第3章 水轮机结构(蜗壳及尾水管)
水轮机的蜗壳、尾水管讲述

三、蜗壳的主要参数
1、断面型式与断面参数 (1) 金属蜗壳:圆形。结构参数:座环外
径、内径、导叶高度、蜗壳断面半径、蜗 壳外缘半径
(2) 混凝土蜗壳:“T”形。便于施工和减小其径 向尺寸,降低厂房土建投资有四种型式:
(i) n=0:平顶蜗壳。特点:接力器布置方便, 减小下部混凝土,但水流条件不太好。
2g
h 25 )
作用:(1)、汇集转轮出口水流,排往下 游。
(2)、当H2>0时,利用这一高度水流 所具有的位能。
(3)、回收转轮出口水流的部分动能。
二、尾水管的动能恢复系数
尾水管H2取决于水轮机的安装高程,与尾水管
的性能无关;衡量尾水管性能好坏的标志是恢
由此可以绘出蜗壳平面图单线图。 其步骤为: (a) 确定φ0 和VC ;
(b) 求Fc、ρmax、Rmax; (c) 由φi确定Qi 、 Fi、ρi、Ri。
第二节 尾水管的作用、型式及其主要 尺寸确定
尾水管是反击式水轮机的重要过流部件。 其型式、尺寸影响、厂房基础开挖、下部 块体混凝土尺寸。尾水管尺寸越大,η越 高,工程量及投资增大。合理确定是非常 重要的。
(1) 金属蜗壳:φ0=340°~350°,常取 345°
φ0大,过流条件好,但平面尺寸增大,厂 房尺寸加大。金属蜗壳的流量小,尺寸小, 一般取较大包角;从构造上讲,最后 100°内,断面演变成为椭圆。
(2)、混凝土蜗壳:Q大,为减小平面尺寸, φ0=180°~270°,一般取180°,一 部分水流未进入蜗形流道,从而减小了蜗 壳进口断面尺寸,这部分水流直接进入导 叶,为非对称入流,加重了导叶的负担, 因此在非蜗形流道处,固定导叶断面形状 常需特殊设计。
四、蜗壳的水力计算
第三章_水轮机的工作原理

广泛
轴流式 轴向 轴向
3~88
几十~几十万
低水头大流 量河床式
斜流式 斜向 斜向 40~200
抽水蓄能
贯流式 轴向 轴向 2~30
几~几万
河床式 潮汐式
射流特点 适用水头H(M) 适用电站
切击式 切线方向 40~2000
广泛
斜击式 侧面
50~400
小型
双击式 二次冲击
6~150
小型
3、各型水轮机各个部件、构造及各部件的作用是什么?
3.产生强烈的噪音和振动,恶化工作环境,从而影响水轮机的安全稳定。
汽蚀破坏是机械、化学、电化学作用的共同结果,其中机械 破坏为主。
三、汽蚀类型
1、叶型汽蚀——发生在水轮机转轮叶片上的汽蚀。是反击式水轮机的主 要汽蚀形式,主要是由于叶片的几何形状造成的汽蚀。
反击式水轮机的轮叶为扭曲形,水流流经转轮时,一般叶片正面为
这种周期性的气泡产生、破灭而破坏水轮机过流金属表面的现象称为 水轮机的汽蚀现象 。
二、汽蚀的危害
1.降低低水轮机效率,减小出力。汽泡的产生破坏了水流的连续性,水 流质点相互撞击消耗部分能量从而增大了水力损失,使水轮机效率降低, 出力减小。 2.破坏水轮机过流部件,影响机组寿命。汽蚀产生,使金属表面失去光泽, 产生麻点,蜂窝,严重时轮叶上产生孔洞或大面积剥落。
η根据模型试验得到提高效率的有效方法减小水头损失、 流量损失、机械摩擦。
反击式水轮机所提供给水流的过道并不是等断面的,有宽窄之分,这 就会使水流流速大小不同,进而引起压力低高不同,亦就是造成水轮机内 有高压区和低压区之分,若低压区的压力达到(或低于)该温度下水的汽 化压力时,水就开始局部汽化产生大量汽泡,同时水体中存在的许多眼看 不见的气核体积骤然增大也形成可见气泡,这些气泡随着水流进入高压区 (压力高于汽化力)时,气泡瞬时破灭,由于汽泡中心压力较低,气泡周 围的水质点将以很高的速度向汽泡中心撞击形成巨大的水击压力(可达几 百甚至上千个大气压力),并以很高的频率冲击金属表面,高频率冲击的 结果,使过流流道的金属表面遭到严重破坏。
第3章 水轮机结构(蜗壳及尾水管)课件

顶板 α=10°~13°,底板水平。
4.尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重要 因素。
H=h1+h2+h3+h4 h1,h2由转轮结构确定; h4为肘管 高度,不易变动。 H取决于h3(直锥段长度)。h3大→开挖加大,工程 投资增大; L:机组中心到尾水管出口,L大→F出大→V出小 →ηw大→hf大→厂房尺寸加大,一般L=( 3.5~4.5) D1。 5.推荐尾水管尺寸:表4-15。
参数:座环外径、内
径、导叶高度、蜗壳
断面半径、蜗壳外缘
半径。
混凝土蜗壳:“T”形。 (1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n:上伸式
(4) n=0:平顶蜗壳
中间断面:
蜗壳顶点、底角点的变化规律按直线或抛物线确 定。
蜗壳中间断面
金属蜗壳
混凝土蜗壳
2. 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0 (1) 金属蜗壳:φ0=340°~350°,常取345° (2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一 大部分水流直接进入导叶,为非对称入流,对转轮 不利)
断面半径:
max
Fc
Qmax 0 3600 VC
从轴心线到蜗壳外缘半径:
Rmax ra 2 max
(ii) 中间断面( i )
Qi
i
i
360
Q max 0
Qi Qmaxi Fi Vu 3600Vc
Q max i 360 0 VC
板衬砌防渗(H 最大达Leabharlann 80m)2. 金属蜗壳
第3章 水轮机结构(蜗壳及尾水管)(参考研究)

Ri ra 2i
由此可以绘出蜗壳平面图单线图。其步骤为:
(i) 确定φ0 和VC ; (ii) 求Fc、ρmax、Rmax; (iii) 由φi确定Fi、ρi、Ri。
14
(2) 混凝土蜗壳的水力计算(半解析法)
15
(1) 按进口流速求进口断面积;
(2) 根据水电站具体情况选择断面型式,并确定断面尺 寸,使其 F Fc
第四节 水轮机蜗壳的形式及尺寸确定
一、蜗壳的功用及型式 (一) 功用
蜗壳是水轮机的进水部件,把水流以较小的水头 损失,均匀对称地引向导水机构,进入转轮。设 置在尾水管末端。 (二) 型式 混凝土蜗壳和钢蜗壳。
1
1. 混凝土蜗壳
适用于低水头大流量 的水轮机。 H≦40m, 钢筋混凝土 浇筑,“T”形断面。 当H>40m时,可用钢 板衬砌防渗(H 最大达 80m)
21
2. 肘管: 90°变断面的弯管,进口为圆形断面,出口为 矩形断面。F进/F出=1.3
❖ 曲率半径R小——离心力大——压力、流速分布 不均匀—hw大。R=(0.6~1.0)D4
❖ 为减小转弯处的脱 流及涡流损失,肘 管出口收缩断面 (口扩散段: ❖ 矩形扩散管,出口宽度B5, ❖B5很大时,加隔墩d5=(0.1~0.15) B5 ❖顶板 α=10°~13°,底板水平。
(3) 选择顶角与底角点的变化规律(直线或抛物线),以 虚线表示并画出1、2、3…….等中间断面。
(4) 测算出各断面的面积,绘出:F = f(R)关系曲线。
(5) 按
Fi
Qi Vu
Qm axi
360 0Vc
绘出F = f(Φ)直线。
(6) 根据φi确定Fi、Ri及断面尺寸,绘出平面单线图。
第三节 蜗壳

第三节蜗壳一、金属蜗壳1.结构型式根据金属蜗壳外围混凝土结构的受力情况,可分为三种结构型式。
(1)外围混凝土结构不分担蜗壳内水压力。
这种金属蜗壳顶面钢板与外围结构之间用弹性垫层隔开,如图18-5所示。
这种结构型式为我国所普遍采用。
外围混凝土结构不分担内水压力的金属蜗壳,在尾水管锥管段钢衬安装和周围混凝土浇筑完成后,安装座环及钢蜗壳,在蜗壳上半部表面铺上弹性垫层,然后浇筑蜗壳的外围混凝土。
外围混凝土结构的体积大时应分层分块浇筑。
金属蜗壳本身刚度不够时,浇筑外围混凝土期间,在蜗壳内应设撑架。
外围混凝土浇筑完毕后,通过水轮机座环上的预留孔或管道浇筑座环下未填实的部分。
图18-5 有弹性垫层的金属蜗壳在这种金属蜗壳中,弹性垫层的作用是保证蜗壳在内水压力的作用下可自由变形,不会将力传给外围结构。
为了保证渗人垫层空隙的水能顺畅排出,在垫层最低处应留有排水设施。
此外,还应注意在浇外围混凝土时,或对蜗壳底部压浆充填孔隙时,防止垫层空隙被水泥浆填实而失去弹性。
弹性垫层通常用三毡四油构成,或者用软木沥青构成。
垫层的厚度应满足金属蜗壳自由变形的需要。
某水电站厂房金属蜗壳的垫层为用锯末、麻刀和沥青做成的5cm 厚、50cm×50cm软木板,板的曲面与蜗壳形状贴合。
铺好软木板后,再铺二毡三油,这样最后完成的垫层厚度接近6cm。
由此可见,弹性垫层对施工质量的要求很高,给施工带来不少麻烦。
采用金属蜗壳与外围结构用垫层分开的这种结构型式时,两者受力明确,外围结构只承受本身自重和从上部传来的荷载。
(2)外围混凝土结构承担少部分蜗壳内水压力。
采用这种结构型式的金属蜗壳,在蜗壳安装好之后,采取措施临时封闭蜗壳的进出口,向蜗壳内充水并加压到预定值,然后浇外围混凝土,3-7天后卸除内压,再浇筑蜗壳座环下未填实的部分,施工结束时蜗壳与外围结构之间存在空隙,空隙的大小与预加压力有关。
这种结构型式的金属蜗壳,运行时,蜗壳内水压力未达上述预加压力前,蜗壳单独受力;当内水压力增大,蜗壳变形,钢板与外围结构接触后,蜗壳与外围结构共同承担增加的部分水压力。
水轮机选型及蜗壳尾水管设计

图1
图2
(6) 运转综合特性曲线的绘制
以水头为纵坐标,出力为横坐标,绘出坐标系。 见图2。 在图2上绘出几个特征水头的水平线。 在图1上选取几个整数效率值,画出水平线,与辅 助曲线形成一些交点。
B,即为H<Hr时的出力限
制线。
2. 出力限制线的绘制
① 根据表中三个水头下所得到的出力,可以在运转综合特 性曲线上绘出三个点。连接着三个点即可得到斜向阴影 线。
② 在高水头下,水轮机的出力受发电机最大限制出力的限
制,作竖向阴影线N=Nf。 ③ 整个出力限制线由两部分组成:N=Nf的竖直线段和三个
M n1
N ηM Q'1
nD1 n1 H
η
nD1 n1 H
η
nD1 n1 H
η
nD1 n1 H
η N
Q'1
Q'1
5%出力限制 线
① 为了保证绘制运转综合特性曲线的精确性,在H、 N网格上至少绘出三个水头,其中包括Hmax、Hmin 和Hr(或Hav)。对每一个水头,计算出对应的n'1。 ② 在轮系综合特性曲线上绘制n'1的水平线,并查出其 与等效率线交点的坐标(η M, Q'1); ③ 计算出原型水轮机的效率; ④ 按照公式N=9.81Q'1D12H3/2η 计算水轮机的出力;
三、所需要的有关资料
1. 水轮机产品技术资料:系列型谱、生产厂家、产品目 录、模型综合特性曲线。 2. 水电站技术资料:河流梯级开发方案、水库的调节性 能、水电站布置方案、地形、地质、水质、泥沙情况、 总装机容量、水电站运输、安装技术条件;水文资料: 特征流量及特征水头、下游水位流量关系曲线。 3. 水电站有关经济资料:机电设备价格、工程单价、年 运行费等。 4. 电力系统资料:系统负荷构成,水电站的作用及运行 方式等。
水轮机结构ppt课件

轴套
导 叶 (拐) 臂
端面间隙 调整螺栓
外形图
导叶臂 端盖压块
剖面图
端盖 分半键
剪断销
作用:
连接板
1. 连接控制环上导叶连杆和导叶; 2. 传递控制环的输出转矩,推动导叶开启或关闭;
控制环
控制环
接力器连 接处
导叶连杆
注:
1. 连接主接力器和导叶转臂; 2. 传递主接力器的输出力矩,推动导叶转臂转动; 3. 图示接力器安装于支持盖,共有4个接力器,与我们的电厂有所不同
3、挡风板固定牢固,与转动部分间隙符合要求。 4、制动环与制动器间隙偏差,应在设计值的±20%范围内。 5、定子地脚螺栓应把紧牢固,无松动迹象,焊缝无开裂。螺栓的紧固程度,
可用锤击的方法检查。
顶
轴
上导轴承配合面 顶轴
集电环组件 转子引线
集电环组件
集电环
绝缘螺杆
绝缘垫圈 集电环支架
上机架中心体
上机架及上挡风板
上挡风板
上导轴承安装处
人行梯
支臂
外形效果图
受油器(外罩除外)
上浮动瓦套 上浮动瓦 受油器体 瓦套 中浮动瓦
中浮动瓦套 溅油盆盖
受油器底座 浮动瓦套 浮动瓦 溅油盆 操作油管
剖面示意图
内腔进油孔 外腔进油孔
受油器操作油管
上操作油管 连接法兰面
受油器体
内腔进油孔 外腔进油孔
瓦
三维效果图
上浮动 瓦安装位置
转子、定子检修
1、空气间隙测量,在每个磁极的测量位置一定要一致,测量时上下端部都 要测量,与平均值偏差不应大于±8%。测量时可用塞规检查,或用楔形 木板测量后,再用卡尺测量楔形板厚度。
2、检查各部位的螺栓,尤其是转子上方的螺栓,锁定完好,弹簧垫或锁定 片没有损坏,锁定牢固。各部焊缝无开裂现象,上机架各部、转子上端 面、转子支臂空腔中没有遗留物品。
蜗壳、尾水管

绘制蜗壳单线图 1、蜗壳的型式型式:由于水电站特征水头大于40米,所以选用断面形状为圆形的金属蜗壳。
2、蜗壳主要参数的选择(主要参考《水力机械》第二版,水利水电出版社) 依据《水力机械》第二版P98知圆断面金属蜗壳的进口断面的包角︒︒=345ϕ; 蜗壳进口断面的流量s m 3.373453609.38360Q Q 3max c =⨯==︒︒ϕ,设计水头=46.2m 。
查《水力机械》第二版P99图4—30(a)曲线得C V =6.15m/s 。
依据水轮机的型号HL220—LJ —225知《水力机械》第二版P162的附表五得:当水轮机的转轮直径D 1=2250mm 时,金属蜗壳的座环外径为mm 3850D a =,座环内径为mm 3250D b =。
因此此金属蜗壳的座环外半径为a r =1925mm , 金属蜗壳座环的内半径为b r =1625mm 。
座环示意图如图所示:3、蜗壳的水力计算(1)对于蜗壳进口断面:依据《水力机械》第二版P100计算如下:断面的面积:2c c c 065.615.63.37V F m Q ===断面的半径:390.114.3065.6max ===πρcF m 从轴中心线到蜗壳外缘的半径:m r a 705.4390.12925.12R max max =⨯+=+=ρ (2)、对于中间任一断面(规范)设i ϕ为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处: 0i i max Q =/360Q ϕ() i a i R =r +2ρ i m a x i C =Q /360V ρϕπ()分别取i ϕ为0003075.....345、列表计算如下:i ϕ ρi Ri0.000 0.000 1.925 15.000 0.290 2.504 30.000 0.410 2.744 45.000 0.502 2.929 60.000 0.579 3.084 75.000 0.648 3.221 90.000 0.710 3.344 105.000 0.767 3.458 120.000 0.819 3.564 135.000 0.869 3.663 150.000 0.916 3.757 165.000 0.961 3.847 180.000 1.004 3.932 195.000 1.045 4.014 210.000 1.084 4.093 225.000 1.122 4.169 240.000 1.159 4.243 255.000 1.195 4.314 270.000 1.229 4.383 285.000 1.263 4.451 300.000 1.296 4.516 315.000 1.328 4.580 330.000 1.359 4.643 345.000 1.3894.705尾水管单线图的绘制根据前面已知的资料,结合水轮机的型号HL220—LJ —225,参考《水力机械》第二版可知:选用水轮机的标称直径为1 2.25D m =,当水轮机的出口直径21D D >的混流式水轮机,由《水力机械》第二版表4-17知: 当11D m =hL 5B 4D 4h 6h 1L 5h 2.64.52.7201.351.350.6751.821.22当1 2.25D m =时,h L 5B 4D 4h 6h 1L 5h 5.8510.1256.123.0383.0381.5194.0952.745为了减少尾水管的开挖深度,采用弯肘形尾水管,弯肘形尾水管由进口直段、肘管和出口扩散段三部分组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、蜗壳的功用及型式 (一) 功用
蜗壳是水轮机的进水部件,把水流以较小的水头
损失,均匀对称地引向导水机构,进入转轮。设
置在尾水管末端。
(二) 型式 混凝土蜗壳和钢蜗壳。
1. 混凝土蜗壳
适用于低水头大流量 的水轮机。
H≦40m, 钢筋混凝土
浇筑,“T”形断面。
当H>40m时,可用钢
H 已知:
r
, Q max , b 0 , D a , D b , 0 , V c
2. 水流在蜗壳中的运动规律 水流进入蜗壳后,形成一种旋转运动(环流),之后 进入导叶, 水流速度分解为Vr、Vu。 进入座环时,按照均匀轴对称入流的要求,Vr=常 Q 数。 V
max r
D a b0
圆周流速Vu的变化规律,有两种基本假定:
转轮出口的真空度和机组的抬机可能性。
0
R i ra 2 i
由此可以绘出蜗壳平面图单线图。其步骤为:
(i) 确定φ0 和VC ;
(ii) 求Fc、ρmax、Rmax; (iii) 由φi确定Fi、ρi、Ri。
(2) 混凝土蜗壳的水力计算(半解析法)
(1) 按进口流速求进口断面积;
(2) 根据水电站具体情况选择断面型式,并确定断面尺
2. 肘管: 90°变断面的弯管,进口为圆形断面,出口为 矩形断面。F进/F出=1.3
曲率半径R小——离心力大——压力、流速分布
不均匀—hw大。R=(0.6~1.0)D4
为减小转弯处的脱
流及涡流损失,肘
管出口收缩断面
(hc): 高/宽=0.25。
3、出口扩散段:
矩形扩散管,出口宽度B5,
B5很大时,加隔墩d5=(0.1~0.15) B5
顶板 α=10°~13°,底板水平。
4.尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重要 因素。
H=h1+h2+h3+h4 h1,h2由转轮结构确定; h4为肘管 高度,不易变动。 H取决于h3(直锥段长度)。h3大→开挖加大,工程 投资增大; L:机组中心到尾水管出口,L大→F出大→V出小 →ηw大→hf大→厂房尺寸加大,一般L=( 3.5~4.5) D1。 5.推荐尾水管尺寸:表4-15。
板衬砌防渗(H 最大达
80m)
2. 金属蜗壳
当H>40m时采用金属蜗
壳。其断面为圆形,适
用于中高水头的水轮机。
钢板焊接:H=40~200m,
钢板拼装焊接。
铸钢蜗壳:H>200m时,钢板太厚,不易焊接,与
座环一起铸造而成的铸钢蜗壳,其运输困难。
二、蜗壳的主要参数
1.断面型式与断面参数 金属蜗壳:圆形结构
3、蜗壳进口平均流速:
进口断面流量
Qmax——水轮机的最大引用流量。 Vc↑→Fc↓→hw↑;Vc↓→Fc↑→hw↓;
Qc Q max 360
0
一般由Hr~VC曲线确定VC
V c c H
r
金属蜗壳流速系数
混凝土蜗壳进口断面流速系数
三、蜗壳的水力计算
1. 水力计算的目的: 确定蜗壳各中间断面的尺寸, 绘出蜗壳单线图,为厂房设计提供依据。
0
断面半径:
max
Fc
Q max 0 360
0
VC
从轴心线到蜗壳外缘半径:
R max ra 2 max
(ii) 中间断面(
Qi
i)
i
360
0
Q max
Fi
Qi Vu
Q max i 360 V c
0
i
Q max i 360 V C
(1) 速度矩Vur= C
假定蜗壳中的水流是一种轴对称有势流,忽略粘 性及摩擦力,Vu会随r的增加而减小。 (2) 圆周流速Vu=C:即假定Vu=VC=C
3. 蜗壳的水力计算按(Vu=VC=C) (1)金属蜗壳水力计算
(i) 蜗壳进口断面:
Fc Qc Vc Q max 0 360 V c
第五节 尾水管的型式及其主要尺寸
一、尾水管型式 直锥形——用于小型水轮机
弯锥形——用于卧轴水轮机
弯肘形——(大中型电站)
常见尾水管的形式
直锥形
常见尾水管的形式
弯锥形
弯肘形
弯肘型尾水管 减小厂房开挖深度,水力性能好,大中型号水轮
机均采用弯肘型尾水管。
组成:直锥段、肘管、出口扩散段。
轴流式水轮机
混流式水轮机
1. 进口直锥段: 进口直锥段是一个垂直的圆锥形扩散管,D3为
直锥管进口直径,θ为锥管单边扩散角。
混流式:直锥管与基础环相接,(转轮出口直径),
θ=7°~ 9°
轴流式:与转轮室里衬相连接,D3=0.937D1, θ=8°~ 10°。 h3——直锥段高度,其长度增加将会导致开挖 量增加。一般在直锥段加钢板衬。
参数:座环外径、内
径、导叶高度、蜗壳
断面半径、蜗壳外缘
半径。
混凝土蜗壳:“T”形。 (1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n:上伸式
(4) n=0:平顶蜗壳
中间断面:
蜗壳顶点、底角点的变化规律按直线或抛物线确 定。
蜗壳中间断面
金属蜗壳
混凝土蜗壳
2. 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0 (1) 金属蜗壳:φ0=340°~350°,常取345° (2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一 大部分水流直接进入导叶,为非对称入流,对转轮 不利)
寸,使其
F Fc
(3) 选择顶角与底角点的变化规律(直线或抛物线),以
虚线表示并画出1、2、3…….等中间断面。 (4) 测算出各断面的面积,绘出:F = f(R)关系曲线。 (5) 按
Fi Qi Vu Q max i 360
0
Vc
绘出F = f(Φ)直线。
(6) 根据φi确定Fi、Ri及断面尺寸,绘出平面单线图。
6.尾水管局部尺寸的变更
厂房设计中,由于地形、地质条件,布置厂房的
原局部变更。
① 减小开挖,h不动,扩散段底板向上倾斜6°~12° ② 大型反击式水轮机,为减小厂房长度,尾水管不对称 布置
③ 地下电站:为使岩石稳定,尾水管采用窄深断面
④ 加长h3、L(目前国内最长取到L=108D1),但需要论证