结构力学第五章平面桁架详解
合集下载
结构力学课件第五章 桁架讲解

15kN
FB=120kN
B
+60
D
+60
E G
15kN
FAH=120kN 60 A -120 C -20 FAV=45kN 15kN
4m 4m
30
45
40 F
20
-20
15kN 4m
到结点B时,只有一个未知力FNBA, 最后到结点A时,轴力均已求出, 故以此二结点的平衡条件进行校核。
计算中的技巧 当遇到一个结点上未知力均为斜向时,为简化计算:
桁架的计算简图及其名称
弦杆
下弦杆
上弦杆
斜杆 竖杆
腹杆
桁高
d 节间
跨度
简图与实际的偏差:
•并非理想铰接; •并非理想直杆; •并非只有结点荷载; •结构的空间作用。
主应力:按理想的桁架计算简图计算出的 应力 次应力:实际应力与主应力的差值,一般 情况下可以忽略不计。
桁架结构的分类:
一、根据维数分类 1. 平面(二维)桁架 ——所有组成桁架的杆件以及荷载的作用线 都在同一平面内
联合桁架举例二
K
求出支座反力后作封闭截面K,以其内部或外部为研 究对象,可求出FNAD、FNBE、FNCF,进而可求出其它各 杆之内力。
联合桁架举例三
K
K
求出支座反力后作截面K-K,以其左半部或右半部 为研究对象,利用C=0,可求出FNAB,进而可求出其 它各杆之内力。
§5-4
截面法和结点法的联 合应用
注意
对两未知力交点取矩(称为力矩法) 或沿与两个平行未知力垂直的方向 投影(称为投影法)列平衡方程, 可使一个方程中只含一个未知力。
(1)力矩法 设支座反力已求出。
第五章 静定平面桁架

h
l
梯形桁架
l
三角形桁架
F F
F
F
F
F/ 2
F/ 2
h
l
抛物线形桁架
§5.5 各式桁架比较
结构力学
桁架的外形对弦杆内力的影响
F/2 F F F F
2
4 Ⅱ6 Ⅰ 8
F F/2
等代梁
A
1
3
3F
5Ⅱ Ⅰ 7
6d
h B 3F
F/2 F
FF
F F F/2 h
B
3F
6d
3F
平行弦桁架,由截面Ⅰ-Ⅰ截断桁架,取左侧部份为隔离
结构力学
由截面I-I(截面法)根据∑MC=0即可求得FNb,
也可作截面II-II(曲截面)并取左半边为隔离 体,(更简捷)
由∑MD=0 FNb×6+3F×8-F/2×8-F×4=0
FNb=-(3F×8-F/2×8-F×4)/6=-8F/3
§5.4 截面法与结点法的联合应用
例5-2 试求图示桁架HC 杆的内力。
取C点为隔离体,由
X 0 , FNCE FNCH 0
Y 0 , 10kN 2FNCE sin FNCD 0
得
FNCD
10 kN 2
1 (22.36kN) 10 kN 5
FNCH FNCE 22.36 kN
§5-2 结点法
10 kN
10 kN
10 kN
5 kN
C
5 kN
2m
(2) 各杆的轴线都是直线,而且处在同一平面内,并且通过铰 的几何中心。
(3) 荷载和支座反力都作用在结点上,其作用线都在桁架平面内。
思考: 实际桁架是否完全符合上述假定?
结构力学第5章静定平面桁架共24页PPT资料

此杆内力C与o外py力rFig相h等t 2,01另9一-2杆0为19零A杆s,po如s图e P5-t5y(dL)所td示. 。
(2) T型结点。两杆在同一直线上的三杆结点,当结点不受外 力时,第三杆为零杆,如图5-5(b)所示。若外力F与第三杆共线, 则第三杆内力等于外力F,如图5-5(e)所示。
(a)
Copyright 2019-2019 Aspose Pty Ltd.
(a)
(b )
A
A
B
B
C
图5-1
2.计算简图中引用的基本假定
(1)桁架中的各结点都是光滑的理想铰结点。 (2)各杆轴线都是直线,且在同一平面内并通过铰的中心。 (3)荷载及支座反力都作用在结点上且在桁架平面内。
上述假定,保证了桁架中各结点均为铰结点,各杆内只有
(a)
(b)
(c)
(d)
Ev(ae ) luation only. (f)
eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2019-2019 Aspose Pty Ltd.
图5-4
§5-2 结点法
桁架计算一般是先求支座反力后计算内力。计算内力时可截 取桁架中的一部分为隔离体,根据隔离体的平衡ห้องสมุดไป่ตู้件求解各杆的 轴力。如果截取的隔离体包含两个及以上的结点,这种方法叫截 面法。如果所取隔离体仅包含一个结点,这种方法叫结点法。
当取某一结点为隔离E体va时lu,a由tio于n结o点nl上y.的外力与杆件内力组 ea成te一d平w面it汇h A交s力p系os,e.则S独lid立e的s f平or衡.方N程ET只3有.5两C个l,ie即ntΣPFxr=o0f,ileFy5=.02。.0
(2) T型结点。两杆在同一直线上的三杆结点,当结点不受外 力时,第三杆为零杆,如图5-5(b)所示。若外力F与第三杆共线, 则第三杆内力等于外力F,如图5-5(e)所示。
(a)
Copyright 2019-2019 Aspose Pty Ltd.
(a)
(b )
A
A
B
B
C
图5-1
2.计算简图中引用的基本假定
(1)桁架中的各结点都是光滑的理想铰结点。 (2)各杆轴线都是直线,且在同一平面内并通过铰的中心。 (3)荷载及支座反力都作用在结点上且在桁架平面内。
上述假定,保证了桁架中各结点均为铰结点,各杆内只有
(a)
(b)
(c)
(d)
Ev(ae ) luation only. (f)
eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2019-2019 Aspose Pty Ltd.
图5-4
§5-2 结点法
桁架计算一般是先求支座反力后计算内力。计算内力时可截 取桁架中的一部分为隔离体,根据隔离体的平衡ห้องสมุดไป่ตู้件求解各杆的 轴力。如果截取的隔离体包含两个及以上的结点,这种方法叫截 面法。如果所取隔离体仅包含一个结点,这种方法叫结点法。
当取某一结点为隔离E体va时lu,a由tio于n结o点nl上y.的外力与杆件内力组 ea成te一d平w面it汇h A交s力p系os,e.则S独lid立e的s f平or衡.方N程ET只3有.5两C个l,ie即ntΣPFxr=o0f,ileFy5=.02。.0
5 平面桁架结构力学

F
M G 0 F N 4 2 F P
2FP
FN3
F
E
2
Ⅱ—Ⅱ截面
C
D
M D 0 F N 3 2 F P
结点C
2FP F N 2
C
Y0 F N 222 F P
Ⅲ—Ⅲ截面 F N1
FP
A
B
C
D
综上所求,得:
X0 F N 12F P
F N 1 2 F P , F N 2 2 2 F P ,F N 3 2 F P , F N 4 2 F P
+
一、平面汇交力系
3 -90 5
7
结点2
40
H=0
60
60
1
2 40kN 4 60kN 6 80kN 8
4m
N23
N23 40
60 2
N24 N24 60
V1=80kN
结点1 5
3
Y13
1 80
X13 N12
4×3m=12m
40
V8=100kN
4
Y13 80
X138
036
4
0
VA 1.5P
Yc1.5PP0.5P Nc 54Yc 0.62P 5
VB 1.5P
4‘ e
d
Nc
B
45
P 1.5P
A
VA 1.5P
1‘
2‘
3‘
4‘
e
a
cd
b
12345 P P P 6d
4d d3
B
VB 1.5P
(3) Nd
Xe
Ne
4‘ Y e
Nd
45
M G 0 F N 4 2 F P
2FP
FN3
F
E
2
Ⅱ—Ⅱ截面
C
D
M D 0 F N 3 2 F P
结点C
2FP F N 2
C
Y0 F N 222 F P
Ⅲ—Ⅲ截面 F N1
FP
A
B
C
D
综上所求,得:
X0 F N 12F P
F N 1 2 F P , F N 2 2 2 F P ,F N 3 2 F P , F N 4 2 F P
+
一、平面汇交力系
3 -90 5
7
结点2
40
H=0
60
60
1
2 40kN 4 60kN 6 80kN 8
4m
N23
N23 40
60 2
N24 N24 60
V1=80kN
结点1 5
3
Y13
1 80
X13 N12
4×3m=12m
40
V8=100kN
4
Y13 80
X138
036
4
0
VA 1.5P
Yc1.5PP0.5P Nc 54Yc 0.62P 5
VB 1.5P
4‘ e
d
Nc
B
45
P 1.5P
A
VA 1.5P
1‘
2‘
3‘
4‘
e
a
cd
b
12345 P P P 6d
4d d3
B
VB 1.5P
(3) Nd
Xe
Ne
4‘ Y e
Nd
45
第五章静定平面桁架(李廉锟结构力学)全解PPT课件

X0, FN CE FN CH 0
Y0 , 10 2 F k N Cs N Ei n F N C D 0
得
FN CD 1k 0N 215(22.3 61kk 0N N)
F N CH F N CE 2.3 2 6kN
退出
返回
*
§5-2 结点法
5 kN 2m
A 20 kN
10 kN
10 kN 10 kN
通常假定未知的轴力为拉力,计算结果得负值表示轴力 为压力。
退出
返回
*
§5-2 结点法
结构力学
例5-1 试用结点法求三角形桁架各杆轴力。
5 kN 2m
A 20 kN
10 kN
10 kN 10 kN
C
E
F
G
DHBiblioteka 2 m 4=8 m5 kN
B 20 kN
解: (1) 求支座反力。
FxA 0
FyA 20kN(↑)
X0 Y 0
F N AE co sF N AG 0
2k 0 N 5 k N F N Ac E o 0 s
有 所以
FN AE 1k 5N 533.k5N (4压)
F N AG F N AE co s33.2 5 53k 0(N 拉)
退出
返回
*
§5-2 结点法
10 kN
10 kN 10 kN
5 kN
退出
返回
*
§5-1 平面桁架的计算简图
二、按外型分类
1. 平行弦桁架
2. 三角形桁架
3. 抛物线桁架
退出
返回
结构力学
*
§5-1 平面桁架的计算简图
三、按几何组成分类
结构力学第5章静定平面桁架

结构的稳定性不足可能导致结构变形、失稳甚至 破坏。
稳定性分析方法
静力分析法
01
通过计算结构在静力荷载作用下的内力和变形,评估结构的稳
定性。
动力分析法
02
利用结构的振动特性,通过分析结构的自振频率和振型,判断
结构的稳定性。
实验法
03
通过实验测试结构的实际性能,包括加载实验和疲劳实验等,
评估结构的稳定性。
结构力学第5章静定平面桁架
目
CONTENCT
录
• 静定平面桁架概述 • 静定平面桁架的组成元素 • 静定平面桁架的内力分析 • 静定平面桁架的位移分析 • 静定平面桁架的稳定性分析
01
静定平面桁架概述
定义与特点
定义
静定平面桁架是一种由杆件组成的结构,各杆件仅在结点处相互 连接,且不承受轴向力。
位移计算方法
02
01
03
位移计算是结构力学中的基本问题之一,其目的是确 定结构在受力作用下的位移。
位移计算方法包括图乘法、单位载荷法、有限元法等 。
图乘法是计算位移的常用方法之一,适用于静定结构 和超静定结构的分析。
位移与内力的关系
位移与内力之间存在一定的关 系,这种关系可以通过结构力 学中的平衡方程和变形协调方 程来描述。
特点
具有明确的几何形状和结构特性,能够承受各种外力而不会发生 变形或移动。
静定平面桁架的应用场景
桥梁工程
静定平面桁架广泛应用于桥梁工程中,作为主要承 载结构,如钢桥、拱桥等。
建筑结构
在大型工业厂房、仓库、展览馆等建筑中,静定平 面桁架常被用作屋面或楼面的承重结构。
机械制造
在机械制造领域,静定平面桁架用于制造各种设备 的基础框架和支撑结构。
稳定性分析方法
静力分析法
01
通过计算结构在静力荷载作用下的内力和变形,评估结构的稳
定性。
动力分析法
02
利用结构的振动特性,通过分析结构的自振频率和振型,判断
结构的稳定性。
实验法
03
通过实验测试结构的实际性能,包括加载实验和疲劳实验等,
评估结构的稳定性。
结构力学第5章静定平面桁架
目
CONTENCT
录
• 静定平面桁架概述 • 静定平面桁架的组成元素 • 静定平面桁架的内力分析 • 静定平面桁架的位移分析 • 静定平面桁架的稳定性分析
01
静定平面桁架概述
定义与特点
定义
静定平面桁架是一种由杆件组成的结构,各杆件仅在结点处相互 连接,且不承受轴向力。
位移计算方法
02
01
03
位移计算是结构力学中的基本问题之一,其目的是确 定结构在受力作用下的位移。
位移计算方法包括图乘法、单位载荷法、有限元法等 。
图乘法是计算位移的常用方法之一,适用于静定结构 和超静定结构的分析。
位移与内力的关系
位移与内力之间存在一定的关 系,这种关系可以通过结构力 学中的平衡方程和变形协调方 程来描述。
特点
具有明确的几何形状和结构特性,能够承受各种外力而不会发生 变形或移动。
静定平面桁架的应用场景
桥梁工程
静定平面桁架广泛应用于桥梁工程中,作为主要承 载结构,如钢桥、拱桥等。
建筑结构
在大型工业厂房、仓库、展览馆等建筑中,静定平 面桁架常被用作屋面或楼面的承重结构。
机械制造
在机械制造领域,静定平面桁架用于制造各种设备 的基础框架和支撑结构。
结构力学 05 静定平面桁架

3.荷载和支座反力都作用在结点上,并且都 位于桁架的平面内。
§5.1
概述
桁架的组成与分类
• 桁架的杆件根据其所处的不同位置,将杆件分为腹杆和弦杆,腹杆有斜杆和竖杆两 种,弦杆一般可分为上弦杆和下弦杆,弦杆相邻结点间距为节间长度,支座中心间 的水平距离成为跨度桁架最高点到支座连线的距离成为桁高
§5.1
解:(1)求支座反力
以整体桁架为研究对象,受力图如图5.18a所示,先求支座反力:
FAy 19KN FBy 17KN
§5.2
桁架内力的计算方法
(2)求杆1、2和3的内力
作截面mn假想将此三杆截断,并取桁架的左半部分为研究对象,设所截三
杆都受拉力,这部分桁架的受力图如图5.18b所示。列平衡方程:
3. X形结点:四杆结点且两两共线, 4. K形结点:四杆结点,其中两杆共线,而
并且结点上无荷载时,则共线两 另外两杆在此直线同侧且交角相等,并且结
杆内力大小相等方向相同
点上无荷载,则非共线两杆内力大小相等方
向相反(一为拉力,则另一侧为压力)
§5.2
桁架内力的计算方法
5. 对称性:首先结构对称,结构的杆件以及支座对一个轴对称,则称该结 构为对称结构。其次荷载对称,荷载的大小、作用点、方向都关于一个轴 对称。并且结构与荷载同一个对称轴,其内力和反力也基于该对称轴对称。
中经常采用的一种形式,在中等跨度18~24m的工业厂房中采用得较多。
§5.4
静定结构特性
静定结构有静定梁、静定刚架、三铰拱、静定桁架等类型。虽然这些 结构形式各有不同,但它们有如下的共同特性:
FN34 22.36KN
Fy 0
20
1 5
FN 34
1 5
§5.1
概述
桁架的组成与分类
• 桁架的杆件根据其所处的不同位置,将杆件分为腹杆和弦杆,腹杆有斜杆和竖杆两 种,弦杆一般可分为上弦杆和下弦杆,弦杆相邻结点间距为节间长度,支座中心间 的水平距离成为跨度桁架最高点到支座连线的距离成为桁高
§5.1
解:(1)求支座反力
以整体桁架为研究对象,受力图如图5.18a所示,先求支座反力:
FAy 19KN FBy 17KN
§5.2
桁架内力的计算方法
(2)求杆1、2和3的内力
作截面mn假想将此三杆截断,并取桁架的左半部分为研究对象,设所截三
杆都受拉力,这部分桁架的受力图如图5.18b所示。列平衡方程:
3. X形结点:四杆结点且两两共线, 4. K形结点:四杆结点,其中两杆共线,而
并且结点上无荷载时,则共线两 另外两杆在此直线同侧且交角相等,并且结
杆内力大小相等方向相同
点上无荷载,则非共线两杆内力大小相等方
向相反(一为拉力,则另一侧为压力)
§5.2
桁架内力的计算方法
5. 对称性:首先结构对称,结构的杆件以及支座对一个轴对称,则称该结 构为对称结构。其次荷载对称,荷载的大小、作用点、方向都关于一个轴 对称。并且结构与荷载同一个对称轴,其内力和反力也基于该对称轴对称。
中经常采用的一种形式,在中等跨度18~24m的工业厂房中采用得较多。
§5.4
静定结构特性
静定结构有静定梁、静定刚架、三铰拱、静定桁架等类型。虽然这些 结构形式各有不同,但它们有如下的共同特性:
FN34 22.36KN
Fy 0
20
1 5
FN 34
1 5
第五章静定平面桁架

(2)求FNEF:Σ mD=0, FNEF沿作用线平移到F点分解
1 F [ F 2 dF dFd ] x E F A 1 2 2 H
M H
0 D
(压力)
结论:可证简支桁架,竖直向下荷载作用 下弦杆受拉力,上弦杆受压力 —— 对应梁,受竖直向下荷载的下、上边缘
(3)斜杆FNED EF、CD交点O,Σm0=0,FNED平移到D分解
桁架各部分名称
弦杆:上、下弦杆 腹杆:斜杆、竖杆 节间:弦杆上, 相邻结点区间 跨度、桁髙
桁架类型
(外形) a)平行弦 b)折弦 c)三角形 (是否有推力) a,b,c)无推力 d)有推力(拱式)
(几何组成方式)——与求解方法有关 (1)简单桁架(a,b,c)——二元体 (2)联合桁架(d,e)——三、二刚片规则 (3)复杂桁架(f)——非基本组成规则方式
1 F [ F aF ( ad ) ] Y E D A 1aF 2 a 2 d
(可能+、-)
2.投影(方程)法 (上、下弦杆平行) (1)求斜杆DG Ⅱ—Ⅱ截面(左) ∑Y=0 FYDG=-(FA-F1-F2-F3) =-F0SDG ——剪力法
F0SDG
截面法: ①所截杆件一般不超过三根 ——三个独立平衡方程可解 ②截面多于三个未知力, 如其中除一根外,其余均交于一点、或平行 ——可解此杆——截面单杆 ③几何组成相反次序求解
§5-6 组 合 结 构 计 算
组合结构——链杆与梁式杆,组合而成结构 (轴力杆:FN)(受弯杆件:M、FS、FN) 计算顺序:反力—链杆—梁式杆 【例5-3】 ①几何组成 ②求解次序 ③反力 FAV=5kN, FBV=3kN ④链杆 FNDE: ⑤梁式杆:受荷载、 链杆的作用力FN ⑥校核结点A/B,F/G
1 F [ F 2 dF dFd ] x E F A 1 2 2 H
M H
0 D
(压力)
结论:可证简支桁架,竖直向下荷载作用 下弦杆受拉力,上弦杆受压力 —— 对应梁,受竖直向下荷载的下、上边缘
(3)斜杆FNED EF、CD交点O,Σm0=0,FNED平移到D分解
桁架各部分名称
弦杆:上、下弦杆 腹杆:斜杆、竖杆 节间:弦杆上, 相邻结点区间 跨度、桁髙
桁架类型
(外形) a)平行弦 b)折弦 c)三角形 (是否有推力) a,b,c)无推力 d)有推力(拱式)
(几何组成方式)——与求解方法有关 (1)简单桁架(a,b,c)——二元体 (2)联合桁架(d,e)——三、二刚片规则 (3)复杂桁架(f)——非基本组成规则方式
1 F [ F aF ( ad ) ] Y E D A 1aF 2 a 2 d
(可能+、-)
2.投影(方程)法 (上、下弦杆平行) (1)求斜杆DG Ⅱ—Ⅱ截面(左) ∑Y=0 FYDG=-(FA-F1-F2-F3) =-F0SDG ——剪力法
F0SDG
截面法: ①所截杆件一般不超过三根 ——三个独立平衡方程可解 ②截面多于三个未知力, 如其中除一根外,其余均交于一点、或平行 ——可解此杆——截面单杆 ③几何组成相反次序求解
§5-6 组 合 结 构 计 算
组合结构——链杆与梁式杆,组合而成结构 (轴力杆:FN)(受弯杆件:M、FS、FN) 计算顺序:反力—链杆—梁式杆 【例5-3】 ①几何组成 ②求解次序 ③反力 FAV=5kN, FBV=3kN ④链杆 FNDE: ⑤梁式杆:受荷载、 链杆的作用力FN ⑥校核结点A/B,F/G
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1‘ 2‘ 3‘ 4‘ e
a
cd
b
4d d3
A 1 2 3 4 5
B
P PP 6d
VA 1.5P
(1) Na Nb
1‘ 2‘
4
Na
d 3
1 2 Nb
1.5P
P
Y 0 M 2 0
VB 1.5P
Na P VA 0.5P
Nb
4 3
d
1.5P 2d
0
Nb 2.25 P
1‘ 2‘ 3‘ 4‘ e
a
cd
b
A 1 2 3 4 5
P PP 6d
4d d3
B
(2) N c
VA 1.5P
Yc 1.5P P 0.5P
Nc
5 4
Yc
0.625P
VB 1.5P
4‘ e
d
Nc
B
45
P 1.5P
A VA 1.5P
1‘
2‘
3‘
4‘
e
a
cd
b
12345 P P P 6d
4d d3
B
VB 1.5P
5-1 桁架的特点和组成分类
桁架是由链杆组成的格构体系,当荷载仅作用在结点上时,
杆件仅承受轴向力,截面上只有均匀分布的正应力,是最理想
的一种结构形式。
上弦杆
理想桁架:
腹杆
下弦杆
(1)桁架的结点都是光滑无摩擦的铰结点; (2)各杆的轴线都是直线,并通过铰的中心; (3)荷载和支座反力都作用在结点上
主应力、次应力
桁架的分类(按几何构造) 1、简单桁架
2、联合桁架
3、复杂桁架
§5-2 结点法
分析时的注意事项:
1、尽量建立独立方程: W=2j-b=0
方程式数
未知内力数
2、避免使用三角函数 N
l ly
N lx
3、假设拉力为正
NY X
N=X =Y
l
lx
ly
+
一、平面汇交力系
3 -90 5
7
结点2
40
H=0
60
60
1
2 40kN 4 60kN 6 80kN 8
4m
N23
N23 40
60 2
N24 N24 60
V1=80kN
结点1 5
3
Y13
1 80
X13 N12
4×3m=12m
40
V8=100kN
4
Y13 80
X13
80
பைடு நூலகம்
3 4
60
N13
80
5 4
100
结点3
3
60
Y34 40 80 0
Y34 40 3
N35 X 34 40 4 30
X34
N34
40
5 4
50
N12 X13 0
80 40 Y34
N35 30 60 0
N12 60
N35 90
3 -90
5 -90
7
4m
60
30
75
_
80
40
+ 40 0
20 80 +
_ 100
15
H=0
60
60
75
75
2 40kN
4 60kN
6
8
0
1
2 N1 X NP 0 1
2
P
X NP
5
4
N1
5
4
X=1
6
6
NP
3
N1
3
X=1
1
2
1
2
§5-5 组合结构
钢筋混凝土
型钢
DE C
A
B
E E
钢筋混凝土 型钢
q 1kN / m
F
G
A
C
B 0.5m
3.5 + 15
RA=6 3m
-3.5 D
3m
15
3m
E
3m
0.75m
RB=6
q 1kN / m
80kN
V1=80kN
4×3m=12m
V8=100kN
二、结点单杆概念
结点平面汇交力系中,除某一杆件外,其它所有待求内力的杆件均共线 时,则此杆件称为该结点的结点单杆。
结点单杆的内力可直接根据静力平衡条件求出。
N1 N1 0
N1
N2
N2 0 N2
N1
N2
N3 N1 N2
N3 0 N1
P
N1 P N2 0
F 15 A
3.5
2.5 0.75
0.75
C 15 0.25m
Y=0
弯矩,由F以右
MF
15 0.25
1 33 0.75kN m 2
0.75
剪力与轴力
Q Y cos H sin
N Y sin H cos
M图( kN.m)
sin 0.0835 cos 0.996
QY
N
15 A
H
2.5 1.74
剪力与轴力
Q Y cos H sin N Y sin H cos
sin 0.0835 cos 0.996
1.24 1.25
1.75
Q图 (kN)
15.17 14.96 15.15
N图 (kN)
14.92
如截面A QA 2.5 0.996 15 0.0835
1.24kN
NA 2.5 0.083515 0.996 15.15kN
E F
T
P
CD
d
a
d
K
GH
2d
由结点T
0.5P T
NDT
2P 4
NTD
由截面- 右
2P
P
Y 0
4D
NDG 1.25P NDG
由截面 - 上
M F 0 Na 0.05 2P
A
B
2d
2d
2d
0.5P T
P
1.3P
CD
F
Na
1.25P
二、复杂桁架的计算
P
杆件代替法
P
5
4
5
4
X
6
6
3
3 X
N2
N2 N1
D
C
7
10
4
1
8
2
5
9
11 6
3
A
B
C AB
§5-3 截面法 一、 平面一般力系
X 0 Y 0 M 0
截面单杆:任意隔离体中,除某一杆件外,其它所有待求内力的杆件均相 交于一点时,则此杆件称为该截面的截面单杆。
截面单杆的内力可直接根据隔离体矩平衡条件求出。
O
y
例1、求图示平面桁架结构中指定杆件的内力。
(3) Nd
Xe
Ne
4‘ Ye
Nd
45
B
P 1.5P
2d
2d
Mk 0
Nd P2d 2d 1.5P 2d 0
Nd 0.25 P
M4 0
k X e 2.25P
10
3
Ne 3 X e 4 10 P
P1
MD 0
P2 1N1
N1
2
A
C
DD
B
P1 A
P2
2N2 M C 0
N 2
C
D
B
二、特殊截面 P
A RA
B
RB
P
k。
RB
。 k
P
P
简单桁架——一般采用结点法计算; 联合桁架——一般采用截面法计算。
§5-4 结点法与截面法的联合应用
为了使计算简捷应注意:
1)选择一个合适的出发点; 2)选择合适的隔离体; 3)选择合适的平衡方程 例: 计算桁架中a杆的内力。
1.3P 0.5P