人脸识别文献综述

合集下载

人脸识别综述

人脸识别综述

人脸识别综述人脸识别是一种通过计算机技术对图像或视频中的人脸进行识别和验证的技术。

随着计算机视觉和模式识别技术的不断发展,人脸识别技术在各种领域和应用中被广泛应用,如安全、监控、人机交互等。

本文将综述人脸识别技术的发展历程、主要方法和应用,以及目前面临的挑战和未来的发展趋势。

首先,人脸识别技术的发展经历了几个阶段。

早期的人脸识别技术主要基于几何特征的测量,如距离、角度和比例等,但这种方法对姿态、光照和表情等因素敏感,容易出现误识别。

随着模式识别理论的发展,基于统计和机器学习的人脸识别方法得到了广泛应用,如主成分分析(PCA)、线性判别分析(LDA)和支持向量机(SVM)等。

这些方法利用人脸图像中的主要特征、能量和信息等进行训练和分类,具有较高的识别率和鲁棒性。

近年来,深度学习技术的兴起极大地推动了人脸识别技术的发展,通过构建深层神经网络模型,实现了更准确和鲁棒的人脸识别。

其次,人脸识别技术的核心是提取和匹配人脸图像中的特征。

常用的特征提取方法包括几何特征、纹理特征和局部特征等。

几何特征是基于脸部形状和结构的特征,如眼睛、鼻子和嘴巴的位置和大小等。

纹理特征是通过分析图像中的灰度、颜色和纹理等信息获得的特征。

局部特征是利用图像中特定区域的局部信息获取的特征,如眼睛区域、嘴巴区域等。

对于特征匹配,主要采用的方法是基于距离或相似度度量的方法,如欧氏距离、曼哈顿距离和余弦相似度等。

然后,人脸识别技术在多个领域具有广泛的应用。

在安全领域,人脸识别技术可以用于身份验证和非法入侵检测。

例如,人脸识别技术可以用于解锁手机、电脑或门禁系统,以确保只有合法用户可以访问。

在监控领域,人脸识别技术可以用于追踪和识别嫌疑人。

在人机交互领域,人脸识别技术可以用于实现手势交互和情感识别。

此外,人脸识别技术还广泛应用于娱乐、医疗和教育等领域。

然而,人脸识别技术仍然面临一些挑战。

首先,光照和表情变化对人脸识别的影响较大,这容易导致识别错误。

《2024年基于深度学习的人脸识别方法研究综述》范文

《2024年基于深度学习的人脸识别方法研究综述》范文

《基于深度学习的人脸识别方法研究综述》篇一一、引言随着科技的进步,人脸识别技术已经成为了人工智能领域的研究热点。

基于深度学习的人脸识别方法以其高精度、高效率的特点,在众多领域得到了广泛应用。

本文旨在全面梳理和总结基于深度学习的人脸识别方法的研究现状、主要技术、应用领域及未来发展趋势。

二、人脸识别技术的发展历程人脸识别技术自诞生以来,经历了从传统的手工特征提取方法到基于深度学习方法的演变。

早期的人脸识别主要依靠人工设计的特征提取算法,如主成分分析(PCA)、线性判别分析(LDA)等。

随着深度学习技术的崛起,卷积神经网络(CNN)等人脸识别算法得到了广泛应用。

三、基于深度学习的人脸识别方法(一)深度卷积神经网络(Deep Convolutional Neural Network, DCNN)DCNN是目前应用最广泛的人脸识别方法之一。

通过训练大量的数据,DCNN可以自动学习和提取人脸特征,从而提高识别的准确性。

同时,DCNN具有较好的泛化能力,可以应对不同的人脸表情、光照、姿态等变化。

(二)深度学习与特征融合在人脸识别中,特征提取是关键的一步。

通过将深度学习与其他特征提取方法相结合,如基于局部二值模式(LBP)的特征提取方法,可以进一步提高人脸识别的准确性和鲁棒性。

此外,多模态特征融合技术也可以提高人脸识别的性能。

(三)基于深度学习的无约束人脸识别无约束人脸识别是近年来研究的热点。

由于实际应用中的人脸图像往往存在光照、姿态、表情等变化,因此基于深度学习的无约束人脸识别技术显得尤为重要。

该技术通过训练大量的无约束人脸数据,使得模型能够适应各种复杂的人脸变化。

四、主要技术应用领域(一)安防领域基于深度学习的人脸识别技术在安防领域得到了广泛应用。

例如,公安系统可以通过该技术对犯罪嫌疑人进行快速检索和比对,提高破案效率。

此外,该技术还可以应用于门禁系统、监控系统等场景。

(二)金融领域在金融领域,基于深度学习的人脸识别技术可以用于身份验证、支付等方面。

人脸识别研究综述

人脸识别研究综述

人脸识别研究综述人脸识别技术是一种通过计算机分析和识别人脸特征的技术。

近年来,随着硬件设备的进步和算法的不断改进,人脸识别技术得到了广泛的应用和研究。

本文将综述人脸识别技术的发展历程、应用领域、算法方法以及存在的问题和挑战。

人脸识别技术的发展历程可以追溯到上世纪六十年代。

当时,人们开始尝试使用计算机来识别人脸。

随着研究的深入,人脸识别技术逐渐被应用到安全领域。

现在,人脸识别已经广泛应用于人脸解锁、人脸支付、公共安全监控等领域。

在人脸识别的应用领域中,其中一个重要的应用领域是安全领域。

人脸识别可以用于身份验证和辨识,提高安全性。

另一个重要的应用领域是智能手机和电脑的解锁功能,使得用户可以通过人脸进行解锁,提高了使用的便利性。

此外,人脸识别也可以用于大众交通卡的自动售卡和复检等领域,实现了自动化和智能化。

人脸识别的算法方法有很多种,包括特征提取、特征匹配和分类等。

其中,特征提取是人脸识别算法的关键步骤。

过去常用的特征提取方法包括基于统计的方法、基于模型的方法和基于深度学习的方法。

而特征匹配是将提取得到的特征与已知特征进行比对,确定其是否属于同一个人。

最后,分类是通过训练分类器来对人脸进行分类,将其归类到已知的人脸类别中。

然而,人脸识别技术也存在一些问题和挑战。

首先,光线、角度和遮挡等环境因素对人脸识别的准确度有很大的影响。

此外,个体之间的差异导致同一个人的不同照片可能会有很大的差异,增加了识别的难度。

此外,人脸识别技术还可能被滥用,侵犯隐私。

为了解决这些问题,需要进一步研究和改进人脸识别的算法和系统,提高其准确度和安全性。

总的来说,人脸识别技术是一种有广泛应用前景的技术。

通过综述人脸识别技术的发展历程、应用领域、算法方法以及存在的问题和挑战,我们可以看出,人脸识别技术在安全领域和生活领域都有很大的潜力。

随着技术的不断进步和完善,人脸识别技术将会变得更加准确、便捷和安全。

人脸检测和识别技术的文献综述

人脸检测和识别技术的文献综述

人脸检测和识别技术的文献综述摘要:通过对关于人脸检测与识别技术方面文献的阅读,本文综述了传统的身份识别,人脸检测和识别技术的背景、意义及国内外发展现状,着重介绍了人脸检测和识别方法。

关键词:人脸检测;人脸识别;子空间分析;核主元分析。

人脸不仅具有很强的自身稳定性和个体差异性,而且直接、友好,相对传统识别,更符合人类的视觉习惯。

一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[1],人脸识别就是将待识别的人脸与已知人脸进行比较,得出相似程度的相关信息。

这里所指的人脸识别是狭义的识别,是统称的广义人脸识别的一个子过程[2]。

近年来人脸检测和识别技术的研究取得了较大的发展。

1 人脸识别的背景和研究意义身份识别与验证是人类社会日常生活中的基本活动之一。

尽管也许是无意识的,我们每天都要对很多人的身份做出判别,同时,每个人也都要经常通过各种方式和手段证明自己的身份,目前我们大多数情况下仍然依赖于传统的身份验证手段来完成身份识别过程,这些手段包括各类标识物如身份证、学生证等各类证件,钥匙,口令等,然而这些方式使用不方便、不安全、不可靠的缺点不言而喻,证件、钥匙携带不便证件可以被伪造钥匙可能会丢失密码,这些缺点使得它们越来越不能满足现实的需要[3]。

目前广泛使用的依靠证件、口令等传统方法来确认个人身份的技术面临着严峻的挑战,已经不能适应现代科技发展和社会进步的需要[4-6]。

随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。

生物特征识别利用人类特有的生理特征如指纹,虹膜等或行为特征如签名,声音等进行身份识别。

基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[7]。

2 人脸检测和识别技术的发展概况人脸检测是自动人脸识别系统中的一个关键环节,也是极其重要的一步.早期的人脸检测问题可以追溯到20世纪70年代,由于技术原因,当时人脸检测的研究一直处于止步状态。

人脸识别文献

人脸识别文献

人脸识别文献人脸识别技术在当今社会中得到了广泛的应用,其应用领域涵盖了安全监控、人脸支付、人脸解锁等多个领域。

为了了解人脸识别技术的发展,下面就展示一些相关的参考文献。

1. 《Face Recognition: A Literature Survey》- 作者: Rabia Jafri, Shehzad Tanveer, and Mubashir Ahmad这篇综述性文献回顾了人脸识别领域的相关研究,包括了人脸检测、特征提取、特征匹配以及人脸识别系统的性能评估等。

该文中给出了对不同方法的综合评估,如传统的基于统计、线性判别分析以及近年来基于深度学习的方法。

2. 《Deep Face Recognition: A Survey》- 作者: Mei Wang, Weihong Deng该综述性文献聚焦于深度学习在人脸识别中的应用。

文中详细介绍了深度学习中的卷积神经网络(Convolutional Neural Networks, CNN)以及其在人脸特征学习和人脸识别中的应用。

同时,文中还回顾了一些具有代表性的深度学习人脸识别方法,如DeepFace、VGG-Face以及FaceNet。

3. 《A Survey on Face Recognition: Advances and Challenges》-作者: Anil K. Jain, Arun Ross, and Prabhakar这篇综述性文献回顾了人脸识别技术中的进展和挑战。

文中首先介绍了人脸识别技术的基本概念和流程,然后综述了传统的人脸识别方法和基于机器学习的方法。

此外,该文还介绍了一些面部表情识别、年龄识别和性别识别等相关技术。

4. 《Face Recognition Across Age Progression: A Comprehensive Survey》- 作者: Weihong Deng, Jiani Hu, Jun Guo该综述性文献主要关注跨年龄变化的人脸识别问题。

近年来人脸识别技术相关研究进展综述

近年来人脸识别技术相关研究进展综述

近年来人脸识别技术相关研究进展综述近年来,随着人工智能技术的快速发展,人脸识别技术也在不断提高。

人脸识别技术是一种基于人脸图像进行身份信息认证的技术,其主要应用场景包括安保、金融、物流、智能家居等领域。

本文将综述近年来人脸识别技术的相关研究进展。

一、人脸特征提取技术人脸特征提取技术是人脸识别技术的核心。

近年来,研究人员主要从两个方面进行探索:一是如何提高人脸特征提取的准确率,二是如何提高人脸特征提取的效率。

目前,主流的人脸特征提取技术包括传统的基于LBP、HOG、SIFT等算法的特征提取方法和基于深度学习的特征提取方法。

深度学习技术的出现一定程度上解决了传统方法无法解决的问题,如尺度、光照、遮挡等。

但深度学习需要大量的样本数据支持,同时也会出现过拟合等问题。

因此,如何在保证准确率的同时提高效率成为研究的热点。

二、人脸检测技术人脸识别技术的基础是人脸检测技术。

人脸检测技术是指从图像或视频中自动检测出人脸的技术,是实现人脸识别的必要前提。

近年来,随着互联网、物联网、智能硬件行业的快速发展,人脸检测技术已成为研究热点。

主流人脸检测技术有三种:传统的基于Haar cascade和HOG的算法、基于深度学习的算法和基于联合检测的算法。

传统算法具有速度快、准确率高的特点,但在识别复杂环境、姿态变化、遮挡等方面的效果有限;基于深度学习的算法可以有效克服传统算法的缺陷,但需要大量样本数据进行训练并具有很高的算力要求;基于联合检测算法将分别检测和对检测结果进行联合得到一个较为准确的人脸检测结果。

三、人脸图像增强技术人脸图像增强技术是指对人脸图像进行处理,从而提高人脸识别的准确率。

传统的人脸图像增强技术包括高斯滤波、中值滤波等,但这些方法准确率不高且难以处理直方图均衡化的问题。

近年来,研究人员提出了一些新的人脸图像增强技术,如基于GAN的图像增强技术和基于Attention机制的图像增强技术。

基于GAN的图像增强技术可以在保留人脸特征的情况下对图像进行增强,提高了人脸识别的准确率;基于Attention机制的图像增强技术可以对不同部位的图像特征进行不同的处理,提高了对光照、噪声、遮挡等影响的容忍度。

人脸识别文献综述

人脸识别文献综述

人脸识别文献综述
人脸识别技术的文献综述可以从以下几个方面展开:
1.人脸识别技术的发展历程:介绍人脸识别技术的起源、发展历程以及各个阶段的技术特
点和应用领域。

2.人脸识别的基本原理:阐述人脸识别的基本原理,包括人脸检测、特征提取和匹配识别
等关键技术。

3.人脸识别的应用领域:介绍人脸识别技术在各个领域的应用情况,如安全、金融、交通、
教育等。

4.人脸识别的技术挑战和解决方案:分析人脸识别技术面临的技术挑战,如光照、角度、
面部朝向、面部表情等,并介绍各种解决方案和技术进展。

5.人脸识别的未来展望:预测人脸识别技术的发展趋势和未来发展方向,包括深度学习、
多模态融合、隐私保护等方面的技术发展。

6.在撰写人脸识别技术的文献综述时,需要全面收集和阅读相关文献,包括学术论文、专
利、技术报告等,并对各种文献进行分类和整理。

同时,需要对各种技术和方法进行比较和分析,总结出它们的优缺点和应用场景。

最后,需要结合自己的理解和见解,对人脸识别技术的未来发展进行预测和展望。

需要注意的是,人脸识别技术是一个跨学科的领域,涉及到计算机视觉、机器学习、模式识别等多个学科。

因此,在撰写文献综述时需要有一定的专业背景和技术基础,以便更好地理解和分析相关文献。

中国计量学校文献综述

中国计量学校文献综述

中国计量学院现代科技学院毕业设计(论文)文献综述学生姓名:吴鹏晖学号:0930333222专业:电子信息工程班级:电信092设计(论文)题目:基于LVQ神经网络的人脸朝向识别算法研究指导教师:李向军系:信息工程系2013年1月3日基于LVQ神经网络的人脸朝向识别算法研究文献综述一、人脸识别概述人脸识别作为一个复杂的模式识别问题,近年来受到广泛的关注,识别领域的各种方法在这个问题上各显所长,而且发展出了许多新方法,大大丰富和拓展了模式识别方向。

人脸识别、检测、跟踪、特征定位等技术近年来一直是研究的热点、人脸识别是人脸应用研究中重要的第一步,目的是从图像中分割出不包括背景的人脸区域。

由于人脸形状的不规则性以及光线和背景条件多样性,现有的人脸研究算法都是在试图解决某些特定实验环境下的一些具体问题,对人脸识别位置和形状都有一定的要求。

而在实际应用中,大量图像和视频源中人脸的位置,朝向和旋转角度都不是固定的,这就大大增加了人脸识别的难度。

在人脸识别领域的众多研究方向中,人脸朝向分析一直是一个少有人涉及的领域。

在以往的研究中,一些研究者谈及了人脸朝向问题,但其实绝大多数都是希望在人脸识别过程中除去人脸水平旋转对识别过程的不良影响。

但是,实际问题要复杂的多,人脸朝向是一个无法回避的问题。

因此,对于人脸朝向的判断和识别,将会是一件非常有意义的工作。

人脸检测与识别技术是生物特征鉴别技术中研究最多和最热门的技术之一,它已经在身份认证、安全检查、罪犯查询、人机交互等广泛领域得到了初步应用。

在人脸检测研究中,构建快速而精确的检测方法一直是该领域的研究热点;在人脸识别研究中,如何克服获取图像光线、表情、视角等变化的影响,提高识别率则是迫切需要研究的问题。

针对这两个问题,本文以彩色和灰色正面人脸静态图像为研究对象,将模式识别理论和图像处理技术相结合,重点研究基于LVQ人工神经网络(ANN)的肤色像素检测和基于模板匹配的人脸精确检测方法,以及基于小波包分解(WPD)和(2D)2PCA的不同变化条件人脸图像的识别方法,为建立快速精确的人脸识别系统提供技术依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述1 引言在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。

近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。

人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。

人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。

正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。

虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。

它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。

与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。

并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。

自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。

自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。

本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。

此外,本文还分析介绍了当前人脸识别的优势与困难。

2 人脸识别相关理论图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。

要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识:2.1 数字图像处理技术数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,数字图像处理最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

数字图像处理作为一门学科大约形成于20世纪60年代初期。

与人类对视觉机理研究的历史相比,数字图像处理是一门相对年轻的学科,但在其短短的历史中,它却以不同程度的成功使用于几乎所有与成像有关的领域。

目前,数字图像处理技术己被广泛应用于办公自动化、工业机器人、地理数据处理、医学数据处理、地球资源遥感、交互式计算机辅助设计等领域,尤其在机器视觉应用系统中成为关键技术之一。

一般的图像都是模拟图像,对于模拟图像只能采用模拟处理方式进行处理,计算机不能接受和处理模拟信号,只有将连续的模拟信号变换为离散的数字信号,或者说将模拟图像变换为数字图像才能接受。

数字图像处理就是对给定的数字图像进行某些变换的过程。

对含有噪声的图像,要除去噪声、滤去干扰,提高信噪比;对信息微弱的图像要进行灰度变换等增强处理;对已经退化的模糊图像要进行各种复原的处理;对失真的图像要进行几何校正等变换。

除此之外,图像的合成,图像的边缘提取与分割,图像的编码、压缩与传输,图像的分析等技术也属于图像处理的内容。

由此可见,图像处理就是为了达到改善图像的质量,将图像变换成便于人们观察和适于机器识别的目的[4]。

2.2 神经网络人工神经网络是一门以对大脑的生理研究成果为基础,以用机器模拟大脑的某些生理与机制,实现某方面功能为目的的学科[6]。

研究神经网络,特别是神经学习的机理,对认识和促进人自身发展有特殊的意义。

神经网络有许多具有非线性映射能力的神经元组成,神经元之间通过权系数连接。

网络的信息分布式就存在连接系数中,使网络具有很高的容错性和鲁棒性。

神经网络技术已经被有效地用到组合优化、图像处理、模式识别、自动控制等方面。

基于神经网络技术的人脸识别方法是人脸识别研究领域中的一大重要分支。

2.3 模式识别模式识别[7],就是通过计算机用数学技术方法来研究模式的自动处理和判读。

这门学科使用计算机的方法实现人的模式识别能力,即对各种事物或现象进行分析、描述、判别和识别。

在人脸识别中,如果是个人识别,则每一个人就是一个模式,预先存在数据库里的图像就是样本;如果是性别识别、种族识别或年龄识别,则不同的性别、种族或年龄就构成一个模式;如果是表情识别,则不同的表情就是一个模式。

人脸识别重在讨论个人识别,人脸识别的最终目的就是利用人脸图像确定待识别的人究竟与数据库里的哪个人是同一个人,这是一个“是谁”的问题;或要判断这个人与库里的某个人是不是同一个人,这是一个“认识或不认识”的问题。

图像识别是指对视觉图像目标按其物理特征进行分类,属于模式识别的范畴。

图像识别系统的基本结构如图1所示。

图1 图像识别系统的基本结构2.4 计算机视觉在客观世界中,人类通过视觉识别文字和周围环境,感知外界信息。

人们75%的信息量都来自视觉,因此让计算机或机器人具有视觉,是人工智能的重要环节,也是人类多年以来的梦想。

在信号处理理论与高性能计算机出现后,这种希望正在逐步实现。

用计算机实现对视觉信息的处理形成了一门新兴的学科——计算机视觉。

计算机视觉是一门用计算机来实现人的视觉功能,实现客观三维世界的识别的学科。

计算机视觉的最终目标是模拟人类的视觉能力,理解并解释周围的世界,其研究的一个关键内容是图像的识别。

3 人脸检测与定位人脸检测与定位是自动人脸识别系统首先需要解决的关键问题,也即检测图像中是否有人脸存在,若有,则将其从背景中分割出来并确定其在图像中的位置。

在某些可以控制拍摄条件的场合,如警察拍摄罪犯照片时将人脸限定在标尺内,此时的人脸定位由于己经具备了人脸位置的先验知识而相对比较简单;证件照(身份证、护照等)由于背景相对简单,定位也比较容易。

但在通常情况的实际应用中,人脸在图像中的位置预先未能得知,人脸检测与定位将受到以下因素的制约:(1) 人脸在图像中的位置、角度和尺度不同以及光照的变化;(2) 发型、眼镜、胡须以及人脸的表情变化等;(3) 图像中的噪声影响。

因此从某种程度上说,人脸检测与定位甚至比人脸模式的识别更为关键。

按照人脸检测技术的发展历程,本文依据采用的主要技术方法将人脸检测分为以下四种类型:基于特征检测的方法、基于肤色检测的方法、基于模板匹配的方法、基于外观统计学习的方法。

结果3.1 基于特征检测的方法基于特征的人脸检测方法依据人脸的面部几何特征、纹理特征、肤色特征进行人脸和非人脸的判别,见下表:表1 基于特征的人脸检测与关键特征定位算法3.2 基于肤色检测的方法利用人脸肤色信息进行人脸检测曾经一度成为人脸检测领域的研究热点,涌现了大量的学术文献,Lee等[14]最早利用人脸肤色信息进行人脸定位;Saber[15]利用肤色、人脸形状及几何对称信息实现人脸检测和面部特征的抽取;Jones[16]利用大量的样本图像对肤色检测问题进行了分析,并建立了人脸肤色的统计模型用于人脸检测,收到了较好的检测效果;Terrillon[17]使用高斯模型和混合高斯模型在不同色度空间建立肤色模型进行人脸检测,并进行了对比分析,结果发现混合高斯模型比一般高斯模型具有更好的泛化能力;Hadid[18]基于Skin-Locus建立肤色模型,提取彩色人脸区域实现人脸检测,但需要在固定成像参数下才保证有良好的性能,鲁棒性有待提高;Martinkauppi[19]对Skin-Locus理论进行了细致分析,发现人脸肤色在各种光照条件下可以用两个二次或者多次多项式进行拟合;Comanieiu[20]采用Mean-Shift算法进行局部搜索实现人脸的检测与跟踪,该算法提高了人脸的检测速度,对遮挡和光照的鲁棒性较好,但对于复杂背景和多个人脸目标的检测不够鲁棒;Hsu[21]采用光照补偿的办法克服光照问题,从一定程度上解决了偏色、复杂背景和多人脸目标的检测问题,对人脸的位置、尺度、旋转、姿态和表情等变化具有较好的鲁棒性;Sobottka和Pitas[22]结合肤色(HSV)和人脸的形状信息来定位人脸和进行面部特征的提取;Terrillon[23]等利用高斯模型对肤色象素进行聚类,并采用神经网络对二值图像的几何距进行学习实现人脸检测;Garcia和Tziritas[24]采用量化肤色区域合并结合小波分析实现人脸检测。

总的说来,基于肤色检测的方法鲁棒性的提高依赖于肤色模型的质量,在背景相对简单的情况下可以获得良好的检测效果;但在复杂背景中,尤其是背景中存在较多的类肤色区域时,检测质量将急剧下降。

而且,肤色模型在不同人种之间会存在较大的差异,因而很难建立一个通用性很强的人脸肤色统计模型。

因此,基于肤色检测的人脸检测方法的应用受到一定限制。

3.3 基于模板匹配的方法基于模板匹配的方法首先需要人工定义一组标准或参数化的人脸模式(通常为正面),称之为模板。

对于给定输入图像,通过计算其与标准模板的相关系数并根据相关系数判断是否为人脸,详见表2。

这种人脸检测方法实现简单,但是由于人脸尺度、姿态和形状的不确定性,基于模板的人脸检测方法通常达不到很高的准确率。

表2 基于模板匹配的人脸检测方法3.4 基于统计学习的方法与上述方法不同,基于统计学习的方法主要采用大量的人脸与非人脸样本对检测分类器进行训练,将人脸检测转化为二类模式分类问题。

Propp等人是最早采用神经网络[34]进行人脸检测的学者之一,他们通过构造一个4层(两个隐藏层)神经网络实现人脸检测,但没有相关检测性能的报道;后人在他们的基础上通过优化神经网络结构提出了时延神经网络(TDNN),自组织映射神经网络(SOM)、卷积神经网络(CNN)、概率决策神经网络(PDBNN)。

Feraud等人通过构造自协商神经网络(SNNN)[35]进行非线性主元分析,可以检测正面到左右60度旋转的人脸,他们的方法后来被Listen 和Multrak采用。

Sung、Rowley、Lin&Kung 等[36]采用K-mean聚类算法在特征空间建立“人脸”和“非人脸”族,采用自举(bootstrap)方法首先建立一个仅使用人脸样本和少量非人脸样本训练的初始神经网络分类器对一组图像进行训练,将误检的非人脸样本加入非人脸样本库;然后训练新的分类器,如此不断迭代,直到收集到足够多的非人脸样本,这种方法后来被许多学者所采用。

Carleson、Yang等[37]人提出的SNoW(Sparse Network of Winnows)学习方法,对检测不同特征、表情、姿态和光照条件下的人脸收到了较好的效果。

相关文档
最新文档