东华大学《高分子材料加工原理》复习材料

合集下载

高分子材料成型加工原理期末复习重点(升华提升版)

高分子材料成型加工原理期末复习重点(升华提升版)

高分子材料成型加工原理期末复习重点(升华提
升版)
1聚合物主要有哪几种聚集态形式?玻璃态(结晶态)、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb Tf 或Tm)和压力(通常为
2、160kg )下,10分钟内从出料孔(Ø =
2、095mm )
挤出的聚合物重量(g∕10 min)。

a 评价热塑性聚合物的
挤压性; b评价熔体的流动度 (流度φ=1/η), 间接反映聚合物的分子量大小; c购买原料的重要参数。

分子量高的聚合物,易缠结,分子间作用力大,分子体积
大,流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。

分子量高的聚合物的力学强度和硬度等较高。

分子量较低的聚合物,流动度小,熔体粘度低,熔融指数
大,加工流动性好。

分子量较低的聚合物的力学强度和硬度等较低4解释:应变
软化;应力硬化;塑性形变及其实质。

Tb是塑料使用的下限温度; 应变软化:材料在拉伸时发热,温度升高,以致形变明显加速,
并出现形变的细颈现象。

应力硬化:随着取向度的提高,分子间作用力增大,引起聚合物粘度升高,表现出“硬化”倾向,形变也趋于稳定而不再发展。

塑性变形:材料在外力作用下产生不可逆的变形。

实质:大分子链的解缠和滑移随温度升高,屈服强度和断裂强度均下降,两曲线在Tb 相交。

T。

高分子材料加工原理复习小结(化学纤维部分)

高分子材料加工原理复习小结(化学纤维部分)

高分子材料加工原理复习小结(化学纤维部分)第一篇:高分子材料加工原理复习小结(化学纤维部分)第一章绪论一、掌握高分子材料的基本概念,特别是化学纤维的各种定义;1、名词解释:人造纤维(02年)、复合纤维(04年)、异形纤维(06年)、再生纤维(05年)。

2、填空题塑料按热行为的不同,可分为两大类,其中,(热塑性)塑料成形时,通过(冷却)熔体而凝固成形。

改变温度,可令其反复变形。

而(热固性)塑料成形时,通过(加热)而固化成形,材料定性后若再受热,不发生(变形)。

(06年)3、选择题高吸湿涤纶纤维属于一类(D)(07年)A 高感性纤维B 高性能纤维C差别化纤维D功能纤维第二章聚合物流体的制备第一节聚合物的熔融一、掌握聚合物的熔融方法,特别是有熔体强制移走的传导熔融1、简述题(1)简述聚合物在螺杆挤压机中熔体的能量来源。

(02年)(2)试述塑料在挤出机中压缩段由固体转变为熔体的过程和机理。

(04年)第二节聚合物的溶解一、影响聚合物溶解度的因素1、影响聚合物溶解度的因素有(大分子链结构)、(超分子结构)、(溶剂的性质)。

(02年)二、溶剂的选择1、溶剂的选择原则有哪些?2、聚合物的溶解过程分为(溶胀)和(溶解)两个阶段。

未经修正的“溶解度参数相近原则”适用于估计(非极性聚合物)和(非极性溶剂)体系的互溶性。

(06年)3、“溶解度参数相近原则”适用于估计(B)的互溶性。

(08年)A、非极性高聚物与极性溶剂B、非极性高聚物与非极性溶剂C、极性高聚物与极性溶剂D、极性高聚物与非极性溶剂4、在估计聚合物与溶剂的互溶性时,三维溶解度参数图适用于(D)(07年)A非极性聚合物和非极性溶剂体系B极性聚合物和极性溶剂体系C极性聚合物和非极性溶剂体系D A+B4、聚氯乙烯的溶度参数与氯仿和四氢呋喃相近,但为什么四氢呋喃能很好的溶解聚氯乙烯而氯仿不能与之相溶?(08年)三、聚合物—溶剂体系的相分离与相图1、对于具有上临界混溶温度的聚合物-溶剂体系,可采用(改变体系组成)、(升温)、(改变溶剂组成)等几种可能的方法来实现使聚合物溶解形成溶液。

高分子材料加工原理考试复习重点

高分子材料加工原理考试复习重点

名词解释5道 15分判断10道 10分选择10道 20分问答4道 40分论述题1题 15分第一章绪论通用高分子的主要种类和概念纤维:一种细长形状(长径比>10)、截面积较小(〈0.05mm2)的物体塑料:以合成(或天然)的高分子化合物为基本成份、在加工中通过塑化流动或原位聚合而成型的柔韧性或刚性固体高分子材料橡胶:以合成(或天然)的高分子化合物为基本成份的高弹性的高分子材料涂料:应用于物体表面并能结成坚韧保护膜的物质的总称胶粘剂:能把各种材料粘合在一起的物质材料是用来制造各种产品的物质,是具有满足指定工作条件下使用要求的形态和物理性状的物质.第二章聚合物流体的制备聚合物流体的制备包括熔体的制备和溶液的制备第二节中的1,2,3小节·熔体的话是通过加热,不同加热的方法,加热,熔体转移,熔体移轴,剪切,理解热传导,熔融方法上的要求聚合物的熔融:即完成聚合物由固体转变为熔体的过程。

一。

熔融的方法(了解蓝色字体的方法和区别)1. 无熔体移走的传导熔融2. 有熔体强制移走的传导熔融: 熔融的一部分热量由接触表面的传导提供,一部分热量通过熔膜中的粘性耗散将机械能转变为热能来提供。

·力学耗散:力学的能量损耗,即机械能转化为热能的现象.在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

随着螺杆的转动,筒壁上的熔膜被强制刮下来移走,而使熔融层受到剪切作用,使部分机械能转变为热能.哪种热能占主导地位,取决于聚合物本身的物理性质、加工条件和设备的结构参数。

当机筒温度较低、螺杆转数较高时,由剪切产生的剪切热占主要地位.当螺杆转数较低,机筒温度较高时,机筒的传导热占主要地位。

3.压缩熔融: 熔融热量由将机械能转变为热能来提供。

4。

耗散混合熔融: 熔融热量由在整个体积内将机械能转变为热能来提供的. 例:双辊塑炼(开炼)5.利用电、化学或其它能源的耗散熔融方法:熔融的热量通过电、化学或其它能源转变为热能来提供.6.振动诱导挤出熔融: 将振动力场引入聚合物熔融加工的全过程。

高分子材料加工理论总复习提纲

高分子材料加工理论总复习提纲

高分子材料加工理论总复习提纲2014年12月第一章高分子材料基础知识•高分子概念;•无定形聚合物与结晶聚合物的区别;•聚合物的力学三态与分子运动单元之间的关系。

•热物理性质:热容、导热系数、导温系数定义与单位。

第二章流体流动的基本知识•概念:连续介质、动量边界层与沿流动方向上的分区;•随体导数的组成和含义,会求运动参数的随体导数。

•应力张量特点;会根据速度场、速度梯度,求剪切速率张量(重点)、涡旋张量;应力分解的两种方法。

•会张量的代数运算(加、减、乘),求张量的不变量,特别是对称张量的第二不变量。

•聚合物加工中的二类基本流动的应力和应变张量。

第三章流体流动的基本方程•流体流动的三大定律与相应的数学表达式:连续性方程、动量方程、能量方程•动量方程和能量方程中各项的物理含义•会根据速度场、温度场列连续性方程、动量方程、能量方程,列出具体边界的边界条件。

•熟悉求解流动问题的四步骤。

重点掌握第二、第三步骤。

第四章聚合物流变特性和本构方程内容:聚合物熔体的流变行为粘性弹性粘弹性本构方程流变参数测量一聚合物熔体的流变行为粘性、弹性、粘弹性1 定义、现象与分子解释。

2 粘性流体分类:牛顿流体、假塑性流体、塑性流体、膨胀型流体二本构方程1 粘性流体几个本构方程之间的关系,幂律模型的特点和在聚合物加工中应用最广的原因?2 影响粘度的因素3牛顿流体、幂律流体本构方程。

4 流变方程的选择原则三流变参数测量1 粘度测量原理2 毛细管流变仪、锥板流变仪的特点与范围3 根据流动曲线计算幂律模型中的m,n。

4 流动曲线对聚合物加工有什么意义?5 毛细管流变仪可能的测量误差?如何修正?第五章有界流动•内容一典型流道中的流动二收敛流道中的流动与润滑近似方法三矩形管中的流动•典型流道:平行平板圆管圆环•流动:压力流拖曳流组合流动一典型流道中的流动•典型流道+ 流动动力:牛顿流体,幂律流体平行平板圆管环隙压力流拖曳流轴向周向组合流动轴向周向•分析流动问题四步骤:(一)拟定流场(二)列方程组(三)设法求解(四)结果分析•知道速度场、温度场,会列连续性方程、动量方程、能量方程本构方程;列边界条件。

东华大学《高分子材料加工原理》复习材料

东华大学《高分子材料加工原理》复习材料

高分子材料加工原理复习材料第二章 聚合物流体的制备一、聚合物的熔融方法1、无熔体移走的传导熔融。

熔融全部热量由接触或暴露表面提供,熔融速率仅由传导决定。

如滚塑过程。

2、有强制熔体移走(由拖曳或压力引起)的传导熔融。

熔融的一部分热量由接触表面的传导提供;一部分热量通过熔膜中的黏性耗散将机械能转变为热来提供。

所谓耗散,就是力学的能量损耗,即机械能转化为热能的现象。

在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

熔融速率由热传导以及熔体迁移和黏性耗散速率决定。

如螺杆挤压机的熔融挤出过程3、耗散混合熔融。

熔融热量是由在整个体积内将机械能转变为热能来提供的,是机械能转化为热能的现象。

耗散混合熔融速率由整个外壁面上和混合物固体—熔体界面上辅以热传导决定,如双辊开炼。

4、利用电、化学或其他能源的耗散熔融方法。

5、压缩熔融。

6、振动诱导挤出熔融 二、溶剂的选择原则1、聚合物和溶剂的极性相近规律。

极性大的溶质溶于极性大的溶剂;极性小的溶质溶于极性小的溶剂;溶质与溶剂的极性越相近,二者越易互溶。

2、溶度参教理论。

溶度参数理论是一个以热力学为基础的溶剂选择的最常用理论。

⑴未修正的溶度参数理论 适用:非极性混合体系⑵修正的溶剂参数理论(三维溶度参数理论) 适用:①非极性混合体系②极性混合体系③易成氢键体系3、高分子-溶剂相互作用参数(哈金斯参数)χ1: χ1>0.5不良溶剂;χ1<0.5良溶剂 三、聚合物-溶剂体系的相平衡图2-6(a )表示上临界混溶温度在溶剂的凝固点以下,因而在凝固点以上聚合物和溶剂可以很好地混溶。

图2-6(c )的相图则说明在沸点T b 以上才会出现互不相溶的区域,在溶剂沸点以下,可以与聚合物以任何比例互溶。

图2-6(b)的相图表示在溶剂的沸点和凝固点之间存在上临界混溶温度;图2-6(e )表示在溶剂的T b ~T f 温度范围内有下临界混溶温度。

【可编辑全文】《高分子材料加工工艺》复习资料习题答案

【可编辑全文】《高分子材料加工工艺》复习资料习题答案

高分子材料加工工艺第一章绪论1.材料的四要素是什么?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。

2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。

答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。

工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。

但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。

热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。

热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。

3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。

(1)质轻。

(2)拉伸强度和拉伸模量较低,韧性较优良。

(3)传热系数小,可用作优良的绝热材料。

(4)电气绝缘性优良。

(5)成型加工性优良。

(6)减震、消音性能良好。

(7)某些塑料具有优良的减磨、耐磨和自润滑性能。

(8)耐腐蚀性能优良。

(9)透光性良好可作透明或半透明材料。

(10)着色性良好。

(11)可赋予各种特殊的功能如透气性、难燃性、粘结性、离子交换性、生物降解性以及光、热、电、磁等各种特殊性能。

(12)使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差。

(13)热膨胀系数大。

(14)耐热性(熔点、玻璃化转变温度)较低,使用温度不高。

(15)易燃烧。

4.获取高分子的手段有那些?答:高分子化合物的制造:获取高分子化合物的方法大致可分为三种;聚合反应、利用高分子反向和复合化。

高分子材料成型加工原理-期末复习重点(升华提升版).docx

高分子材料成型加工原理-期末复习重点(升华提升版).docx

1聚合物主要有哪几种聚集态形式?玻璃态(结品态)、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb < T <Tg, Tg<T<Tf, Tf <T <Td时,分别适合进行何种形式的加工?聚合物加工的最低温度?T<Tg玻璃态一一适应机械加工;聚合物使用的最低(卜-限)温度为脆化温度TbTg <T <Tf高弹态,非晶聚合物Tg <T <Tf温度区间,靠近Tf 一侧,粘性大,可进行真空、压力、压延和弯曲成型等;高弹形变有时间依赖性,加工屮有可逆形变, 加工的关键的是将制品温度迅速冷却到匹以下;结晶或部分结晶聚合物在Tg〜Tm,施加外力〉材料的屈服强度,可进行薄膜或纤维拉伸;聚合物加工的最低温度:玻璃化温发TgT > Tf (Tm)粘流态(熔体,液态)比Tf略高的温度,为类橡胶流动行为,可进行压延、挤出和吹塑成型。

可进行熔融纺丝、注射、挤出、吹塑和贴合等加工3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系,挤出和注塑成型对材料的熔融指数要求有何不同?熔融指数(Melt Flow Index)一定温度(T>Tf或Tm)和压力(通常为2.160kg )下,10分钟内从出料孑L (0=2.095mm )挤出的聚合物重量(g/ 10 min)。

a评价热塑性聚合物的挤压性;b评价熔体的流动度(流度4)= 间接反映聚合物的分子量大小;c购买原料的重要参数。

分子量高的聚合物,易缠结,分子间作用力大,分子体积大,流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。

分子量高的聚合物的力学强度和硬度等较高。

分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。

分了量较低的聚合物的力学强度和硬度等较低4解释:应变软化;应力硬化;塑性形变及其实质。

几是塑料使用的下限温度;应变软化:材料在拉伸吋发热,温度升高,以致形变明显加速,并出现形变的细颈现象。

高分子材料加工原理复习资料

高分子材料加工原理复习资料

高分子材料加工原理复习资料1.成型加工过程中物理化学变化结晶:定型,增强,内应力,翘曲取向:增强;各项异性降解:塑化,性能变差交联:硫化,增强性能2.热塑性树脂:热塑性树脂:是具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。

凡具有热塑性树脂其分子结构都属线型。

它包括含全部聚合树脂和部分缩合树脂。

热固性树脂:指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。

异性纤维:经一定几何形状(非圆形)喷丝孔纺制的具有特殊横截面形状的化学纤维。

共混纤维:两种或多种聚合物混合后纺成的纤维。

差别化纤维:不同于常规品种的化学纤维,即经过化学改性,物理变化和特殊工艺而得到的具有某种特性的化学纤维。

特种橡胶: 也称特种合成橡胶。

指具有特殊性能和特殊用途能适应苛刻条件下使用的合成橡胶。

3.溶剂的选择原则a.对于极性聚合物而言,应选择极性相近的原则b.对于非极性聚合物而言应使两者溶度参数接近c.溶剂相互作用参数χ1﹤1/2原则 d.经济,工艺,坏境上的要求。

工业上1沸点不应太低或过高2溶剂需具备足够的热稳定和化学稳定,在回收过程中不易分解3要求溶剂的毒性低,对设备腐蚀性小4.溶解过程中不引起对聚合物的破坏或发生其他化学变化5在适当温度下有较好的溶解能力,并在尽可能高的浓度时仍有尽可能低的黏度. 4.混合的三种基本运动形式?a.分子扩散b. 涡旋扩散c.体积扩散对于聚合物熔融以体积扩散为主,熔体粘度高,熔体与溶液间分子扩散慢很少发生分子扩散和涡旋扩散。

5.爬杆效应:在聚合物溶液或熔体中聚合物沿快速旋转轴慢慢上爬并形成相当厚的包轴层的现象。

挤出胀大:当高聚物熔体从小孔、毛细管或狭缝中挤出时挤出物在挤出模口后膨胀使其横截面大于模口横截面的现象。

无管虹吸:对高分子液体当虹吸管升离液面后,杯中的液体仍能源源不断地从虹吸管流出,这种现象称无管虹吸效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料加工原理复习材料第二章 聚合物流体的制备一、聚合物的熔融方法1、无熔体移走的传导熔融。

熔融全部热量由接触或暴露表面提供,熔融速率仅由传导决定。

如滚塑过程。

2、有强制熔体移走(由拖曳或压力引起)的传导熔融。

熔融的一部分热量由接触表面的传导提供;一部分热量通过熔膜中的黏性耗散将机械能转变为热来提供。

所谓耗散,就是力学的能量损耗,即机械能转化为热能的现象。

在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

熔融速率由热传导以及熔体迁移和黏性耗散速率决定。

如螺杆挤压机的熔融挤出过程3、耗散混合熔融。

熔融热量是由在整个体积内将机械能转变为热能来提供的,是机械能转化为热能的现象。

耗散混合熔融速率由整个外壁面上和混合物固体—熔体界面上辅以热传导决定,如双辊开炼。

4、利用电、化学或其他能源的耗散熔融方法。

5、压缩熔融。

6、振动诱导挤出熔融 二、溶剂的选择原则1、聚合物和溶剂的极性相近规律。

极性大的溶质溶于极性大的溶剂;极性小的溶质溶于极性小的溶剂;溶质与溶剂的极性越相近,二者越易互溶。

2、溶度参教理论。

溶度参数理论是一个以热力学为基础的溶剂选择的最常用理论。

⑴未修正的溶度参数理论 适用:非极性混合体系⑵修正的溶剂参数理论(三维溶度参数理论) 适用:①非极性混合体系②极性混合体系③易成氢键体系3、高分子-溶剂相互作用参数(哈金斯参数)χ1: χ1>0.5不良溶剂;χ1<0.5良溶剂 三、聚合物-溶剂体系的相平衡图2-6(a )表示上临界混溶温度在溶剂的凝固点以下,因而在凝固点以上聚合物和溶剂可以很好地混溶。

图2-6(c )的相图则说明在沸点T b 以上才会出现互不相溶的区域,在溶剂沸点以下,可以与聚合物以任何比例互溶。

图2-6(b)的相图表示在溶剂的沸点和凝固点之间存在上临界混溶温度;图2-6(e )表示在溶剂的T b ~T f 温度范围内有下临界混溶温度。

图2-6(d)、图2-6(f )两个相图表示对同一聚合物一溶剂体系,在不同的溶解条件下,可以出现上临界混溶温度和下临界混溶温度。

因而,通过各种类型的相图的研究,可确定哪些聚合物可以通过溶液来加工成型,以及它的加工应在怎样的条件下合适。

根据不同的相图特征,可以合理地选择溶解条件。

例如,纤维素黄酸酯—氢氧化钠水溶液体系,它的平衡相图是以具有下临界混溶温度为特征的(图2-8),并且随酯化度(r)的降低,此体系的下临界混溶温度也下降。

因此,从相图可知,随着温度的下降,有利于纤维素黄酸酯溶解度的提高。

工业实践正是基于这一原理,纤维素黄酸酯的溶解过程通常在低温下(一般5~15℃)进行。

第四章聚合物流体的流变性一、各种流体的流动曲线图各种流体的流动曲线1-宾哈姆流体,2-切力变稀流体3-牛顿流体,4-切力增稠流体ηa=K • γn-1ηa—表观粘度,n—非牛顿指数,K—稠度指数n<1 假塑性(切力变稀)流体n=1 牛顿流体n>1 胀流性(切力增稠)流体二、聚合物流体切力变稀的原因1、在于大分子链间发生的缠结。

当线型大分子的相对分子质量超过某一临界值时,大分子链间形成了缠结点。

与橡胶中化学交联点不同,这种缠结点具有瞬变性质。

缠结点不断地拆散和重建,并在某一特定条件下达到动态平衡。

因此,可以把聚合物流体看成瞬变网络体系。

该体系达到动态平衡后的缠结浓度与给定的条件有关,随着剪切应力的改变,动态平衡相应地发生移动。

当剪切应力增大(相应的γ也增大)时,部分缠结点被拆除,缠结点浓度下降,使表观黏度降低。

γ↑→缠结点浓度↓→ηa↓2、大分子链段取向效应。

当剪切速率增大时,缠结点间链段中的应力来不及松弛,链段在流场中发生取向。

链段取向效应导致大分子链在流层间传递动量的能力减小,因而流层间的牵曳力也随之减小,表观黏度下降。

γ↑→链段取向↑→流层间牵曳力↓→ηa↓3、大分子链间的脱溶剂化(浓溶液情况)对于聚合物浓溶液来说,切力变稀还有另外一个原因,当剪切应力增大时,大分子链发生脱溶剂化,因为脱溶剂化使大分子链的有效尺寸变小,这也会引起黏度下降。

σ↑→脱溶剂化↑→大分子链的有效尺寸↓→ηa↓三、影响聚合物流体剪切粘性的因素在给定剪切速率下,聚合物流体的表观黏度主要由聚合物流体内的自由体积和大分子链之间的缠结决定。

(γ恒定下):1、凡会引起自由体积增加的因素都能增强分子的运动,并导致聚合物流体黏度的降低。

另一方面大分子之间的缠结使得分子链的运动变得非常困难。

2、凡能减少这种缠结作用的因素,都能加速分子运动并导致聚合物熔体黏度降低。

具体因素:⑴聚合物分子结构:①链结构②相对分子质量③相对分子质量分布⑵聚合物溶液浓度⑶温度⑷溶液性质⑸混合:①共聚物组成②粒子填充剂③小分子增塑剂的添加⑹流体静压的影响四、拉伸粘度拉伸粘度用来表示流体对拉伸流动的阻力。

对牛顿流体(低拉伸应变速率下):拉伸粘度(Trouton粘度)不随拉伸应变速率而变化ηT=3η0(对单轴拉伸)ηT=6η0(对双轴拉伸)五、影响聚合物流体弹性的因素影响聚合物流体弹性的因素基本上可以分为两类:一是聚合物的分子参数,聚合物的分子参数包括相对分子质量、相对分子质量分布、长链分支程度、链的刚柔性等。

相对分子量增大,聚合物溶液和熔体的法向应力增大,弹性效应显著。

随着相对分子质量分布加宽,流体柔量增大,弹性效应显著;此外,具有长链分支的LDPE熔体的弹性效应更显著。

M↑→法向应力↑→弹性↑二是加工条件。

加工条件包括热力学参数(主要是温度和原液组成)、运动学参数及流动的几何条件等。

升高温度有利于松弛过程进行,故可减少聚合物流体在出喷丝孔时的弹性能储存量,从而减小弹性表现程度。

随浓度的升高,聚合物溶液出现显著的非牛顿性和法向应力效应,浓度越高,溶液弹性越突出。

剪切速率越大,胀大比越大,说明流体内的弹性能储存越高,弹性效应越显著。

T↑,有利于内应力松弛流体弹性能储存量(出口模时)↓,弹性表现程度↓第五章化学纤维成型加工原理一、挤出细流的类型1、液滴型。

不能成为连续细流,显然无法形成纤维。

这正是前面所述的毛细破坏现象。

2、漫流型。

虽然因表面积比液滴型小20%而能形成连续细流,但由于纺丝液体在挤出喷丝孔后即沿喷丝板表面漫流,从而细流间易相互粘连,会引起丝条的周期性断裂或毛丝,因此仍是不正常3、胀大型。

与漫流型不同,纺丝流体在孔口发生胀大,但不流附于喷丝头(板)(指细流最大直径与喷丝孔直径之比)控制在适当的范围内,表面。

只要胀大比B细流是连续而稳定的,因此是纺丝中正常的细流类型。

4、破裂型。

在胀大型的基础上,如继续提高切变速率(特别是纺丝流体黏度很高的情况下,提高γ),挤出细流会因均匀性的破坏而转化为破裂型。

当细流呈破裂型时,纺丝流体中出现不稳定流动,熔体初生纤维外表呈现波浪形、鲨鱼皮形、竹节形或螺旋形畸变,甚至发生破裂。

这种细流类型最初是在聚合物熔体挤出的过程中发现的,所以称为熔体破裂。

对纺丝来说,破裂型细流属于不正常类型,它限制着纺丝速度的提高,使纺丝过程不时地中断,或使初生纤维表面形成宏观的缺陷,并降低纤维的断裂强度和耐疲劳性能。

在实践中主要通过调节影响γ和σ的各项因素来避免熔体破裂。

例如,提高纺丝流体温度以减小σ,减少泵供量以降低少γ。

二、熔体纺丝线上的力平衡分析从喷丝头(x=0)到离喷丝头X处的一段纺丝线:将运动学方程式根据单轴拉伸的假设简化后进行积分,可以得到离开喷丝头距离X处的力平衡方程式:(X)为在处丝条所受到的流变阻力;Fr(0)为熔体细流在喷丝孔出口处作轴向拉伸流动时Fr所克服的流变阻力;F为纺丝线在纺程中需克服的表面张力;s为使纺丝线作轴向加速运动所需克服的惯性力;FiF为空气对运动着的纺丝线表面所产生的摩擦阻力;fF为重力场对纺丝线的作用力。

g三、熔纺过程中的取向作用取向机理:1、喷丝孔中的剪切流动取向;2、纺丝线上的拉伸流动取向;实验表明,这是熔体纺丝中所应考虑的最重要的取向机理,卷绕丝的取向度主要是纺丝线上拉伸流动的贡献。

3、纺丝线上的拉伸形变取向。

四、沿纺程取向的发展当聚合物在纺程上结晶时,其取向度沿纺程的分布除取决于应力历史外,还取决于热历史。

图5-30为纺速为6000m/min的PET卷绕丝的双折射、纺丝应力、丝条直径和温度沿纺程的分布。

聚合物熔体从喷丝孔以温度T挤出后温度逐渐下D降。

据此可以将△n沿纺程的分布划分为三个区:⑴流动形变区。

△n较小。

在喷丝板以下0~70cm的范围内,此处大部分的细化形变已基本完成,但是双折射仍然很小。

这是因为该区的形变速率较低,聚合物处于高温,大分子迅速地发生解取向作用⑵结晶取向区。

△n陡增(晶核形成,结晶加速,导致微晶取向)在喷丝板下70~130cm。

显然,与常规纺PET不同,其△n在该狭小的区域内急剧上升,其饱和值大大提高。

此区对应的直径曲线上出现细颈,温度曲线上出现平台,形变速率出现极大的峰值。

这是由于PET卷绕丝在纺程上发生了结晶。

当双折射增至0.02~0.03时,某些分子排列形成密集相,这对晶核的形成起着重要的作用。

一旦晶核形成,结晶细颈处纺丝应力急剧增大。

⑶塑性形变区。

△n陡增后趋于饱和(空气阻力的存在使拉伸应力随之不断增加,但粘度增加,拉伸应力不足以使大分子继续取向,结晶过程已完成。

)这个区域始于接近固化的末端,距离喷丝板大约130cm。

尽管表面看来纤维几乎固化,但是由于空气阻力的存在,拉伸应力随之不断增加,使大分子在这样高的拉伸应力下屈服。

因此在纺丝期间出现初生纤维的“冷拉”,而且可以看到纤维在结构和力学性质方面的某些变化。

五、影响溶液纺初生纤维截面形状的主要因素影响溶液纺初生纤维横截面形状的因素,主要是1、传质通量比(Js /JN)2、固化表面层硬度3、喷丝孔形状。

当溶剂向外的通量小于凝固剂向里的通量(Js /JN<1)时,如图5-50(a)所示,丝条就溶胀,可以预期纤维的横截面是圆形的。

当溶剂离开丝条的速率比沉淀剂进入丝条的速率高(JS /JN>1)时,则横截面的形状取决于固化层的力学行为。

柔软而可变形的表层收缩的结果导致形成圆形的横截面,如图5-50(b)所示;当具有坚硬的皮层时,横截面的崩溃将导致形成非圆的狗骨形状,如图5-50(c)所示。

因此在采用圆形喷丝孔纺丝时,薄的较硬的皮层和内部芯层变形性的差异是导致溶液纺初生纤维形成非圆形截面的根本原因。

传质通量比和固化表面层硬度取决于纺丝工艺条件。

例如,对于聚丙烯腈纤维湿法纺丝时,溶剂种类、凝固浴温度及浓度、纺丝液中聚合物含量等都会改变传质通量比和固化表面层硬度,从而影响初生纤维的横截面形状。

1、溶剂种类:无机溶剂的固化速率参数S r一般小于有机溶剂。

当采用无机溶剂纺丝时,传质通量比通常小于1,因此纤维的横截面形状为圆形。

相关文档
最新文档