大物第一章课后习题答案
大学物理第1章习题参考答案

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)101(3)01(21)01(32ji ⎥⎦⎤⎢⎣⎡-+--=(3) (4) (5) (6) 1-2 =v c t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++=将t =3s 代入证)sm (45)sm (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααx y tg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆(4) 1-41-5 g)(25m/s1047.280.13600101600223≈⨯=⨯⨯==t v a基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---=(2) .对应于t 13.184.122212120-=-="t t v ∆m /s )(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v sh s tl hl l ts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d dd d s v h t l v hl l lt va -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动. 1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωgr n gr1-9 物体A 下降的加速度(如图所示)为222m/s 2.04.022=⨯==h a在1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-=由此得s 59.02.18.95.1220=-⨯=-=ag h t而小球相对地面下落的距离为2021gt t v h +=259.08.92159.06.0⨯⨯+⨯=m 06.2= 1-11风地vb )两图中风地v应是同一矢量.1-12 (1) vLv L t 22==(2) 22212uv vL uv L uv L t t t -=++-=+=1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v L v L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22uv V -='.习题1-12图习题1-11图2221222⎪⎭⎫ ⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V而1212sin sin =⨯=='αβu V船达到BD OB AB 将式(1) (2) 由t =即 c o s α故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min =⨯=⨯=⨯=s u t π(3) 设l OB =,则ααββsin cos 2sin sin 22u uV Vu D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV Vu u D l'⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα0c o s 2s i n s i n 2222=⎥⎦⎤'-+''+αuV Vu a a uV简化后可得01cos cos 222=+'+-'αuVV u a即 01c o s 613c o s 2=+'-'αa解此方程得32cos ='α︒=='-2.4832cos1α将α'AB。
大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k =+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v r 3v r 1v r12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理学(课后答案解析)第1章

第1章 质点运动学习 题一 选择题1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率sv t∆=∆,而平均速度t∆∆rv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ] (A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为大于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-⎰⎰,得到20112kt v v =+,故答案选B 。
大学物理(上册)课后习题及答案

因此有: ,∴
⑵由 得: ,两边积分得:
∴
⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,
,
5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,
∴
⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:
《新编大学物理》(上、下册)教材习题答案

答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
(完整版)大学物理学(课后答案)第1章

(完整版)⼤学物理学(课后答案)第1章第1章质点运动学习题⼀选择题1-1 对质点的运动,有以下⼏种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的⽅向相同(B)在某⼀过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的⼤⼩和⽅向不变,其速度的⼤⼩和⽅向可不断变化 (D)在直线运动中,加速度不断减⼩,则速度也不断减⼩解析:速度是描述质点运动的⽅向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动⽅程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 ⼀质点在平⾯上作⼀般曲线运动,其瞬时速度为v ,瞬时速率为v ,某⼀段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的⼤⼩即瞬时速率,故v =v ;平均速率sv t=,⽽平均速度trv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度⽅向⼀定指向切向,所以法向加速度也⼀定为零 (B)法向分速度为零,所以法向加速度也⼀定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度⼀定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度⼀定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为⼤于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-?,得到20112kt v v =+,故答案选B 。
《新编大学物理》(上、下册)教材习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理上册 第一章习题答案详解

解: 物体 A 下降的加速度(如图所示)为
2h 2 × 0.4 = = 0.2m/s 2 2 2 t 2 此加速度也等于轮缘上一点在 t ′ = 3s 时的切向加速度,即
a=
′ at = 0.2(m/s 2 )
在 t ′ = 3s 时的法向加速度为
an =
′ v ′ 2 (a t t ) 2 (0.2 × 3) 2 = = = 0.36(m/s 2 ) R R 1.0
解:
v=
dx = t 3 + 3t 2 + 2 dt
x = ∫ dx = ∫ vdt + c =
当 t=2 时 x=4 代入求证 c=-12 即x=
1 4 3 t + t + 2t + c 4
1 4 3 t + t + 2t − 12 4
v = t 3 + 3t 2 + 2 dv a= = 3t 2 + 6t dt
习题 1-10 图
t=
而小球相对地面下落的距离为
2h0 2 × 1.5 = = 0.59s g −a 9.8 − 1.2 1 2 gt 2 1 × 9.8 × 0.59 2 2
h = v0 t +
= 0.6 × 0.59 + = 2.06m l-11
有人以 v = 3m ⋅ s −1 的速率向东奔跑,他感到风从北方吹来,当奔跑的速率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简答题1.1 关于行星运动的地心说和日心说的根本区别是什么?答:地心说和日心说的根本区别在于描述所观测运动时所选取的参考系不同。
1.2 牛顿是怎样统一了行星运动的引力和地面的重力?答:用手向空中抛出任一物体,按照惯性定律,物体应沿抛出方向走直线,但是它最终却还会落到地面上。
这说明地球对地面物体都有一种吸引力。
平抛物体的抛速越大,落地时就离起点越远,惯性和地球吸引力使它在空中划出一条曲线。
地球吸引力也应作用于月球,但月球的不落地,牛顿认为这不过是月球下落运动曲线的弯曲度正好与地球表面的弯曲程度相同。
这样牛顿就把地球对地面物体的吸引力和地球对月球的吸引力统一起来了。
牛顿认为这种引力也作用在太阳和行星、行星与行星之间,称为万有引力。
并认为物体所受的重力就等于地球引力场的引力。
这样牛顿就统一了行星运动的引力和地面的重力。
1.3 什么是惯性? 什么是惯性系?答:任何物体都有保持静止或匀速直线运动状态的特性,这种特性叫惯性。
我们把牛顿第一定律成立的参考系叫惯性系。
而相对于已知惯性系静止或做匀速直线运动的参考系也是惯性系。
1.4 人推动车的力和车推人的力是作用力与反作用力,为什么人可以推车前进呢?答:人推动车的力和车推人的力是作用力与反作用力,这是符合牛顿第三定律的。
但这两两个力是分别作用在两个物体上的。
对于车这个研究对象来说,它就只受到人推动车的力(在不考虑摩擦力的情况下),所以人可以推车前进。
1.5 摩擦力是否一定阻碍物体的运动?答:不一定。
例如汽车前进时,在车轮与路面之间实际上存在着两种摩擦力:静摩擦和滚动摩擦。
前者是驱使汽车前进的驱动力,后者是阻碍汽车前进的阻力。
再如,拖板上放上一物体,拉动拖板,物体可以和拖板一起运动,其原因就是拖板给予了物体向前的摩擦力。
1.6 用天平测出的物体的质量,是引力质量还是惯性质量?两汽车相撞时,其撞击力的产生是源于引力质量还是惯性质量?答:用天平测出的物体的质量和引力有关,是地球对物体和砝码的引力对天平刀口支撑点力矩平衡测出的质量,所以是引力质量。
两汽车相撞,其撞击力源于物体运动,是惯性质量。
1.7 什么是SI单位制?SI单位制中的基本量是什么?质量的单位是什么?“物质的量”单位又是什么?答:在确定各物理量的单位时,总是根据它们之间的相互联系选定少数几个物理量作为基本量,并人为地规定它们的单位。
这样的单位叫基本单位。
其它的物理量都可以根据一定的关系从基本量导出,这些物理量叫导出量。
导出量的单位都是基本单位的组合,叫导出单位。
基本单位和由它们组成的导出单位构成一套单位制。
1960年第11界国际计量大会通过并建议世界各国采用的单位制叫国际单位制,简称SI单位制。
SI单位制中力学基本单位是米(m),千克(kg),秒(s)。
质量的单位是千克(kg)。
“物质的量”单位是摩尔。
1.8 位移和路程有什么不同?什么情况下位移的大小能和同时间内质点所经过的路程相等?答:位移是矢量,路程是标量。
位移是物体初、末位置矢量之间的之差,表示物体位置的改变,一般并不是物体所经历的实际路径。
路程是物体运动经历的实际路径。
t∆→的曲线运动中位移的大小和同时间内质点所经过的在同方向的直线运动中以及0路程相等。
1.9 匀速率圆周运动中质点的加速度是否是常量?速率增加的圆周运动中质点的加速度方向又如何?答:匀速率圆周运动中质点的加速度不是常量,其切向加速度为零,法向加速度指向圆心。
方向一直在变化。
速率增加的圆周运动中质点的有切向加速度和法向加速度。
切向加速度沿切向,法向加速度指向圆心,其合成后总加速度的方向总指向凹进的那一侧。
1.10 切向加速度和法向加速度各对质点的运动状态产生什么影响?答:切向加速度的大小表示质点速率变化的快慢,法向加速度的大小表示质点加速度方向变化的快慢。
1.11 速度为零的时刻,加速度是否一定为零?加速度为零的时刻,速度是否一定为零?物体的加速度不断减小,而速度却不断增大,可能吗?答:速度为零的时刻,加速度不一定为零。
加速度为零的时刻,速度不一定为零。
因为加速度是速度对时间的变化率,速度为零的时刻其变化率不一定为零,速度不为零时不能保证其变化率不为零。
例如水平弹簧振子,相对平衡位置有最大位移时其速度为零,而加速度不为零;平衡位置时速度最大而其加速度为零。
物体的加速度不断减小,而速度却不断增大,这是可能的。
例如加速直线运动,物体的加速度可以不断减小,只要与速度的方向一致,物体仍然是加速运动,速度仍不断增大。
1.12 一物体在地球表面的重量和在月球表面的重量相同吗?质量相同吗?答:一物体在地球表面的重量和在月球表面的重量不相同。
一物体在地球表面的重量大约是此物体在月球表面的重量的6倍。
质量是相同的。
1.13 有一单摆如图1-75所示。
摆球到达最低点P 1和最高点P 2时,摆线中张力是否等于摆球重力在摆线方向的分力大小?答:在最低点P 1,张力大于摆球重力,差值为摆球的向心力。
在最高点P 2时,张力等于重力在摆线方向的分力cos mg 。
因为在最高点时,摆球的速度为零。
1.14 海水的潮汐现象是什么原因引起的?答:潮汐是海水的周期性涨落现象。
是海水所受太阳和月亮的引力造成的。
1.15 图1-76,一单摆固定在一块重木板上,板可以沿竖直方向的导轨自由下落,。
使单摆摆动起来,如果当摆球达到最低点时使木板自由下落,在木板下落过程中,摆球相对于木板的运动形式将如何?如果当摆球到达最高位置时使木板自由下落,摆球相对于木板的运动形式又将如何?(忽略空气阻力)答:摆球在最低点时,具有一定的速度。
此时摆球受到竖直向下的重力mg ,摆线的拉力T ,还有竖直向上的惯性力mg 。
由于重力和惯性力相互平衡,所以摆球仅受与其速度v 垂直的拉力T 的作用。
因此,摆球相对于木板作匀速率的圆周运动。
图1-75 问题1.13用图图1-76 问题1.15用图若当摆球到达最高位置时,木板自由下落,摆球的重力mg 与惯性力mg -相平衡,而且摆球的速度为零,绳的拉力也瞬间消失,所以摆球相对于木板静止。
1.16 有一个弹簧,其一端连有一小铁球,你能否做一个在汽车内测量汽车加速度的“加速度计”?根据什么原理?答:可以。
将弹簧竖直自由地悬挂于车顶,当汽车加速前进时,小铁球受到垂直向下的重力、弹簧的拉力以及和运动方向相反的惯性力作用。
当受力平衡时,测出弹簧与竖直线之间的夹角,就可以由tan a g θ=的关系式,测出不计弹簧质量时汽车的加速度,小球偏转反方向就是汽车的加速度方向。
1.17 匀加速平动参照系中惯性力有反作用力吗?答:匀加速平动参照系中惯性力没有反作用力。
因为惯性力是一个虚拟的力。
在匀加速平动参照系中加上惯性力,就可以应用牛顿第二定律的数学形式。
1.18 什么是牛顿力学的相对性原理?为什么说牛顿力学是绝对时空观?答:牛顿力学的相对性原理的内容是:对于力学定律来说,一切惯性系都是等价的。
由于在牛顿力学中认为时间的测量与参考系无关,物体的长度的空间测量也与参考系无关。
这就是绝对的时空观。
所以说牛顿力学是绝对时空观的。
1.19 躺在地上的人身上压着一块重石板,用重锤猛击石板,石板碎裂而下面的人毫无损伤。
何故?答:重锤猛击石板,“猛击”之意是二者间碰撞力很大而作用时间很短。
碰撞力很大会使得石板碎裂,碰撞时间很短说明石板获得的动量很小(石板质量》重锤质量)。
在此瞬间过程,由于石板惯性很大,它还来不及向下运动造成人的损伤。
在时间相对较长的人体和重石板相互作用的过程中,化解重石板动量的变化而引起石板对人体的作用力不是很大,所以石板下面的人也会毫无损伤。
1.20 如图1-77所示,一重球的上下两边系着的是同样的线。
用手向下拉下边的一根线,如果向下猛一抻,则下面的线断而球未动。
如果用图1-77 题1.20用图力慢慢拉线,则上面的线断,为什么?答:如果向下猛一抻,给予下面的线一冲量,由于作用时间极短,线受到的冲力就很大,足以大到线所允许的最大张力而使下面的线断开。
再由于重球惯性很大,在一刹那间还来不及运动,下面的线就已断开,即下面的线受到的冲力传不到上面的线,故球末动而上面的线也末断。
若缓慢地增加拉力,下面的线、上面的线及重球在“缓慢作用”下可认为它们时刻都处于力平衡,下面的线中的张力就是受到的拉力。
而上面的线除了受到拉力作用外,还受到重球的重力的作用,其拉力大于下面的线的拉力。
所以,当慢慢地增加拉力,上面的线所承受的力先到达所允许的最大张力的极限而先断。
1.21 两个质量相同的物体从同一高度自由下落,与水平地面相碰,一个反弹回去,另一个却贴在地上,问哪一个物体给地面的冲量大?答:两个质量相同的物体从同一高度自由下落,和地面相接触的瞬间动量一样。
设其为11p p j =- 。
反弹回去物体具有反弹动量22p p j = ,而另一个反弹动量为零。
动量的增量就是所受的冲量,反弹物体受到的冲量112()I p p j =+ ,贴在地上物体受到的冲量21I p j =。
因为12I I > ,所以反弹回去物体受到的冲量大,也就是它给地面的冲量大。
1.22 内力对改变系统的总动量有作用吗?内力对系统内各质点的动量改变有作用吗? 答:内力对改变系统的总动量没有作用。
内力的作用是改变着系统内相互作用各质点的动量,但这种改变对系统的总动量没有影响。
如果系统总动量发生变化,内力负责各质点动量的再分配。
1.23 如图1-78,行星绕日运行时,从近日点p 向远日点A 运行的过程中,太阳对它的引力做正功还是做负功?从远日点A 向近日点p 运动的过程中,太阳引力做正功还是做负功?行星的动能以及行星和太阳系统的引力势能在这两阶段运动中各是增加还是减少?A图1-78 问题1.23用图答:从近日点p 向远日点A 运行的过程中,由于行星在有心力的反向有位移,太阳对行星的引力做负功;从远日点A 向近日点p 运动的过程中,太阳对行星的引力做正功。
行星和太阳是保守系统,保守力(引力)做功等于系统引力势能增量的负值,所以行星从近日点p 向远日点A 运行的过程中,引力的负功说明引力势能在增加;而行星和太阳系统的机械能守恒,所以次过程动能减少。
而行星从远日点A 向近日点p 运动的过程中,保守力的正功说明系统势能在减少,机械能守恒说明行星动能在增加。
1.24 如图1-79所示,物体A 放在斜面B 上,斜面放在一光滑水平面上。
当物体A 下滑时,物体B 也将运动。
在运动过程中,A 、B 间的一对摩擦力做功之和是正还是负?A 、B 间的一对正压力做功之和又如何?答:在运动过程中,A 、B 间的一对摩擦力做功等于站在物体B 上的A 受到的摩擦力对A 做的功,此摩擦力对A 做的功为负,也就是A 、B 间的一对摩擦力做功为负。
A 站在物体B 上,B 对A 的正压力对A 做功为零,所以A 、B 间的一对正压力做功之和为零。