电力系统正序、负序、零序网络画法

合集下载

正序,负序和零序的介绍 PPT课件

正序,负序和零序的介绍 PPT课件

0
0
0
0 zs 2zm
6
UUaa((12))
zs
0
zm
0 zs zm
0 0

IIaa((12))
z(1) 0
0 z(2)
0 0

IIaa((12))
Ua(0) 0
0 zs 2zm Ia(0) 0 0 z(0) Ia(0)
三相对称系统对称分量变换为三个互不耦合的正、负、零序系统。
式中z(1)、z(2)、z(0)分别称为线路的正序、负序、零序阻抗。 对于静止元件,如线路、变压器等,正序和负序阻抗是相等 的。对于旋转的电机,正序和负序阻抗不相等。
7
故障点电流、电压的对称分量
不对称
Ufabc Ifabc
将三相电流、电压作对称分量分解,由于三相对称系统的对称分量互不耦合
对称
I 正序网
一、双绕组变压器
零序电压施加在Y、d侧
U(0)
因在三相绕组端并联施加零序电压,端点
等电位,故 I(0) 0 , 用阻抗表示为:x(0) 即开路。
U(0)
结论1: 零序等值电路中,可不计d、Y侧 及其后的电路。
18
YN/d接法变压器
U( 0 )
II ( 0 )
III ( 0 )
Ia ( 0 ) 0
零序电流只产生漏磁通,由于迭绕线圈,零序漏磁通 小于正序漏磁通。
x(0) (0.15 - -0.6 )xd
发电机中性点通常是不接地的,即零序电流 不能通过发电机,这时发电机的等值零序阻抗为 无限大
16
§4-4 异步电动机的负序和零序电抗
x(1)
x
1 I st
1.0
X ms X mN

图解正序负序零序

图解正序负序零序

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

449836432@.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

电力系统中的正序负序零序分量详解

电力系统中的正序负序零序分量详解

电力系统中的正序负序零序分量详解正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称,这时就能分解出有幅值的负序和零序分量度(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了问题(特别是单相接地时的零序分量)。

下面介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于绘图条件有限,请大家按文字说明在纸上画,从已知条件画出系统三相电流(以电流为例,电压亦是一样)的向量图(请尽量绘图规范)。

(1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

(2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加并取三分之一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

(3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

负序零序正序分量的作图求法

负序零序正序分量的作图求法

什么是正序电流,什么是负序电流,什么是零序电流[ 2010-5-22 12:52:00 | By: zydlyq ]1.用最简单的语言概括如下:当今全球的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC 三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量。

2.三相电网中什么是正序电流,什么是负序电流,什么是零序电流正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A 相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

短路分析——正序、负序、零序

短路分析——正序、负序、零序

四、简单不对称短路的分析计算
1.单相接地短路
图5-15表示U相单相接 地短路的情况。
k (1)
U V W
IU IV IW
图5-15 单相接地短路
2020/11/24
17
➢ 短路点的边界条件为
k (1)
U V
UIVU
0 IW
0
W
IU IV IW
(5-42)
➢ 将上式转换为对称分量的形式,并整理后可得用序分
(5-41)
UU 0 jIU 0 X 0
式中: UU1 、UU 2 、UU0 为短路点电压的正序、负序和零 序分量;IU1 、IU 2 、IU 0 为短路点电流的正序、负序和零
序分量;X1Σ、X2Σ、X0Σ为正序、负序和零序网络对短 路点的等效电抗;EU1 为正序网络中发电机的等效电 动势。
2020/11/24
量表示的边界条件为
UU1 UU 2 UU 0 0 IU1 IU 2 IU 0
(5-43)
➢ 将基本序网方程式(5-41)和边界条件方程式(5-43)联
立求解,可得短路点的正序分量电流为
IU 2
IU 0
IU1
j
X1
EU1 X2
X0
(5-44)
2020/11/24
18
4.3 短路电流计算
2020/11/24
21
➢ 短路点的正序分量电流求出后,即可根据边界条件方程式
(5-43)和基本序网方程式(5-41)确定短路点电流和电压的各
序分量为
UUUU
2 0
jIU 2 X 2 jIU 0 X 0
jIU1X 2 jIU1X 0
(5-45)
UU1 EU1 jIU1X1 (UU 2 UU 0 ) jIU1( X 2 X 0 )

正序负序零序的理解-整理完整

正序负序零序的理解-整理完整

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

****************.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

电力系统正序、负序、零序网络画法

电力系统正序、负序、零序网络画法

电力系统正序、负序、零序网络画法1 电力系统各元件数学模型及其正、负、零序等值电路1.1 发电机发电机采用次暂态模型,用图2.9(a )所示电路表示,图中X d ''为次暂态电抗,忽略定子回路电阻,并设发电机的负序电抗等于次暂态电抗,即X X d 2=''。

''E为次暂态电动势。

发电机的中性点一般不接地,从而没有零序回路;同步发电机在对称运行时,只有正序电势和正序电流,此时的电机参数,就是正序参数。

1.2负荷负荷采用恒阻抗模型,其正序阻抗由潮流计算求得的负荷功率和负荷节点电压计算,即:Z U P Q L L L L 12=-() (51)负序电抗由经验公式计算或由用户给定,默认为与正序相等。

负荷的中性点一般不接地,从而也没有零序回路。

最新版的故障程序中未考虑负荷。

1.3线路线路采用集中阻抗模型,如图2.10所示,其正、负序参数相等,根据该图计算正负序节点导纳矩阵的有关元素。

零序参数一般与正负序参数不同,当该线路不存在与其它线路的互感时,也采用图2.10所示的等值电路来形成零序节点导纳矩阵。

当该线路与其平行线路之间还存在零序互感时,则在形成零序节点导纳矩阵时需计及互感的影响。

不妨以两条互感支路为例来说明形成零序节点导纳矩阵时对互感的处理,多条线路组成的互感组的处理可以依此类推。

IJ 图2.10 线路模型p q rs(a)pqrs(b)y 'rsy '-my'图2.11 互感支路及其等值电路E'' d X j ''G (a)正序电动势源d''G (b) 正序电流源dX j ''G(c) 负序等值电路图2.9 发电机等值电路由图2.11(a )得两支路的电压-电流方程为:⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--s r qp rs m m pq rs pq rs pq rs m m pq s r q p V V V V y y y y I I I I Z Z Z Z V V V V'''' (52) 由此得消互感后的等值电路如图2.11(b )所示,根据该图即可按照无互感的情况计算零序节点导纳矩阵的有关元素。

5分钟教你正确理解电力系统中的正序负序零序

5分钟教你正确理解电力系统中的正序负序零序
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC”。 (3) 取 OC”向量幅值的三分之一 ,O1 即为正序分量的 A 相
2.3 作图求负序
(1) 保持 A 相不动, B 相顺时针转 120 度 OB’, C 相逆时针转 120 度 OC’, 得到新的向量图。
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC", (3) 取 OC"向量幅值的三分之一即为负序分量的 A 相
2.1 作图求零序
把三个向量相加求和。 即 A 相不动,B 相的原点平移到 A 相的顶端(箭头处), 同方法把 C 相的平移到 AB’的顶端。 此时作 o 点到 C’向量,这个向量就是三相 向量之和。取此向量幅值的三分之一,向量 o0, 这就是零序分量。
2.2 作图求正序
(1) 保持 A 相不动,然后 B相逆时针转 120 度 OB’,C相顺时针转 120 度 OC’, 得到新的向量图。
3
3
IA
四 三相电压向量和为零
对称的三相系统,其 3 相电压向量之和为零。
( 1)用三角函数
sin( α+β)=sin αcosβ+cosαsin β sin( α- β)=sin αcosβ-cos αsin β A 相电压 U sin α B 相电压 U sin( α -120) C相电压 U sin( α +120) Ua+U b+U c =U(sin α+sin( α-120)+sin( α+120)) =U(sin α +(sin αcos120-cos αsin120)+ (sin α cos120+cosαsin120) ) =U(sin α +2sin αcos120) =U(sin α +2sin α(-0.5))=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统正序、负序、零序网络画法
1 电力系统各元件数学模型及其正、负、零序等值电路
1.1 发电机
发电机采用次暂态模型,用图2.9(a )所示电路表示,图中X d ''
为次暂态电抗,忽略定子回路电阻,并设发电机的负序电抗等于次暂态电抗,即
X X d 2=''。

''E
为次暂态电动势。

发电机的中性点一般不接地,从而没有零序回路;
同步发电机在对称运行时,只有正序电势和正序电流,此时的电机参数,就是正序参数。

1.2负荷
负荷采用恒阻抗模型,其正序阻抗由潮流计算求得的负荷功率和负荷节点电压计算,即:
Z U P Q L L L L 12
=-() (51)
负序电抗由经验公式计算或由用户给定,默认为与正序相等。

负荷的中性点一般不接地,从而也没有零序回路。

最新版的故障程序中未考虑负荷。

1.3线路
线路采用集中阻抗模型,如图2.10所示,其正、负序参数相等,根据该图计算正负序节点导纳矩阵的有关元素。

零序参数一般与正负序参数不同,当该线路不存在与其它线路的互感时,也采用图2.10所示的等值电路来形成零序节点导纳矩阵。

当该线路与其平行线路之间还存在零序互感时,则在形成零序节点导纳矩阵时需计及互感的影响。

不妨以两条互感支路为例来说明形成零序节点导纳矩阵时对互感的处理,多条线路组成的互感组的处理可以依此类推。

I
J 图2.10 线路模型
p q r
s
(a)
p
q
r
s
(b)
y 'rs
y '-m
y
'
图2.11 互感支路及其等值电路
E
'' d X j ''G (a)正序电动势源
d
''G (b) 正序电流源d
X j ''G
(c) 负序等值电路
图2.9 发电机等值电路
由图2.11(a )得两支路的电压-电流方程为:
⎥⎦
⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--s r q
p rs m m pq rs pq rs pq rs m m pq s r q p V V V V y y y y I I I I Z Z Z Z V V V V
'''' (52) 由此得消互感后的等值电路如图2.11(b )所示,根据该图即可按照无互感的情况计算零序节点导纳矩阵的有关元素。

1.4变压器
(1)双绕组变压器
不计变压器励磁回路,双绕组变压器的正负序等值电路用它的漏抗串联一个无损耗的理
想变压器模拟,如图2.12所示,其中Z 为变压器的标幺值等值阻抗,K
为理想变压器的变比。

经变压器以后,不仅电压和电流的幅值要根据变比变化,它们的相位也会发生变化,即变比为一复数,
α∠K K
= ,其中 取决于变压器的接线方式,当所有计算均针对标幺值时,理
想变压器变比的幅值为1,即
.1=K 。

以往在进行网络计算时一般是先不考虑经变压器后相
位的变化,即认为变比为实数K ,解出未经移相处理的各节点电压的相应正、负序分量,再根据变压器对网络相位的分区进行各电气量的相位调整。

这种方法可以保持节点导纳矩阵的对称性,但需要先对正负序网络进行移相分区,求得节点电压后再根据各点的移相系数进行相位调整,计算量大。

本程序中考虑在形成导纳矩阵时直接将变比作为复数处理,所以解网络方程求得的电压即为节点的实际电压,无须再作相位调整,物理概念更为明确。

当然这使得导纳矩阵不再对称,必须全行存储,但在计算机内存得以迅速扩充的今天,这已不再成为十分重要的制约因素。

下面根据图2.12对变压器的导纳矩阵元
素进行推导。

*===-α||22'211k V K
V V I Z V
()α||1
12k I Z V V -= ⎪⎪⎪⎭
⎫ ⎝⎛-+=⎪⎪⎭
⎫ ⎝⎛-=**Z k V Z V Z k V V I ||11||21211αα Z k V Z k V Z k k V V k I k I I 2
2121112||1|||||||||| +⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=-=-=**ααααα
从而有:⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡21
2221121121V V Y Y Y Y I I
其中:Y Z 111=
,Z k Y ||12*
-=α,Z k Y ||21α
-=,Y k Z
2221=||
做法:在形成Y 阵时,还按普通的做法,对于对角元没有任何影响。

对于∆Y 和Y ∆接法变压器,只考虑11点接线,则有:
正序:∆Y 接法,5.02330
j e
j +==α;
∆接法,5.023j -=α。

1
2
2
图2.12 双绕组变压器正负序等值电路
负序:∆Y 接法,5.023j -=α; Y ∆接法,5.023j +=
α。

对于Y Y 和∆∆接法变压器,0.10
==j e α。

双绕组变压器的零序等值电路取决于变压器的接线方式和Y0接法绕组的接地方式,具体如表2.1所示,其中Z μ为激磁阻抗,Z 1=Z 2=Z t0 /2.0,Z t0为变压器的零序标幺阻抗值。

表2.1 双绕组变压器零序等值电路
(2)三绕组变压器
三绕组变压器的正负序等值电路图如图2.13
所示,其中Z t1、Z t2、Z t3为三个绕组的标幺值正负序等值阻抗,其正负序值相等;O 点为虚拟节点,O 点与变压器的II 、III 侧端点之间相当于两台双绕组变压器,其处理与(1)中相同,O 点与I 侧端点之间无相位变换关系,其处理与普通线路相同。

各种接法三绕组变压器的零序等值电路如表
V :1k 图2.13 三绕组变压器正负序等值电路
3
13
3I
II
I
I I
2.2所示,其中Z I、Z II、Z III为三个绕组的标幺值零序等值阻抗。

对三柱式内铁形三相变压器,本也应考虑激磁阻抗Zμ的影响,但程序中没有再作专门的处理,而是认为参数Z III中已计及了Zμ影响。

表2.2 三绕组变压器零序等值电路。

相关文档
最新文档