大于0);恒成立(注:若的最大值不存在,则恒成立的上界小于0).【例】 不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为_________. 【分析】根据二次不等式的恒成立问题,先求解不等式左边的最小值,再求解二次不等式即可.【详解】因为()2225144x x x -+=-+≥,故243a a ≥-恒成立.即()()2340140a a a a --≤⇒+-≤,解得14a -≤≤.实数a 的取值范围为[]1,4-.故答案为:[]1,4-【例】(2019·甘肃高二期末(理))若关于x 的不等式24x x m -≥对任意[0,1]x ∈恒成立,则实数m 的取值范围是 .【解析】设24,24y x x y x '=-=-,令0y '=,得 2.x =∴24y x x =-在(),2-∞上是减函数,即在[]0,1x ∈上也是减函数,2min 143,3y m ∴=-=-∴≤-.【变式训练】【2019天津市和平区高三第二次质量调查】若不等式−x 2+2x +3≤21−3a 对任意实数x 都成立,则实数a 的最大值为________.【解析】设f(x)=−x 2+2x +3,不等式−x 2+2x +3≤21−3a 对任意实数x 都成立,只需满足f(x)max ≤()0f x >⇔min ()0f x >()f x ()0f x >⇔()f x ()0f x <⇔max ()0f x <()f x ()0f x <⇔()f x8 / 1321−3a ,即可.f(x)=−x 2+2x +3=−(x −1)2+4⇒f(x)max =4,所以有 4≤21−3a ⇒a ≤−13,因此实数a 的最大值为−13.三、跟踪训练1、(2020·福建厦门高二月考(理))已知函数3211()4332f x x mx x =-+-在区间[]1,2上是增函数,实数m 的取值范围为( )A .45m ≤≤B .24m ≤≤C .4m <D .4m ≤【分析】求出3211()4332f x x mx x =-+-导函数,利用函数的单调性,推出4m x x ≤+不等式,利用基本不等式求解函数的最值,即可求得答案. 【详解】Q 函数3211()4332f x x mx x =-+-,∴2()4f x x mx '=-+, Q 函数3211()4332f x x mx x =-+-在区间上[1,2]是增函数,可得240x mx -+≥,在区间上[1,2]恒成立, 即:4,m x x ≤+在区间上[1,2]恒成立,Q 44x x +≥=,当且仅当2x =时取等号,可得4m ≤. 2.己知f(x)=x 2+2x +1+a ,∀x ∈R ,f(f(x))≥0恒成立,则实数a 的取值范围为( ) A .[√5−12,+∞] B .[√5−32,+∞] C .[−1,+∞) D .[0,+∞)【解析】设t =f(x)=(x +1)2+a ≥a ,∴f(t)≥0对任意t ≥a 恒成立,即(t +1)2+a ≥0对任意t ∈[a,+∞)都成立,当a ≤−1时f(t)min =f(−1)=a ,则a +a ≥0即a ≥0与讨论a ≤−1矛盾,当a >−1时,f(t)min =f(a)=a 2+3a +1,则a 2+3a +1≥0,解得a ≥√5−32,故选B .3、若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是( ) A .(],1-∞ B .(),1-∞ C .(],2-∞ D .(),2-∞【解析】【分析】求()2f'x 6x 6mx 6=-+,根据题意可知()f'x 0≥在()1,∞+上恒成立,可设()2g x 6x 6mx 6=-+,法一:讨论V 的取值,从而判断()g x 0≥是否在()1,∞+上恒成立:0≤V 时,容易求出2m 2-≤≤,显然满足()g x 0≥;0V >时,得到关于m 的不等式组,这样求出m 的范围,和前面求出的m 范围求并集即可,法二:分离参数,求出m 的范围即可.9 / 13【详解】()2f'x 6x 6mx 6=-+;由已知条件知()x 1,∞∈+时,()f'x 0≥恒成立;设()2g x 6x 6mx 6=-+,则()g x 0≥在()1,∞+上恒成立;法一:()1若()236m 40=-≤V ,即2m 2-≤≤,满足()g x 0≥在()1,∞+上恒成立;()2若()236m 40=->V ,即m 2<-,或m 2>,则需()m 121660g m ⎧<⎪⎨⎪=-≥⎩解得m 2≤; m 2∴<-,∴综上得m 2≤, ∴实数m 的取值范围是(],2∞-;法二:问题转化为1m x x ≤+在()1,∞+恒成立,而函数1y x 2x=+≥,故m 2≤;故选C . 4、已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .-1<b <0 B .b >2 C .b <-1或b >2D .不能确定【解析】由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a2=1,故a =2.,由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.5.已知f (x )=m (x −2m )(x +m +3),g (x )=4x −2,若对任意x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是( )A .(−72,+∞) B .(−∞,14) C .(−72,0) D .(0,14) 【解析】∴g (x )=4x ﹣2,当x<12时,g (x )<0恒成立,当x ≥12时,g (x )≥0,又∴∴x ∴R ,f (x )<0或g (x )<0,∴f (x )=m (x ﹣2m )(x +m +3)<0在x ≥12时恒成立,即m (x ﹣2m )(x +m +3)<0在x ≥12时恒成立, 则二次函数y =m (x ﹣2m )(x +m +3)图象开口只能向下,且与x 轴交点都在(12,0)的左侧,10 / 13∴{ m <0−m −3<122m <12 ,即{m <0m >−72m <14 ,解得−72<m <0,∴实数m 的取值范围是:(−72,0).故选C . 6.【河南省郑州市2019年高三第二次质量检测】已知平面向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=2,|a ⃑−b ⃑⃑|=√7,若对于任意实数k ,不等式|ka ⃑+tb ⃑⃑|>1恒成立,则实数t 的取值范围是( ) A .(−∞,−√3)∪(√3,+∞) B .(−∞,−√33)∪(√33,+∞) C .(√3,+∞) D .(√33,+∞) 【解析】设向量a →,b →的夹角为θ,|a ⃑|=1,|b ⃑⃑|=2,|a ⃑−b⃑⃑|=√7, 则(a ⃑−b ⃑⃑)2=a ⃑2+b ⃑⃑2−2a ⃑∙b ⃑⃑=1+4-2×1×2×cosθ=7,∴cosθ=−12,∴θ=120°,∴a ⃑∙b⃑⃑=−1, 又|ka ⃑+tb ⃑⃑|>1,∴(ka ⃑+tb ⃑⃑)2>1,即k 2a ⃑2+t 2b ⃑⃑2+2kta ⃑∙b ⃑⃑=k 2+4t 2−2kt >1对于任意实数k 恒成立,∴k 2−2kt +4t 2−1>0对于任意实数k 恒成立,∴∆=(2t )2-4(4t 2−1)<0,∴t<−√33或t>√33,故选B .7.【江西省宜丰中学2019届高三第二次月考】在R 上定义运算⊗:x ⊗y =x(1−y),若不等式(x −a)⊗(x +a)<1对任意实数x 恒成立,则实数a 的取值范围为 ( )A .−1<a <1B .−12<a <32C .−32<a <12D .0<a <2【解析】根据题设新定义的运算,可得(x −a)⊗(x +a)=(x −a )(1−x −a ),所以(x −a)⊗(x +a)<1可转化为(x −a )(1−x −a )<1,即x 2−x +(1−a 2+a )>0恒成立,根据二次函数的性质可知Δ=1−4(1−a 2+a )<0,解得−12<a <32,故选B.8.【山东省滨州市2019届高三期中】若对于任意的x >0,不等式mx ≤x 2+2x+4恒成立,则实数m 的取值范围为( )A .(﹣∞,4]B .(﹣∞,6]C .[﹣2,6]D .[6,+∞)【解析】当x >0时,mx ≤x 2+2x +4∴m ≤x +4x+2对任意实数x >0恒成立,令f (x )=x +4x+2,则m ≤f (x )min ,∴f (x )=x +4x+2≥2√x ⋅4x+2=6,∴m ≤6.故选B .9.【宁夏银川一中2018届高三第二次模拟】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是A .[1,+∞)B .[−1,4)C .[−1,+∞)D .[−1,6]11 / 13【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥yx −2(y x )2,对于x ∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,a 的取值范围是[−1,+∞),故选C.10、若关于x 的二次不等式01)1(2<-+-+a x a ax 恒成立,则实数a 的取值范围是________. 【分析】利用a 的符号及判别式求解.【解析】由题意知,01)1(2<-+-+a x a ax 恒成立,所以⇔⎩⎨⎧<∆<00a ⎩⎨⎧<---<0)1(4)1(02a a a a ⇔⎩⎨⎧>--<012302a a a ⇔⎪⎩⎪⎨⎧-<><3110a a a 或⇔31-<a . ∴a 的取值范围是⎪⎭⎫ ⎝⎛-∞-31, 11. 不等式(acos 2x −3)sinx ≥−3对∀x ∈R 恒成立,则实数a 的取值范围是________.【解析】令sin =t,−1≤t ≤1,则原函数化为g (t )=(−at 2+a −3)t ,即g (t )=−at 3+(a −3)t , 由−at 3+(a −3)t ≥−3,−at (t 2−1)−3(t −1)≥0,(t −1)(−at (t +1)−3)≥0及t −1≤0知, −at (t +1)−3≤0,即a (t 2+t )≥−3,当t =0,−1时(1)总成立,对0<t ≤1,0<t 2+t ≤2,a ≥(−3t 2+t )max=−32;对−1<t <0,−14≤t 2+t <0,a ≤(−3t 2+t)min=12,从而可知−32≤a ≤12,故答案为[−32,12].12. 若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立,则实数k 的取值范围为______. 【解析】若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立, 则直线y =k (x +3)在y =|x 2−4x −5|, x ∈[−1,5]图象的上方,如图:联立:{y =k (x +3)y =5+4x −x2 ,可得x 2+(k −4)x +3k −5=012 / 13令∆=(k −4)2−4(3k −5)=0,k =2或18(舍去) ∴k >2,故答案为:k >213、 设函数2()2f x mx mx =--(1)若对于一切实数()0f x <恒成立,求m 的取值范围;(2)若对于[1,3],()2(1)x f x m x ∈>-+-恒成立,求m 的取值范围.【分析】(1)由不等式220mx mx --<恒成立,结合二次函数的性质,分类讨论,即可求解; (2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,整理得只需221xm x x >-+恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式220mx mx --<恒成立,∴当0m =时,显然20-<成立,所以0m =时,不等式220mx mx --<恒成立;∴当0m ≠时,只需2080m m m <⎧⎨∆=+<⎩,解得80m -<<, 综上所述,实数m 的取值范围为(8,0]-.(2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,只需22mx mx m x -+>恒成立,只需()212m x x x -+>,又因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,只需221x m x x >-+,令222211111x y x x x x x x ===-+-++-,则只需max m y >即可,因为12x x +>=,当且仅当1x x =,即1x =时等式成立; 因为[1,3]x ∈,所以max 2y =,所以2m >.14.(2019·江苏南通一中高一期末)已知a ∴R ,函数f (x )=x 2﹣2ax +5. (1)若a >1,且函数f (x )的定义域和值域均为[1,a ],求实数a 的值; (2)若不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立,求实数a 的取值范围. 【分析】(1)根据f (x )的图象开口向上,对称轴为x =a >1,知f (x )在[1,a ]上单调递减,所以f (1)=a 求解即可.13 / 13(2)将不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立,去绝对值转化为a 2512x x -≥且a 2512x x+≤在 x ∴[13,12]恒成立,分别令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∴[13,12],用二次函数求其最大值,令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∴[13,12],求其最小值即可. 【详解】(1)∴f (x )的图象开口向上,对称轴为x =a >1,∴f (x )在[1,a ]上单调递减, ∴f (1)=a ,即6﹣2a =a ,解得a =2..(2)不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立, 即x |2ax ﹣5|≤1对x ∴[13,12]恒成立, 故a 2512x x -≥且a 2512x x +≤在x ∴[13,12]恒成立,令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∴[13,12],所以g (x )max =g (25)258=, 所以258a ≥.令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∴[13,12], 所以h (x )min =h (12)=7,所以7a ≤.综上:2578a ≤≤.。

恒成立与存在性问题-讲义(教师版)

恒成立与存在性问题-讲义(教师版)

恒成立与存在性问题一、课堂目标1.熟练运用导数中恒成立问题和存在性问题的解法来解决原函数的最值问题.2.理解含参导数中的分类讨论与数形结合思想.【备注】【教师指导】1.本讲是导数部分的重难点内容,重点是让学生掌握单变量型函数的恒成立与存在性问题;难点是双变量型函数的恒成立与存在性问题;重点数学思想是让学生掌握构造法和参变分离法.2.本讲关联知识包括导数的概念及运算、导数与函数的单调性、极值与最值问题.二、知识讲解1. 单变量型【备注】【教师指导】什么是单变量型?比如:只含有一个变量的不等式叫做单变量不等式.知识精讲(1)恒成立问题①,恒成立②,恒成立③,恒成立④,恒成立(2)存在性问题①,成立②,成立③,成立④,成立知识点睛常用解题方法(1)构造法:转化为求含参函数的最值问题求解.构造法属于常用及通用方法,解题思路:将所给不等式构造成左边为含参函数,右侧是常数,通常是零,将左侧设计成函数,根据题意求解最值,恒常数.例如,证明不等式的问题转化为,进而构造辅助函数,然后利用导数研究函数的单调性,接着证明函数的最小值大于.(2)参变分离法:通过分离参数,转化为不含参数函数的最值问题求解.①解题思路:将所给不等式变形,将参数分离出来,使参数在不等式左侧,其他项移到右侧,右侧形成新的函数,根据题意求解新函数的最值,判断参数的范围.②参变分离只对部分函数适用,首先这个函数能将参数分离出来,其次分离出的函数是好求导,如果变形后发现新的函数特别繁琐,建议还是应用构造法.经典例题A. B.C. D.1.函数的定义域为,,对任意,,则的解集为().【答案】B【解析】方法一:方法二:因为函数的定义域为,,对任意,,则的导函数,所以在定义域内递增,那么,故函数值小于零的解集为.【备注】【教师指导】本题考查简单的构造法证明不等式恒成立问题,第一步:可构造函数,第二步:再进一步求导,判断单调性,第三步:已知,将带入到,,因此解集为()(,)令,则,因为,所以,即,所以在上单调递增.又因为,所以,所以,所以的解集是.故选.【标注】【知识点】导数与单调性(1)(2)2.已知函数.求证:;若在区间上恒成立,求的最小值.【答案】(1)(2)证明见解析;的最小值为.【解析】(1)(2)要证:只需证明:在恒成立,当时,在上单调递减;当时,在上单调递增;当时在恒成立所以.-要使:在区间在恒成立,等价于:在恒成立,等价于:在恒成立因为==①当时,,不满足题意②当时,令,则或(舍).【备注】【教师指导】第一问利用构造法求解恒成立问题,让学生更加深刻的理解构造法,要注意定义域.第二问同样是利用构造法,但是会涉及到前面所学的分类讨论问题,因此教师在讲解时要注意对于分类讨论的部分每一条都要写清楚,让学生掌握这类题目的解法.所以时,在上单调递减;时,在上单调递增;当时当时,满足题意所以,得到的最小值为.【标注】【知识点】利用导数解决不等式恒成立问题;利用导数求单调性证不等式巩固练习3.已知函数.若关于的不等式恒成立,求整数的最小值.【答案】(1).【解析】(1)令.所以.()当时,因为,所以.∴此时在上是递增函数.又.∴不能恒成立,即关于的不等式不能恒成立.∴这种情况不存在.()当时,.∴当时,.当时,.∴函数的最大值为.令.∵,,又在上是减函数.∴当时,.所以整数的最小值为.【标注】【知识点】通过构造函数证明不等式;双变量问题;利用导数解决不等式恒成立问题经典例题4.已知函数,.若函数在处取得极值,对,恒成立,求实数的取值范围.【答案】(1).【解析】(1)因为函数在处取得极值,所以解得,经检验满足题意.由已知,则令,则易得在上递减,在上递增,所以,即.【标注】【知识点】利用导数解决不等式恒成立问题;求函数单调区间(含参一次型导函数)【思想】分类讨论思想【备注】【教师指导】本题考查利用参变分离法证明不等式恒成立问题,先将代入,可将参数进行分离,不等式右边可看做一个新的函数,研究其单调性、最值.需要给学生明确遇到恒成立与存在性问题,实际则是对函数最值的求解,遇到含参函数需要对其单调性讨论,再求解最值.巩固练习5.已知函数,.若对恒成立,求实数的取值范围.【答案】(1).【解析】(1)∵在上恒成立,∴,即,在上恒成立,令,,∴,令,,∴在上递增,在递减,∴,∴.【标注】【知识点】求函数单调区间(含参一次型导函数);利用导数解决不等式恒成立问题经典例题6.已知函数.若对,使成立,求实数的取值范围(其中是自然对数的底数).【答案】(1)的取值范围为.【解析】(1),,令,,,由,当时,,在单减,当时,,在单增,,;,∴在的最大值为,所以,,所以实数的范围为.【标注】【知识点】利用导数求函数的单调性、单调区间;利用导数解决不等式能成立问题【备注】【教师指导】1.本题考查利用参变分离法证明单变量不等式是能成立问题,也就是存在性问题,2.这道题用参变分离法会更简单,参变分离后,右侧形成的导数更容易求导,令其为一个新的函数,3.对新的函数求导,求单调性,再求最值.4.让学生明白能成立,即可.巩固练习(1)(2)7.已知,,其中是自然常数,.当时,求的极值.若有解,求的取值范围.【答案】(1)(2)极小值为,无极大值..【解析】(1)(2)由题意,函数,则,∴当时,,此时为单调递减,当时,,此时为单调递增,∴当的极小值为,无极大值.∵,,所以在上有解,即在上有解,令,,∴,令,则,当时,,此时为单调递增,当时,,此时为单调递减,∴,∴实数的取值范围是.【标注】【知识点】求解函数极值;利用导数求函数的最值;利用导数证明不等式能成立问题2. 双变量型知识精讲(1)恒成立问题①,恒成立②,恒成立(2)存在性问题①,成立②,成立③,,成立④,,成立⑤,,成立知识点睛常用解题方法(1)构造法根据结构特点,把一个变量看成主元,另一个变量看成副元去构造关于主元的函数.(2)参变分离法根据式子结构特点,先进行参变分离,构造辅助函数,通过对辅助函数性质的研究,来求解参变量取值范围.经典例题(1)(2)(3)8.已知函数,.当时,求函数的极值.当时,讨论函数单调性.是否存在实数,对任意的,,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.【答案】(1)(2)(3)时,;时,.当时,增区间为,,减区间为;当时,增区间为,无减区间;当时,增区间为,,减区间为.存在,.【解析】(1)(2)当时,,.当或时,,单调递增;当时,,单调递减,所以时,;时,.当时,【备注】【教师指导】本题第一问,带入知求解即可第二问,导函数属于能分解的二次函数型,讨论两根大小第三问考查双变量的恒成立问题.可先构造函数,再进行参变分离,再进行单调性的分析,从而求得最值,得到参数的范围.极大值极小值极大值极小值(3),①当 ,即时,由可得或,此时单调递增;由可得 ,此时 单调递减;②当 ,即时,在上恒成立,此时单调递增;③当,即时,由可得或,此时单调递增;由可得,此时 单调递减.综上:当 时,增区间为, ,减区间为;当 时,增区间为,无减区间;当时,增区间为,,减区间为.假设存在实数 ,对任意的 ,,且,有恒成立,不妨设,则由恒成立可得:恒成立,令,则 在上单调递增,所以 恒成立,即 恒成立,∴ ,即恒成立,又 ,∴在时恒成立,∴,∴当 时,对任意的 ,,且,有恒成立.【标注】【知识点】直接求函数的极值(不含参);求函数单调区间(含参二次型导函数);利用导数解决不等式恒成立问题巩固练习(1)(2)9.设,.令,求的单调区间.若任意,且,都有恒成立,求实数的取值范围.【答案】(1)(2)单调递减区间为,无单调递增区间..【解析】(1)(2)由题意知,,令,则,令,解得,令,解得,故在上单调递增,在上单调递减,,取得极大值,也是最大值为,故,在上递减,所以的单调递减区间为,无单调递增区间.已知可转化为时,恒成立,令,则在上为单调递增的函数,故恒成立,即恒成立,令,则,∴当时,,在上单调递减,,即,故实数的取值范围是.【标注】【知识点】利用导数求函数的最值;二阶导问题;通过构造函数证明不等式;利用导数证明不等式恒成立问题;双变量问题;利用导数求函数的单调性、单调区间经典例题10.已知函数,,若,,使得成立,求的取值范围.【备注】【教师指导】本题考查双变量存在性证明不等式问题,本题建议教师用两种方法为学生讲解,一种是整体构造法,一种是参变分离法.让学感受各类题目的不同解法.更难一些的题目在【题集】中可选择.【答案】.【解析】由分析可知,只需取到的最小值即可.而.接下来有两个解法:解法一:整体法.易知只需取到的最大值,而,,考虑到此时,进行如下分类:①若,则,单调递增,在处取到最大值;②若,则,单调递减,在处取到最大值;③若,则在上单调递减,上单调递增,此时在或处取到最大值.综上所述,的最大值为或.∴只需且,解得.解法二:参变分离.此时是存在,使得,考虑到是正数,故:,而在上是单调增函数,故其最大值为,∴.【标注】【知识点】导数与最值巩固练习11.已知函数,,若任意,存在,使,则实数的取值范围是.【答案】【解析】,在上单增,若,则,问题转化为,使,即在上能成立,即在上至少有一个实数解,而,∴得,故.【标注】【知识点】利用导数证明不等式能成立问题(1)(2)12.已知函数.若函数在上为减函数,求实数的最小值.若,,使成立,求实数的取值范围.【答案】(1)(2)实数的最小值为..【解析】(1)方法一:(2)∵在上为减函数,∴在上恒成立,∴恒成立,∴,即实数的最小值为.∵,,使,∴,,∵,,∴当时,取得最大值,∴,∴,,亦即,设,要使得,只需满足,∵,且当时,,,∴,在上单调递减,∴,则,方法二:∴实数的取值范围是.命题“若,,使成立”,即,由()得,时,,问题等价于当,时,有.当时,由()得,在上为减函数,∴,∴.当时,由于在上为增函数,所以.(i )若,即,在上恒成立,故在上为增函数,所以,,不合,舍.(ii )若,即,由的单调性和值域知,存在唯一的,使得,,,为减函数,,,为增函数,所以,,.,不合题意.综上,.【标注】【知识点】双变量问题;利用导数解决不等式能成立问题;隐零点问题三、思维导图你学会了吗?画出思维导图总结本节课所学吧!【备注】四、出门测(1)(2)13.已知函数,,.讨论的单调区间.若恒成立,求的取值范围.【答案】(1)(2)当时,的单调减区间是,无单调增区间;当时,的单调减区间是,单调增区间是..【解析】(1)(2),,当时,即时,在上恒成立,所以的单调减区间是,无单调增区间,当时,即时,由得,由,得,所以的单调减区间是,单调增区间是.由题意,,恒成立,,,,,.①时,,在递增,∴,,舍去;②时,,在递减,∴,,成立;③时,,,∴,.递增,舍去.综上,.【标注】【知识点】利用导数解决不等式恒成立问题。

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题作者:邓卫和来源:《中学课程辅导高考版·教师版》2014年第24期摘要:在近年的高考中经常出现“有解”与“恒成立”问题,许多同学混淆了这两个概念,在解题时出错。

现对这两个概念进行阐述:“有解”是指“至少有一个满足条件的值使式子成立,则称该问题有解”。

“恒成立”是指“在某一范围内所有的变量值都使该问题成立,则称该问题恒成立”。

本文现通过具体问题进行阐述。

关键词:“有解”;“恒成立”;例析中图分类号:G427文献标识码:A ; ; 文章编号:1992-7711(2014)24-125-1一、有解问题例1方程x2-a|x|+4=0在x∈[-2,2]上有解,求a的范围。

分析:方程x2-a|x|+4=0在x∈[-2,2]上有解,可能有一解,也可能有两解,讨论比较复杂。

可通过分离变量a,转化为求函数的值域来解。

解:x2-a|x|+4=0当x=0时,方程不成立,因此x≠0故方程两边同除以|x|得a=|x|+4|x|≥2|x|·4|x|=4(当且仅当|x|=2时取到“=”)此时x=±2∈[-2,2],所以:当a≥4时该方程x2-a|x|+4=0在x∈[-2,2]上有解。

点评:本题通过“分离变量a”求值域,方法简单易行,在以后的学习中经常用到这一方法。

例2(2013重庆.理.16)若关于x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是。

分析:要使|x-5|+|x+3|<a无解,只要求|x-5|+|x+3|<a有解时实数a的范围,然后求a的补集即可。

要使|x-5|+|x+3|<a有解,则至少有一个或一个以上的x值使要|x-5|+|x+3|<a成立,因此,只要求a大于代数式|x-5|+|x+3|的最小值。

解:函数y=|x-5|+|x+3|=2-2xx≤-38-3<x<52x-2x≥5由此可知,该函数的值域为[8,+∞),因此:当a>8时,不等式|x-5|+|x+3|<a有解。

函数的恒成立与存在性问题

函数的恒成立与存在性问题
答案 (-∞,-5]
1.若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则 实数a的取值范围为( )
A.-253,+∞ C.(1,+∞)
B.-253,1 D.(-∞,-1)
答案 A
解析 问题等价转化为不等式ax>2-x2在区间[1,5]上有
解,即不等式a>
2 x
-x在区间[1,5]上有解,令
方法三 分离变量法 若所给的不等式能通过恒等变形使参数与主元分离于不 等式两端,从而问题转化为求主元函数的最值,进而求出参 数范围.这种方法本质也还是求最值,但它思路更清晰,操 作性更强.一般地有f(x)<g(a)(a为参数)恒成立⇔g(a)>f(x)max, f(x)>g(a)(a为参数)恒成立⇔g(a)<f(x)min .
因为函数y=
1 ex
为R上的减函数,所以y=-
1 ex
为R上的增
函数,故f(x)=ex-
1 ex
为R上的增函数,由f(-4t)>f(2m+mt2),
可得-4t>2m+mt2,即mt2+4t+2m<0对任意t∈R恒成立,当
m=0时,不等式可化为4t<0,不符合题意,所以m≠0,所以
m<0, Δ=16-8m2<0,
2022高考一轮复习
函数的恒成立与存在性问题
2021.09.09-10
纵观近几年高考对于函数、不等式中恒成立问题的考查重点是一次函数、二次 函数的性质、不等式的性质及应用,图象.渗透换元、化归、数形结合、函数 与方程、分类讨论、转化等数学思想方法
不等式类型 ∀x∈D,f(x)>M ∀x∈D,f(x)<M ∃x0∈D,f(x0)>M ∃x0∈D,f(x0)<M ∀x∈D,f(x)>g(x) ∀x∈D,f(x)<g(x)

恒成立问题常见类型及解法

恒成立问题常见类型及解法

【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
范围是______.
【解题提示】将恒成立问题转化为最值问题.
【解析】因为x>0 ,所以 x 1 2(当且仅当x=1时取等
x
号),所以有
x2
x 3x
1
x
1 1
3
2
1
3
1 5
,即
x x2 3x 1
的最大值为 1,故a≥1 .
x
5
5
【方法技巧】不等式恒成立问题的解题方法 1.不等式的恒成立问题与函数最值有密切的关系,解决不等 式恒成立问题,通常先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数的最值问题,通常采用导数法 解决.
x
恒成立, 2k , 4k k Z ,所以 k 不可能为 6。
2
五、 把不等式恒成立问题转化为函数图象问题
【理论阐释】 若把不等式进行合理的变形后,能非常容易地画出不等
号两边对应函数的图象,这样就把一个很难解决的不等式的 问题转化为利用函数图象解决的问题,然后从图象中寻找条 件,就能解决问题。
典例5
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x

(0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例题讲解:题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

2、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数, (Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)1、当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)) 1、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________2、已知函数()222f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围。

题型五、不等式能成立问题(有解、存在性)的处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______。

2、已知函数()()21ln 202f x x ax x a =--≠存在单调递减区间,求a 的取值范围小结:恒成立与有解的区别恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。

①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈。

即()f x 的上界小于或等于M ; ②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈。

或()f x 的下界小于或等于M ; ③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈。

即()f x 的下界大于或等于M ; ④不等式()f x M >对x I ∈时有解max ()f x M ⇔>,x I ∈.。

或()f x 的上界大于或等于M ;课后作业:1、设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( )(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3}2、若任意满足05030x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩的实数,x y ,不等式222()()a x y x y +≤+恒成立,则实数a 的最大值是 ___ .3、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是4、不等式ax ≤[]0,3x ∈内恒成立,求实数a 的取值范围。

5、已知两函数()2728f x x x c =--,()322440g x x x x =+-。

(1)对任意[]3,3x ∈-,都有()()f x g x ≤)成立,求实数c 的取值范围; (2)存在[]3,3x ∈-,使()()f x g x ≤成立,求实数c 的取值范围; (3)对任意[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围; (4)存在[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围;6、设函数3221()23(01,)3f x x ax a x b a b R =-+-+<<∈. (Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤成立,求a 的取值范围。

7、已知A 、B 、C 是直线λ上的三点,向量OA →,OB →,OC →满足:()[]()01x ln 1f 2y =⋅++⋅'+-. (1)求函数y =f(x)的表达式;(2)若x >0,证明:f(x)>2xx +2;(3)若不等式()3bm 2m x f x 21222--+≤时,[]1,1x -∈及[]1,1b -∈都恒成立,求实数m 的取值范围.8、设()x ln 2x q px x f --=,且()2epqe e f --=(e 为自然对数的底数)(I) 求 p 与 q 的关系;(II)若()x f 在其定义域内为单调函数,求 p 的取值范围;(III)设()xe2x g =,若在[]e ,1上至少存在一点0x ,使得()()00x g x f >成立, 求实数 p 的取值范围.函数专题4:恒成立问题参考答案:题型一、常见方法1、分析:1)思路、等价转化为函数0)()(>-x g x f 恒成立,在通过分离变量,创设新函数求最值解决.2)思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x xx x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x x ab +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(xa x a x x a x h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .3、解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、解:不等式即()21210x p x x -+-+>,设()()2121f p x p x x =-+-+,则()f p 在[-2,2]上恒大于0,故有:()()222043031112010f x x x x x x f x ->⎧⎧-+>><⎧⎪⎪⇒⇒⎨⎨⎨><->->⎪⎩⎪⎩⎩或或1x ⇒<-或3x >2、 (Ⅱ)分析:在不等式中出现了两个字母:λ及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。

显然可将λ视作自变量,则上述问题即可转化为在(],1-∞-内关于λ的一次函数大于等于0恒成立的问题。

相关文档
最新文档