计算方法第三章(插值法)资料.
插 值 法(3)

第三章 插 值 法在观察或总结某些现象时,往往会发现所关心变量之间存在着某种联系,但是这种联一般很难用解析式表达。
有时即便找出了其解析表达式,由于表达式过于复杂,使用或计算起来也可能十分困难。
于是就想到能否用形式比较简单的函数去近似原来很困难得到或应用起来不便的函数。
本章所讨论的插值法就是函数近似表达的一种方法。
这里介绍的插值方法本身也是以后介绍的方法如:数值积分,数值微分,以及微分方程的数值解的基础。
本章主要介绍插值函数的构造,误差估计及简单介绍方法的收敛性和稳定性。
§1.插值的基本概念插值定义:设f(x)为定义在[a,b]上的函数,n 10x ,,x ,x 为[a,b ]上n+1个互不相同的点,Y为给定的某一个函数类,若Y上有函数y(x),满足:n ,,2,1,0i ),x (f )x (y i i ==(3—1)则称y(x)为f(x)关于节点n 10x ,,x ,x 在Y上的插值函数,点n 10x ,,x ,x 称为插值节点,f(x)称为被插值函数。
包含插值节点的区间[a,b]称为插值区间,条件(3—1)称为插值条件。
关于函数插值,我们要回答以下几个问题:(1)给定了被插函数(即f(x)),插值节点n 10x ,,x ,x 及插值函数类Y,那么满足插值条件的插值函数是否存在?若存在,是否唯一?即插值的存在性与唯一性问题。
(2)如若插值函数存在唯一,如何构造插值函数?即采用何种插值方法问题。
(3)y(x)作为f(x)的近似函数,存在误差R(x)=f(x)-y(x)。
如何估计其误差?当不斯地增加插值节点,那么插值函数列是否收敛被插函数。
现在首先回答第一个问题:由于我们这里介绍的插值函数类Y是多项式类。
故要求插值函数是多项式的情况下,来回答存在性与唯一性问题。
定理:设)x (M n 表示次数不超过n 次的多项式的全体,则满足插值条件(3—1)的,属于函数类Y=)x (M n 的插值多项y(x)存在且唯一。
数值计算方法 第3章复习

1 第3章 插值法与数据拟合一、考核知识点拉格朗日插值法及其余项、牛顿插值、最小二乘法、超定方程组。
二、考核要求:1.熟练掌握拉格朗日插值法及其余项。
2.掌握牛顿插值。
3.了解最小二乘法的基本思想,熟练掌握求最小二乘多项式与超定方程组最小二乘解的方法。
三、重、难点分析例1 已知,3)9(,2)4(==f f 用线性插值计算)5(f ,并估计误差。
解 取插值节点x 0= 4,x 1= 9,两个插值基函数分别为)9(51)(1010--=--=x x x x x x l )4(51)(0101-=--=x x x x x x l 故有 565)4(53)9(52)()()(11001+=-+--=+=x x x y x l y x l x L 2.25655)5()5(1=+=≈L f 误差为 )(2)95)(45(!2)()5(2ξξf f R ''-=--''=例2 求过点(0,1)、(1,2)、(2,3)的三点插值多项式。
解:由Lagrange 插值公式又0120120,1,2;1,2,3x x x y y y ======故例3已知f(0)=8, f(1)= -7.5, f(2)= -18;用牛顿插值法求f(x)在[0,2]之间的近似零点。
0201122012010210122021()()()()()()()()()()()()()x x x x x x x x x x x x L x y y y x x x x x x x x x x x x ------=++------2(1)(2)(0)(2)(0)(1)()123(01)(02)(10)(12)(20)(21)1x x x x x x L xx ------=⨯+⨯+⨯------=+2例4求下列超定方程组的最小二乘解。
⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x1 解 令 ⎪⎩⎪⎨⎧--=-+=-+=2724213212211x x u x x u x x u23222121u u u x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x 由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ得法方程组 ⎩⎨⎧=+=+166213232121x x x x解得 7231=x 7112=x所以最小二乘解为 7231=x 7112=x2 解 方程组写成矩阵形式为 正规方程组为即解得12114127112x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦12114111111127121121112x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦1232132616x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦122311,77x x ==。
数值分析-计算方法-插值a

500 5
18
解: n = 1 分别利用x0, x1 以及 x1, x2 计算
x0
x1
x2
利用
x0 6 , x1 4
L 1 (x ) x /6 /4 /4 1 2 x /4 /6 /6 1 2
sin
而
50 0
Lf1内要( (5端1x 8插计)点 ) 通算s,0 常的i.x 7插n 7 优x6值12 2 所于4效,在外果R 1 的推(x 较) 区。f 好(f x 间选)2 ( 。 ! 的择x s )(x ix ,n 6 f)x (( x 4 )) 4 s 2 |( ix x n , 6 )x x ( ( 4 6 )|, 4)
Ln ( xi ) yi , i 0, ... , n
条件:无重合节点,即 i j xi xj
n=1
线性插值
已称知为x拉0 氏, x基1 ;函y0数, y1/*,La求graL n1 g(exB)asa is0 */,a1x 使得
L满1( 足x0 )条 件y0 l,i(Lx1j)(=x1 )ij/*yK1 ronecker Delta */
f(x)L (x) n
f ( ) (n1)
ni
i
项式是唯一存在的。
证明: 由插值条件可知,插值多项式Ln(x)的系数ai满足线性
方程组
1
x 0
xn 0
a0
y 0
1
x 1
xn 1
a1
y 1
1
x n
计算方法第三章(插值法)解答

Aitken(埃特肯)算法 N 0,1,,k , p ( x) L( x) N 0,1,,k ( x)
N 0,1,,k 1, p ( x) N 0,1,,k ( x) x p xk
Neville(列维尔)算法
( x xk )
Ni ,i 1,,k ( x) L( x) Ni ,i 1,,k 1 ( x) Ni 1,i 2,k ( x) Ni ,i 1,,k 1 ( x) xk xi ( x xi )
( x0 , y0 ), ( x1 , y1 )
容易求出,该函数为:
x x0 x x1 y y0 y1 x0 x1 x1 x0
一般插值问题:求过n+1个点
( x0 , y0 ), ( x1 , y1 ),,( xn , yn )
的不超过n次多项式 Ln ( x )。
Ln ( x) yi li ( x )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根 思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则 根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi , i 0,1,, n,
即提供了一张数据表
x
y f x
x0
y0
x1
y1
x2
xn
y2
插值法(拉格朗日插值)讲解

因此, Pn(x)在点x0邻近会很好的逼近f(x).
Taylor展开方法就是一种插值方法.
泰勒插值要求提供 f(x) 在点x0处的各阶导数,这仅 仅适用于 f(x) 相当简单的情况.
§1.2 Lagrange插值
• 设函数y = f(x)在区间[a,b]上有定义,且给 出一系列点上的函数值yi=f(xi) (i=0,1,2,…,n), 求作n次多项式pn(x) 使得
定理 (插值多项式的存在唯一性) 满足 P( xi ) yi , i 0, ... , n
的 n 阶插值多项式是唯一存在的。
证明: ( 利用Vandermonde 行列式论证)
a0 a1x0 ... an x0n y0 a0 a1x1 ... an x1n y1 ...
1 xj)
j0
li ( x)
n ji
(x xj) (xi x j )
j0
n
Ln ( x) li ( x) yi i0
插值余项 /* Remainder */
用简单的插值函数L n(x)代替原复杂函数f(x),其 精度取决于截断误差,即插值余项.
设节点 a x0 x1 xn b ,且 f 满足条件 f C n[a,b] , f (n1)在[a , b]内存在, 考察截断误差 Rn( x) f ( x) Ln( x)
Rn(x)
f (n1) ( )
(n 1) !
n
(x xi )
i0
即Rn (x)
f (n1) ( )
(n 1)!
(
x
x0
)(
x
x1
)(
x
插值法的最简单计算公式

插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。
在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。
插值法的最简单计算公式是线性插值法。
线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。
其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。
通过这个线性插值公式,可以方便地计算出中间未知点的值。
举一个简单的例子来说明线性插值法的应用。
假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。
根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。
通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。
除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。
在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。
在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。
通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。
插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。
通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。
数值计算方法( 三次样条插值)

u xj hj
分段三次Hermite插值算法
则 v A1 y j 1 A2 y j B1 f j1 B2 f j
算法: 1.输入x j , f j , f j (j 0,1,...,n); 2.计算插值 (1)输入插值点u; (2)对于j 1,2,...,n做 如果u x j 则计算A1 , A2 , B1 , B2 ; v A1 f j 1 A2 f j B1 f j1 B2 f j; 3.输出u , v。
三次样条插值
于是由Taylor展示有 s( x) s( xi ) s( xi )(x xi ) s( xi ) s( xi ) 2 ( x xi ) ( x xi )3 2! 3! M M Mi yi s( xi )(x x j ) i ( x xi ) 2 i 1 ( x xi )3 2! 3!( xi 1 xi )
2M 0 M 1 6 f [ x0 , x0 , x1 ]
三次样条插值
同理(2)式中令i n得 M n 1 2M n 6 f [ xn 1 , xn , xn ] 即有 2M 0 M 1 6 f [ x0 , x0 , x1 ] ) i M i 1 2M i i M i 1 6 f [ xi 1 , xi , xi 1 ] (i 1,2,...,n 1 M 2M 6 f [ x , x , x ] n n 1 n n n 1
三次样条插值
对于待定系数a j , b j , c j .d j j 1,2,...n,即4n个未知系数,
而插值条件为 n 2个,还缺两个,因此须 4 给出两个 条件称为边界条件,有 以下三类: 第一类 已知两端点的一阶导数 s( x0 ) f ( x0 ) m0 s( xn ) f ( xn ) mn
数值计算方法插值法资料

一次插值
当n 1时,求一次多项式P1(x),要求通过 x0, y0 , x1, y1
两点
y
y0 x0
y1 x1
P1(x) f(x)
二次插值
当n 2时,求二次多项式P2 (x),要求通过 x0, y0 , x1, y1 , x2, y2 三点
y
f(x)
y0 x0
y1 x1
y2 x2
P1(x)
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)
yk
yk 1 xk 1
yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P1(x)
x xk1 xk xk 1
yk
x xk xk 1 xk
yk
,
1
记l k (x)
x xk1 xk xk 1
, lk1(x)
l
0 ( x)
x 20 10 20
1 10
(x
20),l1 ( x)
x 10 20 10
1 10
(x
10)
例子
于是,拉格朗日型一次插值多项式为:
P1 ( x)
y0l0 (x)
y1l1 ( x)
1 10
(x
20)
1.3010 10
(x
10)
故P1
(12)
1 10
(12
20)
1.3010 10
(12
决定
1
例子
例1:已知lg10 1 , lg 20 1.3010,利用插值一次 多项式求 lg12的近似值。 解:f (x) lg x,f (x) lg x,f (10) 1,f (20) 1.3010 设x0 10,x1 20,y0 1,y1 1.3010, 则插值基本多项式为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将φ(x)作为 f (x) 在一定范围内的近似函数,对于 这个范围内的某个给定点a,取 f (a)≈ φ(a)。这种
近似方法称为插值法。φ(x)称为 f (x)的以{xi}
(i=0,1,···,n)为插值节点的插值函数。插值节点上 所给的函数值称为样本值。
(x xi1)(x xi1) (xi xi1)(xi xi1)
(x xn ) (xi xn )
求过n+1个点的不超过n次多项式的插值多项 式是唯一的。 插值公式的误差为:
Rn (x)
f (x) Ln (x)
f
( ( n 1) x
(n 1)!
)
(
x
x0
)(
x
x1
)
(x xn )
M n1
,k (x) Ni,i1, xk xi
,k1(x) (x xi )
Aitken(埃特肯)算法
x0 N0 x1 N1 N0,1(x) x2 N2 N0,2 (x) N0,1,2 (x) x3 N3 N0,3 (x) N0,1,3 (x) N0,1,2,3 (x)
Neville(列维尔)算法
x0 N0 x1 N1 N0,1(x) x2 N2 N1,2 (x) N0,1,2 (x) x3 N3 N2,3 (x) N1,2,3 (x) N0,1,2,3 (x)
(x xm )rm
r0 r1 rm n 1
在x0, x1, , xm之间,与x有关
证明思路:构造辅助函数,用罗尔定理。
P3(x0 ) y0, P3(x0 ) y0 , P3(x1) y1, P3(x2) y2
R3(x) f (x) P3(x)
1 4!
f
(4) (
)( x
x0 )2 (x
x1 )( x
x2 )
g(t) f (t) P3(t) (t x0 )2(t x1)(t x2) [ f (t) P3(t)]/(x x0 )2 (x x1)(x x2 )
值得注意的是在较大区间上进行插值时,误差可能会 很大!另外,一般情况下,外推不如内插好!
第二节 Lagrange插值公式
插值条件是
(x0, y0),(x1, y1),
,(xn, yn)
Lagrange插值实质上是求通过上面 n+1 个点的 n 次多项式。
一次插值: 问题为求一次多项式,即一次函数,过以下 两点:
(x0, y0 ), (x1, y1)
容易求出,该函数为:
y
x x1 x0 x1
y0
x x0 x1 x0
定理:给定上述n+1个插值条件,则n次插值 多项式是存在唯一的。
设函数 y = f (x) 在闭区间 [a , b ]上有n + 1 阶导数, 满足前面的一般插值条件,且插值节点各不相同,
则插值截断误差为
Rn (x)
f
(x) Pn (x)
1 (n 1)!
f
(n1) ( ) n (x)
n (x) (x x0 )r0 (x x1)r1
Aitken(埃特肯)算法
N0,1,
,k, p (x) L(x) N0,1, ,k (x)
N0,1,
,k 1, p (x) N0,1, xp xk
,k (x) (x xk )
Neville(列维尔)算法
N i ,i 1,
,k (x) L(x) Ni,i1, ,k1(x)
Ni1,i2
节点处函数的导数值,称为埃尔米特插值。
因式定理:多项式P(x)具有r 次因式 (x-a)r 的 充
要条件是 P(a) P(a) P(r1) (a) 0
最一般(x的i ) 插 y值i ,条(件xi ): yi,
, (ri 1) ( xi )
y(ri 1) i
xi ri
是 r0 重 r插1 值节点,rm n 1
第三节 逐次线性插值
函数 y = f (x)在节点 xi , x j ,
式记为 Ni, j, ,k (x) ,则有
, xk 上的插值多项
Ni, j,
,k,p,q (x) L(x) Ni, j, ,k,p (x)
Ni, j,
,k,q (x) Ni, j, xq xp
,k,p (x) (x xp )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根
思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则
根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi ,i 0,1, , n,
即提供了一张数据表
x
x0 x1
x2
xn
y f x y0 y1 y2
yn
如何利用这张表求 f (x) 在其他给定点上的合 理的近似值呢?
在实验数据的处理、难以计算的函数的逼近、 数值微积分等方面需要解决这样的问题,这是 数值逼近中的一个基本问题。一个自然的想法 是找一个简单易计算的函数φ(x),使得
φ(xi)=yi 称为插值条件。函数值待求的点称为插值 点。插值节点所界定的范围称为插值区间。如
果所给插值点位于插值区间之内,这种插值过程 称为内插,否则称为外插。
若用多项式来作为插值函数,则称其为插值
多项式。通常用 n 次多项式作为n+1个插值条件 的插值多项式。如果插值条件只是给出节点的函
数值,称为拉格朗日插值,如果既有函数值也有
y1
一般插值问题:求过n+1个点
(x0, y0 ), (x1, y1), ,(xn, yn )
的不超过n次多项式 Ln (x)。
n
Ln (x) yi li (x) i0
li (x)称为Lagrange插值基函数,满足:
li (x j )
ij
,
ij
1 0
, ,
i j i j
li
(
x)
(x x0 ) (xi x0 )
max
x[ a ,b ]
f (n1) (x)
Rn (x)
M n1 (n 1)!
(x
x0 )(x
x1)
(x xn )
计算程序 框图
始 输入数据 x 及
xi , yi ,i 0,1, , n
y 0,i 0
计算权系数 i 存单元 中
y y yi
=
i i 1
i n?
终
Lagrange 公式的计算流程