2018年聊城市中考数学试题及解析
2018年聊城市中考数学试题解析版

2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)25.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.8.在如图的2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤011.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,t an21°≈0.38)()A.169米B.204米C.240米D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:=.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2018B2018C2018的顶点B2018的坐标是.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2018B2018C2018的顶点B2018的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2018的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2018÷8=252∴B2018的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2018的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b>0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;=S△A1O1F﹣S△FGH计算即可;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.∴S重叠部分(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),=S△A2O2C2﹣S△C2GH∴S=S四边形A2O2HG=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
2018年山东省聊城市中考数学真题及参考答案

山东省聊城市二○一八年初中学业考试暨高中阶段统一招生考试数学试卷注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。
2.答第Ⅰ卷时,必须使用2B 铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。
3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。
务必在题号所指示的答题区域内作答。
一、选择题(本大题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求)1.下列实数中的无理数是( )A B D .227 2.如图所示的几何体,它的左视图是( )A .B .C .D .3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )A .81.2510⨯亿次/秒B .91.2510⨯亿次/秒C .101.2510⨯亿次/秒 D. 812.510⨯亿次/秒4.如图,直线//AB EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=,25CDE ∠=,则DEF ∠的度数是( )A .110B .115C .120D .1255.下列计算错误的是( )A .2024a a a a ÷⋅=B .202()1a a a ÷⋅=C .87( 1.5)( 1.5) 1.5-÷-=-D .871.5( 1.5) 1.5-÷-=-6.已知不等式2241232x x x ---≤<,其解集在数轴上表示正确的是( )A .B .C .D .7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=,85ADC ∠=,则C ∠的度数是( )A .25B .27.5C .30D .358.下列计算正确的是( )A .==C .==9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12B .13C .23D .1610.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .912(,)55-B .129(,)55-C .1612(,)55-D .1216(,)55- 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 .14.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .15.用一块圆心角为216的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等.。
2018年山东省聊城市中考数学试题含答案

2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.56.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k 的值是.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N 位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t (0≤t≤5)(1)求出这条抛物线的表达式;的值;(2)当t=0时,求S△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?2018年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是50cm.【分析】设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.【解答】解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是540°或360°或180°.【分析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a=39,b=21;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【分析】(1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)【分析】作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【分析】(1)先由点A确定k,再求m的值,根据关于y轴对称,确定k2再求n;(2)先设出函数表达式,再代入A、B两点,得直线AB的表达式;(3)过点A、B作x轴的平行线,过点C、B作y轴的平行线构造矩形,△ABC 的面积=矩形面积﹣3个直角三角形的面积.【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,∴k1=1×4=4,∴m×4=k1=4,∴m=1∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y 轴对称.∴k2=﹣k1=﹣4∴﹣2×n=﹣4,∴n=2(2)设直线AB所在的直线表达式为y=kx+b把A(1,4),B(4,1)代入,得解得∴AB所在直线的表达式为:y=﹣x+5(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG∴S△ABC=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC 得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;。
2018年山东聊城中考数学试题及答案

【导语】将在本次⼭东聊城中考过后,考后发布2018年⼭东聊城中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。
因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。
视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。
中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。
因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。
参加2018中考的考⽣可直接查阅2018年⼭东聊城中考试题及答案信息!—→以下是⼭东聊城2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取聊城2018年中考成绩、2018年中考录取分数线信息,为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。
2018年山东省聊城市中考数学真题及参考答案

山东省聊城市二○一八年初中学业考试暨高中阶段统一招生考试数学试卷注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。
2.答第Ⅰ卷时,必须使用2B 铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。
3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。
务必在题号所指示的答题区域内作答。
一、选择题(本大题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求)1.下列实数中的无理数是( )A B D .227 2.如图所示的几何体,它的左视图是( )A .B .C .D .3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )A .81.2510⨯亿次/秒B .91.2510⨯亿次/秒C .101.2510⨯亿次/秒 D. 812.510⨯亿次/秒4.如图,直线//AB EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=,25CDE ∠=,则DEF ∠的度数是( )A .110B .115C .120D .1255.下列计算错误的是( )A .2024a a a a ÷⋅=B .202()1a a a ÷⋅=C .87( 1.5)( 1.5) 1.5-÷-=-D .871.5( 1.5) 1.5-÷-=-6.已知不等式2241232x x x ---≤<,其解集在数轴上表示正确的是( )A .B .C .D .7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=,85ADC ∠=,则C ∠的度数是( )A .25B .27.5C .30D .358.下列计算正确的是( )A .==C .==9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12B .13C .23D .1610.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .912(,)55-B .129(,)55-C .1612(,)55-D .1216(,)55- 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 .14.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .15.用一块圆心角为216的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等.[]1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+. ①,利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 .三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)18.先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-. 19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a =________,b =________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH AE ⊥,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE BF =.(2)若正方形边长是5,2BE =,求AF 的长.21.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB ,BD 分别表示大棚的墙高和跨度,AC 表示保温板的长.已知墙高AB 为2米,墙面与保温板所成的角150BAC ∠=,在点D 处测得A 点、C 点的仰角分别为9,15.6,如图2.求保温板AC 的长是多少米?(精确到0.1米)0.86≈,sin 90.16≈,cos90.99≈,tan 90.16≈,sin15.60.27≈,cos15.60.96≈,tan15.60.28≈.)23.如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)k y x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)k y x x=>图象上的两点,连接AB ,点(2,)C n -是函数2(0)k y x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式;(3)求ABC ∆的面积.24.如图,在Rt ABC ∆中,90C ∠=,BE 平分ABC ∠交AC 于点E ,作E D E B ⊥交AB 于点D ,O 是BED ∆的外接圆.(1)求证:AC 是O 的切线;(2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.25.如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l 交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t ≤≤.(1)求出这条抛物线的表达式;(2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t ≤≤的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?。
山东省聊城市中考数学试题(解析)

2018 年山东省聊城市中考数学试卷一、选择题(本题共12 小题,每题 3 分,共 36 分)1.( 2018?聊城)计算 |﹣|﹣的结果是()A.﹣B.C.﹣ 1D.12.( 2018?聊城)下列计算正确的是()235236235532A . x+x =xB .x ?x =x C.( x) =x D .x ÷x =x3.( 2018?聊城)“抛一枚均匀硬币,落地后正面朝上”这一事件是()A .必然事件B.随机事件C.确定事件 D .不可能事件4.( 2018?聊城)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.5.( 2018?聊城)函数y=中自变量x 的取值范围是()A . x> 2B .x< 2C. x≠2D. x≥26.( 2018?聊城)将一副三角板按如图所示摆放,图中∠α的度数是()A . 75°B. 90°C. 105° D . 120°7.( 2018?聊城)某排球队 12 名队员的年龄如下表所示:年龄 /岁1819202122人数 /人14322该队队员年龄的众数与中位数分别是()A.19 岁, 19 岁B.19 岁, 20岁C.20 岁, 20 岁D.20岁, 22 岁8.( 2018?聊城)如图,四边形ABCD 是平行四边形,点 E 在边 BC 上,如果点 F 是边AD 上的点,那么△ CDF与△ ABE不一定全等的条件是()A . DF=BEB .AF=CE C. CF=AE D. CF∥ AE9.( 2018?聊城)如图,在方格纸中,△ ABC经过变换得到△ DEF,正确的变换是()A .把△ ABC 绕点 C 逆时针方向旋转顺时针方向旋转 90°,再向下平移 5 格方向旋转 180° D.把△ ABC 向下平移90°,再向下平移 2 格B.把△ ABC 绕点 C C.把△ABC 向下平移 4 格,再绕点 C 逆时针5 格,再绕点 C 顺时针方向旋转180°10.( 2018?聊城)在如图所示的数轴上,点 B 与点 C 关于点 A 对称, A 、 B 两点对应的实数分别是和﹣ 1,则点 C 所对应的实数是()A.1+B.2+C.2﹣1D.2+111.( 2018?聊城)如图,在△ ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A . BC=2DE B.△ ADE ∽△ ABC C.=D. S△ABC =3S△ADE12.( 2018?聊城)如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次为 1, 2, 3, 4,,同心圆与直线y=x 和 y= ﹣ x 分别交于 A 1, A 2, A 3, A4,则点 A 30的坐标是()A .( 30, 30)B.(﹣ 8,8)C.(﹣ 4, 4)D.(4,﹣4 )二、填空题(本题共 5 个小题,每小题3分,共 15 分)13.( 2018?聊城)一元二次方程 x 2﹣ 2x=0 的解是_________.14.( 2018?淮安)在半径为 6cm 的圆中, 60°的圆心角所对的弧长等于_________cm (结果保留π).15.( 2018 ?聊城)计算:= _________.16.( 2018?聊城)我市初中毕业男生体育测试工程有四项,其中“立定跳远”“1000M跑”“肺活量测试”为必测工程,另一项“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试工程的概率是_________.17.( 2018?聊城)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与 x 轴平行,点P( 3a, a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解读式为_________.三、解答题(本题共 8 小题,除第24 题 10 分, 25 题 12 分,其余每小题7 分)18.( 2018?聊城)解不等式组.19.( 2018?聊城)如图,矩形ABCD 的对角线相交于点O,DE∥ AC , CE∥ BD .求证:四边形OCED 是菱形.20.( 2018?聊城)为进一步加强中小学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容,为此,某县教育组管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0~ 4.2150.054.3~ 4.5450.154.6~ 4.81050.354.9~5.1a0.255.2~ 5.460b请根据图表信息回答下列问题:(1)求表中a、 b 的值,并将频数分布直方图补充完整;(2)若视力在 4.9 以上(含 4.9)均属正常,估计该县 5600 名初中毕业生视力正常的学生有多少人?21.( 2018?聊城)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打 8 折优惠,能比标价省13.2 元.已知书包标价比文具盒标价 3 倍少 6 元,那么书包和文具盒的标价各是多少元?22.( 2018?聊城)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P 处观看小亮与爸爸在湖中划船(如图).小船从P 处出发,沿北偏东60°划行 200M 到达 A 处,接着向正南方向划行一段时间到达 B 处.在 B 处小亮观测妈妈所在的P 处在北偏西37°方向上,这时小亮与妈妈相距多少M (精确到M )?(参考数据:sin37 °≈0.60, cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23.( 2018?聊城)如图,直线AB 与 x 轴交于点 A ( 1, 0),与 y 轴交于点 B( 0,﹣2).(1)求直线 AB 的解读式;(2)若直线 AB 上的点 C 在第一象限,且S△BOC=2,求点 C 的坐标.24.( 2018?聊城)如图,⊙O 是△ABC 的外接圆, AB=AC=10 , BC=12 , P 是上的一个动点,过点P 作 BC 的平行线交AB 的延长线于点 D .(1)当点 P 在什么位置时,DP 是⊙ O 的切线?请说明理由;(2)当 DP 为⊙ O 的切线时,求线段DP 的长.25.( 2018?聊城)某电子厂商投产一种新型电子厂品,每件制造成本为18 元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣ 2x+100.(利润 =售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32 元,如果厂商要获得每月不低于 350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?2018 年山东省聊城市中考数学试卷参考答案与试卷解读一、选择题(本题共12 小题,每题 3 分,共 36 分)1.( 2018?聊城)计算 |﹣ |﹣的结果是()A .﹣B .C .﹣ 1D .1考 有理数的减法;绝对值。
2018年山东省聊城市中考数学试卷(解析版)

2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.56.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k 的值是.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42a1533b解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N 位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t (0≤t≤5)(1)求出这条抛物线的表达式;的值;(2)当t=0时,求S△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?2018年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k 的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是50cm.【分析】设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.【解答】解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是540°或360°或180°.【分析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42a1533b解答下列问题:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a=39,b=21;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【分析】(1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)【分析】作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【分析】(1)先由点A确定k,再求m的值,根据关于y轴对称,确定k2再求n;(2)先设出函数表达式,再代入A、B两点,得直线AB的表达式;(3)过点A、B作x轴的平行线,过点C、B作y轴的平行线构造矩形,△ABC 的面积=矩形面积﹣3个直角三角形的面积.【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,∴k1=1×4=4,∴m×4=k1=4,∴m=1∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y 轴对称.∴k2=﹣k1=﹣4∴﹣2×n=﹣4,∴n=2(2)设直线AB所在的直线表达式为y=kx+b把A(1,4),B(4,1)代入,得解得∴AB所在直线的表达式为:y=﹣x+5(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3∴S△ABC =S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC 得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;。
2018年山东聊城中考真题数学

2018年山东省聊城市中考真题数学一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列实数中的无理数是( )C.2D.227解析:分别根据无理数、有理数的定义即可判定选择项=1.1,227是无理数.答案:C2.如图所示的几何体,它的左视图是( )A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线. 答案:D3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为( )A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.12.5亿亿次/秒=1.25×109亿次/秒.答案:B4.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( )A.110°B.115°C.120°D.125°解析:直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.答案:C5.下列计算错误的是( )A.a2÷a0·a2=a4B.a2÷(a0·a2)=1C.(-1.5)8÷(-1.5)7=-1.5D.-1.58÷(-1.5)7=-1.5解析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.∵a2÷a0·a2=a4,∴选项A不符合题意;∵a2÷(a0·a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.答案:D6.已知不等式2241232---≤<x x x,其解集在数轴上表示正确的是( )A.B.C.D.解析:把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.根据题意得:2242324132--⎧≤⎪⎪⎨--⎪⎪⎩①<②x xx x,由①得:x≥2,由②得:x<5,∴2≤x<5.表示在数轴上,如图所示:答案:A7.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是( )A.25°B.27.5°C.30°D.35°解析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°.答案:D8.下列计算正确的是( )A.==C.==解析:根据二次根式的加减乘除运算法则逐一计算可得.A、-B===C、(5=÷,此选项错误;D==,此选项错误.答案:B9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.1 2B.1 3C.2 3D.1 6解析:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率21 63 =.答案:B10.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°-α-β解析:如图所示:由折叠得:∠A=∠A′,根据三角形的外角得:∠BDA′=∠A+∠AFD,∠AFD=∠A′+∠CEA′,∵∠A=α,∠CEA′=β,∠BDA′=γ,∴∠BDA′=γ=α+α+β=2α+β.答案:A11.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )A.(95-,125)B.(125-,95)C.(165-,125)D.(125-,165)解析:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=35±(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(95-,125).答案:A12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内解析:利用图中信息一一判断即可;A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意.答案:C二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.已知关于x 的方程(k-1)x 2-2kx+k-3=0有两个相等的实根,则k 的值是 .解析:∵关于x 的方程(k-1)x 2-2kx+k-3=0有两个相等的实根,∴()()()21024130-≠⎧⎪⎨=----=⎪⎩V k k k k , 解得:k=34. 答案:3414.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .解析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒, ∴P(红灯亮)303032254==++.答案:2515.用一块圆心角为216°的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm. 解析:设这个扇形铁皮的半径为Rcm , 圆锥的底面圆的半径为rcm , 根据题意得2162180ππ=g g R r ,解得r=35R ,因为402+(35R)2=R 2,解得R=50. 所以这个扇形铁皮的半径为50cm. 答案:5016.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 . 解析:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解. n 边形的内角和是(n-2)·180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°;所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°;所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°. 因而所成的新多边形的内角和是540°或360°或180°. 答案:540°或360°或180°17.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x-1的所有解,其所有解为 .解析:∵对任意的实数x 都满足不等式[x]≤x <[x]+1,[x]=2x-1, ∴2x-1≤x <2x-1+1, 解得,0<x ≤1, ∵2x-1是整数, ∴x=0.5或x=1. 答案:x=0.5或x=1三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:211122-⎛⎫-÷- ⎪+++⎝⎭a a a a a a a a ,其中12=-a . 解析:首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.答案:原式()()211122⎡⎤-=-÷-⎢⎥+++⎣⎦a a a a a a a a a()21112--=-÷++a a a a a a a ()()()11112+--=-÷++a a a a a a a a ()()()21111+-=-++-g a a a a a a a a 211+=-++a a a a 21=-+a 当12=-a 时,原式24112=-=--+.19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是 .解析:(1)直接利用样本的定义分析得出答案.答案:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况.故答案为:时代中学学生最喜欢的一种球类运动情况.(2)统计表中,a= ,b= .解析:(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值.∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150-39-42-15-33=21(人).答案:(2)39;21(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.解析:(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.答案:(3)最喜欢乒乓球运动的人数为:1200×42150=336(人).20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.解析:(1)根据ASA 证明△ABE ≌△BCF ,可得结论. 答案:(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABE=∠BCF=90°, ∴∠BAE+∠AEB=90°, ∵BH ⊥AE , ∴∠BHE=90°,∴∠AEB+∠EBH=90°, ∴∠BAE=∠EBH , 在△ABE 和△BCF 中,∠=∠⎧⎪=⎨⎪∠=∠⎩BAE CBF AB BCABE BCF , ∴△ABE ≌△BCF(ASA), ∴AE=BF.(2)若正方形边长是5,BE=2,求AF 的长.解析:(2)根据(1)得:△ABE ≌△BCF ,则CF=BE=2,最后利用勾股定理可得AF 的长. 答案:(2)∵AB=BC=5, 由(1)得:△ABE ≌△BCF , ∴CF=BE=2, ∴DF=5-2=3,∵四边形ABCD 是正方形, ∴AB=AD=5,∠ADF=90°,由勾股定理得:====AF21.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?解析:(1)设甲队原计划平均每天的施工土方量为x 万立方,乙队原计划平均每天的施工土方量为y 万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.答案:(1)设甲队原计划平均每天的施工土方量为x 万立方,乙队原计划平均每天的施工土方量为y 万立方, 根据题意得:()()15012011040110103.2+=⎧⎪⎨++=⎪⎩x y x y ,解得:0.420.38=⎧⎨=⎩xy.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?解析:(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.答案:(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.22.随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)解析:作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、x,在Rt△ABD中由AB=EF=2知BD=2tan9︒,DE=BD-BE=2tan9︒-x,x,根据tan∠CDE=CEDE列出关于x的方程,解之可得.答案:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF 是矩形, ∴AB=EF 、AF=BE , 设AF=x ,∵∠BAC=150°、∠BAF=90°, ∴∠CAF=60°, 则AC=cos ∠AFCAF=2x 、CF=AFtan ∠,在Rt △ABD 中,∵AB=EF=2,∠ADB=9°,∴BD 2tan tan 9==∠︒AB ADB , 则DE=BD-BE=2tan 9︒-x ,x ,在Rt △CDE 中,∵tan ∠CDE=CEDE,∴tan15.6°=22ta 9n +-︒x ,解得:x ≈0.75, AC=1.5米,即保温板AC 的长是1.5米.23.如图,已知反比例函数1=k y x (x >0)的图象与反比例函数2=ky x(x <0)的图象关于y 轴对称,A(1,4),B(4,m)是函数1=ky x(x >0)图象上的两点,连接AB ,点C(-2,n)是函数2=ky x(x <0)图象上的一点,连接AC ,BC.(1)求m ,n 的值.解析:(1)先由点A 确定k ,再求m 的值,根据关于y 轴对称,确定k 2再求n. 答案:(1)因为点A 、点B 在反比例函数1=k y x(x >0)的图象上, ∴k 1=1×4=4, ∴m ×4=k 1=4, ∴m=1∵反比例函数1=k y x (x >0)的图象与反比例函数2=ky x(x <0)的图象关于y 轴对称. ∴k 2=-k 1=-4∴-2×n=-4, ∴n=2.(2)求AB 所在直线的表达式.解析:(2)先设出函数表达式,再代入A 、B 两点,得直线AB 的表达式. 答案:(2)设直线AB 所在的直线表达式为y=kx+b 把A(1,4),B(4,1)代入,得414=+⎧⎨=+⎩k bk b,解得15=-⎧⎨=⎩k b ,∴AB 所在直线的表达式为:y=-x+5.(3)求△ABC 的面积.解析:(3)过点A 、B 作x 轴的平行线,过点C 、B 作y 轴的平行线构造矩形,△ABC 的面积=矩形面积-3个直角三角形的面积.答案:(3)如图所示:过点A 、B 作x 轴的平行线,过点C 、B 作y 轴的平行线,它们的交点分别是E 、F 、B 、G.∴四边形EFBG 是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3 ∴=---V V V V 矩形ABC AFB AEC CBG EFBG S S S S S918332151122212=⨯-⨯-⨯-⨯=---=BG EG AF FB AE EC BG CG24.如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,作ED ⊥EB 交AB 于点D ,⊙O 是△BED 的外接圆.(1)求证:AC 是⊙O 的切线. 解析:(1)连接OE ,由OB=OE 知∠OBE=∠OEB 、由BE 平分∠ABC 知∠OBE=∠CBE ,据此得∠OEB=∠CBE ,从而得出OE ∥BC ,进一步即可得证. 答案:(1)如图,连接OE ,∵OB=OE ,∴∠OBE=∠OEB , ∵BE 平分∠ABC , ∴∠OBE=∠CBE , ∴∠OEB=∠CBE , ∴OE ∥BC , 又∵∠C=90°,∴∠AEO=90°,即OE ⊥AC , ∴AC 为⊙O 的切线.(2)已知⊙O 的半径为2.5,BE=4,求BC ,AD 的长. 解析:(2)证△BDE ∽△BEC 得=BD BEBE BC,据此可求得BC 的长度,再证△AOE ∽△ABC 得=AO OEAB BC,据此可得AD 的长.答案:(2)∵ED ⊥BE , ∴∠BED=∠C=90°, 又∵∠DBE=∠EBC , ∴△BDE ∽△BEC ,∴=BD BE BE BC ,即544=BC , ∴BC=165;∵∠AEO=∠C=90°,∠A=∠A , ∴△AOE ∽△ABC ,∴=AO OE AB BC ,即 2.5 2.51655+=+AD AD , 解得:AD=457.25.如图,已知抛物线y=ax 2+bx 与x 轴分别交于原点O 和点F(10,0),与对称轴l 交于点E(5,5).矩形ABCD 的边AB 在x 轴正半轴上,且AB=1,边AD ,BC 与抛物线分别交于点M ,N.当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S.将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为t(0≤t ≤5).(1)求出这条抛物线的表达式.解析:(1)根据点E 、F 的坐标,利用待定系数法即可求出抛物线的表达式.答案:(1)将E(5,5)、F(10,0)代入y=ax 2+bx ,2555100100+=⎧⎨+=⎩a b a b ,解得:152⎧=-⎪⎨⎪=⎩a b , ∴抛物线的表达式为2125=-+y x x .(2)当t=0时,求S △OBN 的值.解析:(2)找出当t=0时,点B 、N 的坐标,进而可得出OB 、BN 的长度,再根据三角形的面积公式可求出S △OBN 的值.答案:(2)当t=0时,点B 的坐标为(1,0),点N 的坐标为(1,95), ∴BN=95,OB=1, ∴12910==V g OBN S BN OB .(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于t(0<t ≤5)的函数表达式,并求出t 为何值时S 有最大值,最大值是多少?解析:(3)分0<t ≤4和4<t ≤5两种情况考虑:①当0<t ≤4时(图1),找出点A 、B 、M 、N 的坐标,进而可得出AM 、BN 的长度,利用梯形的面积公式即可找出S 关于t 的函数关系式,再利用二次函数的性质即可求出S 的最大值;②当4<t ≤5时,找出点A 、B 、M 、N 的坐标,进而可得出AM 、BN 的长度,将五边形分成两个梯形,利用梯形的面积公式即可找出S 关于t 的函数关系式,再利用二次函数的性质即可求出S 的最大值.将①②中的S 的最大值进行比较,即可得出结论.答案:(3)①当0<t ≤4时(图1),点A 的坐标为(t ,0),点B 的坐标为(t+1,0), ∴点M 的坐标为(t ,2125-+t t ),点N 的坐标为(t+1,()()211215-+++t t ), ∴AM=2125-+t t ,BN=()()211215-+++t t , ∴()()()221121122121155⎡⎤==⨯-+-+++⨯⎢⎥+⎣⎦g S t t t t AM BN AB 22199199955105220⎛⎫=-++=--+ ⎪⎝⎭t t t ,∵15-<0,∴当t=4时,S 取最大值,最大值为4910; ②当4<t ≤5时(图2),点A 的坐标为(t ,0),点B 的坐标为(t+1,0), ∴点M 的坐标为(t ,2125-+t t ),点N 的坐标为(t+1,()()211215-+++t t ), ∴AM=2125-+t t ,BN=()()211215-+++t t ,∴()()1122+=++g g AM EF AF BN EF S BF()()()()2232322211251215551112213635255555532711101110103919515221911022024-++-++++⎛⎫⎛⎫=-+++-++- ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭=-+-⎛⎫=--+ ⎪=-++- ⎪ ⎪⎝⎝⎭⎭⎝⎭t t t t t t t t t t t t t t t∵310-<0,∴当t=92时,S 取最大值,最大值为19940.∵49196199104040=<, ∴当t=92时,S 有最大值,最大值是19940.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.56.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k 的值是.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N 位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t (0≤t≤5)(1)求出这条抛物线的表达式;的值;(2)当t=0时,求S△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?2018年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是50cm.【分析】设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.【解答】解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是540°或360°或180°.【分析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a=39,b=21;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【分析】(1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)【分析】作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【分析】(1)先由点A确定k,再求m的值,根据关于y轴对称,确定k2再求n;(2)先设出函数表达式,再代入A、B两点,得直线AB的表达式;(3)过点A、B作x轴的平行线,过点C、B作y轴的平行线构造矩形,△ABC 的面积=矩形面积﹣3个直角三角形的面积.【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,∴k1=1×4=4,∴m×4=k1=4,∴m=1∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y 轴对称.∴k2=﹣k1=﹣4∴﹣2×n=﹣4,∴n=2(2)设直线AB所在的直线表达式为y=kx+b把A(1,4),B(4,1)代入,得解得∴AB所在直线的表达式为:y=﹣x+5(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG∴S△ABC=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC 得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;。