3、北师大版初三数学几何压轴题专项训练(旋转、平移、折叠)
北师版九年级数学上册 第1章 特殊平行四边形中的旋转、最值、动点问题 专题训练 (含答案)

6.解:(1)根据图形的对称性,本来DF和BF相等,但是“在正方形AEFG绕点A旋转的过程中,线段DF与BF始终相等”不正确.例如,当点F旋转到AB上时,BF最短(小于AB),而这时DF大于AD,即DF大于BF
(2)如图②,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段与DG始终相等,并以图为例说明理由.
二、最值问题
7.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
A.2 B.4
∴BD,EG互相平分,∴BO=OD,
∴点O为正方形的角平分线的交点,
∴直线EG必过正方形角平分线的交点
20.解:(1)BG=DE,BG⊥DE,证明如下:
延长BG交DE于点H,
∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴△BCG≌△DCE(SAS),
(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?
24.已知点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.
(1)如图①,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式是;
(2)如图②,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
完整word版北师大版初中中考数学压轴题及答案

中考数学专题复习(压轴题)1.:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A〔-1,0〕、B〔0,3〕两点,其顶点为 D.〔1〕求该抛物线的解析式;〔2〕假设该抛物线与x轴的另一个交点为 E.求四边形ABDE的面积;〔3〕△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.2〔注:抛物线y=ax+bx+c(a≠0)的顶点坐标为2 b,4ac b〕2a4a2.如图,在Rt△ABC中, A 90,AB6,AC 8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点 P作PQ BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ x,QR y.1〕求点D到BC的距离DH的长;2〕求y关于x的函数关系式〔不要求写出自变量的取值范围〕;〔3〕是否存在点P,使△PQR为等腰三角形?假设存在,请求出所有满足要求的x的值;假设不存在,请说明理由.A R DP EB CH Q3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点〔不与A ,B 重合〕,过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . 1〕用含x 的代数式表示△MNP 的面积S ; 2〕当x 为何值时,⊙O 与直线BC 相切?〔3〕在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为 y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?AAAMONMNM O NOP BCC BCBDP1图2图图34.如图1,在平面直角坐标系中,己知AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把AOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ABD.〔1〕求直线AB的解析式;〔2〕当点P运动到点〔3,0〕时,求此时DP的长及点D的坐标;〔3〕是否存在点P,使OPD的面积等于3,假设存在,请求出符合条件的点P的坐标;假设不存在,请说明理由. 4(5如图,菱形 ABCD的边长为 2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.1〕求证:△BDE≌△BCF;2〕判断△BEF的形状,并说明理由;〔3〕设△BEF的面积为S,求S的取值范围.6如图,抛物线L1:y x22x 3交x轴于A、B两点,交 y轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C、D两点.〔1〕求抛物线L2对应的函数表达式;〔2〕抛物线L1或L2在x轴上方的局部是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.假设存在,求出点N的坐标;假设不存在,请说明理由;〔3〕假设点P是抛物线L1上的一个动点〔P不与点A、B重合〕,那么点P关于原点的对称点Q是否在抛物线L2上,请说明理由.7.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.1〕求梯形ABCD的面积;2〕求四边形MEFN面积的最大值.3〕试判断四边形MEFN能否为正方形,假设能,求出正方形MEFN的面积;假设不能,请说明理由.CM NA E F B8.如图,点 A 〔m ,m +1〕,B 〔m +3,m -1〕都在反比例函数 y k的图象上.x( 1〕求m ,k 的值;2〕如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.y AB友情提示:本大题第〔1〕小题4分,第〔2〕小题7 分.对 Ox完成第〔2〕小题有困难的同学可以做下面的〔3 〕选做题.选做题2分,所得分数计入总分.但第〔2〕、〔3〕小题都做的,第〔 3〕小题的得分不重复计入总分.〔3〕选做题:在平面直角坐标系中,点P 的坐标yQ 1为〔5,0〕,点Q 的坐标为〔0,3〕,把线段PQ 向右平移4个单位,然后再向上平移 2个单位,得到线段 P 1Q 1,Q那么点P 1的坐标为 ,点Q 1的坐标为.2P 11O 123P x9. 16,在平面直角坐标系中,直线y 3x3 与x 轴交于点A,与 y 轴交于点 C,抛物线yax223xc(a0)经过 A ,B ,C三点.如图3〔1〕求过A,B,C三点抛物线的解析式并求出顶点F的坐标;〔2〕在抛物线上是否存在点P,使△ABP为直角三角形,假设存在,直接写出P点坐标;假设不存在,请说明理由;〔3〕试探究在直线AC上是否存在一点M,使得△MBF的周长最小,假设存在,求出M点的坐标;假设不存在,请说明理由.yA O BCF图16x10.如下图,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB1OB3,矩形ABOC绕点O按顺时针方向旋转,60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y ax2bx c过点A,E,D.1〕判断点E是否在y轴上,并说明理由;2〕求抛物线的函数表达式;〔3〕在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,假设存在,请求出点P,点Q 的坐标;假设不存在,请说明理由.yEFA CDB O x压轴题答案1.解:〔c3解得1〕由得:bc10c=3,b=2∴抛物线的线的解析式为yx22x3由顶点坐标公式得顶点坐标为〔1,4〕所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)设对称轴与x轴的交点为F所以四边形ABDE的面积=S ABO S梯形BOFD S DFE=1AOBO1(BO DF)OF1EFDF 222=1131(34)1124 222=9〔3〕相似如图,BD=BG2DG212122 BE=BO2OE2323232yDBGA EO F xDE=DF 2EF 222 42 25所以BD 2BE 220, DE 2 20即:BD 2 BE 2DE 2 ,所以BDE 是直角三角形所以所以AOBDBE90,且AOBO 2 ,BDBE2AOB DBE .2解:〔1〕A Rt ,AB6,AC8,BC10.点D 为AB 中点,BD1AB3.2DHBA90, BB .△ BHD ∽△BAC , DH BD,DHBD AC 3 8 12 . ACBCBC10 5〔2〕QR ∥AB ,QRCA90.C ,△RQC ∽△ABC ,RQ QCy 10 xAB BC ,10,6 3即y 关于x 的函数关系式为:yx6.5〔3〕存在,分三种情况:①当PQPR 时,过点P 作PMQR 于M ,那么QMRM .A1 2 90, C290,DP R1C .E1 MB2 CHQcos 1 cosC84QM 4,QP,10 551 3x6418 25, x125 .55②当PQRQ 时,3x6 12 ,55x6.③当PRQR 时,那么R 为PQ 中垂线上的点,于是点R 为EC 的中点,CR1CE1AC2.2 4 tanC QR BA ,CRCA3x66 155, x28.2综上所述,当 x 为18或6或15时,△PQR 为等腰三角形.∴ 5 2解:〔1〕∵MN ∥BC ,∴∠AMN=∠B ,∠ANM =∠C . △AMN ∽△ABC .∴AMAN ,即xAN . AB AC 43AN =3x .2分4∴S =S MNP S AMN1 3xx3x 2.〔0<x <4〕2 48ADPERBCHQAD EPR B CHQAM ONPBC图13分〔2〕如图2,设直线 BC 与⊙O 相切于点 D ,连结AO ,OD ,那么AO=OD=1MN . 2在Rt △ABC 中,BC =AB2AC 2=5.A由〔1〕知△AMN ∽△ABC .MNO∴AMMN ,即xMN.ABBC45BQCD∴MN5 图2x ,4∴OD5x .5分85x .过M 点作MQ ⊥BC 于Q ,那么MQOD8在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴△BMQ ∽△BCA . ∴BMQM .BCAC55x2525 ∴ BM8x ,ABBMMA 324xx4.24x =96.49∴当x =96时,⊙O与直线BC 相切.7分49〔3〕随点M 的运动,当P 点落在直线BC 上时,连结AP ,那么O 点为AP 的中点.∵MN ∥BC ,∴∠AMN=∠B ,∠AOM =∠APC .A∴△AMO ∽△ABP .∴AMAO1.AM =MB =2.ABAP2MNO故以下分两种情况讨论:BC3P 2.图3①当0<x ≤2时,yS PMNx8∴当x =2,y 最大3223.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 2② 当2<x <4,PM ,PN 分交BC 于E ,F .∵四形AMPN 是矩形,MPN ∥AM ,PN =AM =x . 又∵MN ∥BC ,B∴ ∴四形MBFN 是平行四形.FN =BM =4-x .8分AONE F CP 图4∴PFx 4x2x 4 .又△PEF ∽△ACB .PF 2S PEF ∴.ABSABCSPEF3 x 2∴2.⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分23x 2 39x 2y S MNPS PEFx 26x61=2 .⋯⋯⋯⋯⋯⋯⋯⋯分8289x 22当2<x <4,y6x69x 82.883∴当x8,足 2<x <4,y 最大2 .⋯⋯⋯⋯⋯⋯⋯⋯11分38上所述,当x2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分,y 最大,最大是34 解:〔 1〕作BE ⊥OA ,∴AOB 是等三角形∴BE=OB ·sin60o =2 3,∴B(23,2)∵A(0,4),AB 的解析式ykx 4 ,所以2 3k 42,解得k3,3以直线AB 的解析式为y3x43o 〔2〕由旋转知,AP=AD,∠PAD=60,∴APD 是等边三角形,PD=PA=AO2OP219如图,作BE ⊥AO,DH ⊥OA,GB ⊥DH,显然 GBD 中∠GBD=30°∴GD=1BD=3,DH=GH+GD=3+23=53,2 222∴GB=3BD=3,OH=OE+HE=OE+BG=37 22222yAG DH EBOPx5 37∴D( 2,)2(3)设OP=x,那么由〔2〕可得D(23 x,23x )假设 OPD 的面积为:1x(23x)32224解得:x2321 所以P( 2 321,0)33567解:〔1〕分D,C两点作DG⊥AB于点G,CH⊥AB于点AB∥CD,DG=CH,DG∥CH.四形DGHC矩形,GH=CD=1.DG=CH,AD=BC,∠AGD=∠BHC=90°,∴△AGD≌△BHC〔HL〕.DM H.⋯⋯⋯⋯⋯1分CNA EG HF B∴AG =BH =ABGH71=3. ⋯⋯⋯2分2 2∵在Rt △AGD 中,AG =3,AD =5,∴DG =4.∴ 1 7 4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯S 梯形ABCD2 162〕∵MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ME =NF ,ME ∥NF .DCM∴四形MEFN 矩形. N∵AB ∥CD ,AD =BC ,∴∠A =∠B .∵ME =NF ,∠MEA =∠NFB =90°,A EG HF∴△MEA ≌△NFB 〔AAS 〕.∴ AE =BF .⋯⋯⋯⋯⋯⋯⋯⋯4分AE =x ,EF =7-2x .⋯⋯⋯⋯⋯5分∵∠A =∠A ,∠MEA =∠DGA =90°, △MEA ∽△DGA .分B∴AEME .AGDG ∴ME =4x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分32∴S 矩形MEFN MEEF4 x(72x) 8 x 7 49.⋯⋯⋯⋯⋯⋯⋯⋯8分33 46当x =7,ME =7<4,∴四形MEFN 面的最大49.⋯⋯⋯⋯⋯9分436〔3〕能.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分由〔2〕可知,AE =x ,EF =7-2x ,ME =4x .3假设四形MEFN 正方形,ME =EF .即4x7-2x .解,得x21.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分310∴EF =72x72 2114<4.10 52∴四形MEFN 能正方形,其面S正方形MEFN14 196.5 258解:〔1〕由意可知,mm1 m3m1 .解,得m =3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴A 〔3,4〕,B 〔6,2〕;y∴k =4×3=12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分A〔2〕存在两种情况,如:①当M 点在x 的正半上,N 点在y 的正半N 1上,M 1点坐〔x 1,0〕,N 1点坐〔0,y 1〕.∵四形AN 1M 1B 平行四形,M 2O M 1∴段N 1M 1可看作由段AB 向左平移3个位,N 2再向下平移2个位得到的〔也可看作向下平移2个位,再向左平移3个位得到的〕.由〔1〕知A 点坐〔3,4〕,B 点坐〔 6,2〕,∴N 1点坐〔0,4-2〕,即N 1〔0,2〕;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5分M 1点坐〔6-3,0〕,即M 1〔3,0〕.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6分直M 1N 1的函数表达式yk 1x2,把x =3,y =0代入,解得k 12.3Bx∴直M 1N 1的函数表达式y22.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 x3②当M 点在x 的半上,N 点在y 的半上, M 2点坐〔x 2,0〕,N 2点坐〔0,y 2〕. AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, N 1M 1∥M 2N 2,1M 1=M 2N 2. 段M 2N 2与段N 11关于原点O 成中心称. ∴M 2点坐〔-3,0〕,N 2点坐〔0,-2〕.⋯⋯⋯⋯⋯⋯⋯⋯⋯9分直M 2N 2的函数表达式y k 2x2,把x =-3,y =0代入,解得k 2 2,23∴直M 2N 2的函数表达式y2.x32所以,直MN 的函数表达式2 2.⋯⋯⋯⋯⋯⋯11分yx2或yx33〔3〕做:〔9,2〕,〔4,5〕.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分9解:〔1〕直线y 3x 3与x 轴交于点A ,与y 轴交于点C .A( 1,0),C(0, 3)·······································1分点A ,C 都在抛物线上,0a23 a 3c333 cc3抛物线的解析式为y3x 2 23x3··························3分33顶点F 1,43·············································4分3〔2〕存在 ····················································5分P(0 3) ···············································7 分 1, P 2(2, 3)···············································9分3〕存在···················································10分理由: 解法一:延长BC 到点B ,使BCBC ,连接BF 交直线AC 于点M ,那么点M 就是所求的点.·······································11分过点B 作BHAB 于点H .yB 点在抛物线y3x 2 23x3上,B(3,0)333HOx在Rt △BOC 中,tanOBCA B,3CBM F图9OBC30,BC23,1 BB 23 ,在Rt △BBH 中,BH2BH 3BH6 ,OH 3 , B(3,23)······················· 分12设直线BF 的解析式为ykxb2 33kbk 364 3解得b33kb32y3 3 3··············································13分x26y 3x3x 373,103y3x 33 解得3M y10 , 77627在直线AC 上存在点M ,使得△MBF 的周长最小,此时M 3,103.·····14分7 7 解法二:过点F 作AC 的垂线交y 轴于点H ,那么点H 为点F 关于直线AC 的对称点.连接 BH 交AC 于点M ,那么点M 即为所求.11分过点F 作FGy 轴于点G ,那么OB ∥FG ,BC ∥FH .yBOCFGH90, BCOFHGA O BxCMGFH图10HFGCBO同方法一可求得 B(3,0).在Rt △BOC 中,tanOBC3 OBC 30,可求得GH GC 3 , , 33 GF 为线段CH 的垂直平分线,可证得 △CFH 为等边三角形,AC 垂直平分FH .即点H 为点F 关于AC 的对称点.H0,53 ······················12分 3设直线BH 的解析式为y kx b ,由题意得3k b k 5 35 解得 9 b 3 5 b33 3 y5 35 3··············································13分9 35 5 33xx y 3 7 M 3,10 3 9 3 解得 y 3x3 10 3 7 7 y 7在直线AC 上存在点M ,使得△MBF 的周长最小,此时M 3,103 .17 710解:〔1〕点E 在y 轴上·······································1分理由如下:连接AO,如下图,在Rt△ABO中,AB1,BO3,AO2sinAOB 1AOB30,2由题意可知:AOE60BOE AOB AOE306090点B在x轴上,点E在y轴上.·································3分〔2〕过点D作DM x轴于点MOD1,DOM30在Rt△DOM中,DM 1,OM3 22点D在第一象限,点D的坐标为31········································5分,22由〔1〕知EOAO2,点E在y轴的正半轴上点E的坐标为(0,2)点A的坐标为(31),·······································6分抛物线y ax2bx c经过点E,c2由题意,将A(31),31代入yax2bx2中得,D,223a3b21a 8 9331解得b53a2b4229所求抛物线表达式为:y8x253x2························9分99〔3〕存在符合条件的点P,点Q.··································10分理由如下:矩形ABOC的面积ABBO3以O,B,P,Q为顶点的平行四边形面积为23.由题意可知OB为此平行四边形一边,又OB3OB边上的高为2············································11分依题意设点P的坐标为(m,2)点P在抛物线y8x253x2上998m253m2299解得,m10,m253 8P1(0,2),P253,28以O,B,P,Q为顶点的四边形是平行四边形,PQ∥OB,PQ OB3,y 当点P1的坐标为(0,2)时,EA F点Q的坐标分别为Q(3,2),Q(3,2);CD12B OMx53当点P2的坐标为,时,82点Q的坐标分别为Q3133,,33,.······················14分82Q428〔以上答案仅供参考,如有其它做法,可参照给分〕。
北师大版初中中考数学压轴题及答案精编WORD版

北师大版初中中考数学压轴题及答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】中考数学专题复习(压轴题)1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?A BC D ER P H Q(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围.6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.B图 1BD 图 2图 37.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积; (2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y以点A ,B ,M ,N 试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ移4个单位,然后再向上平移2个单位,得到线段则点P 1的坐标为 ,点Q 1的坐标为 .9.如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;C D A BE F NM友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2图∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4所以对称轴为x=1,A,E 关于x=1E(3,0)设对称轴与x 轴的交点为F 所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,====所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且AO BO BD BE == 所以AOB DBE ∆∆. 2 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠ ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分ABCD ERPH QM 2 1 A BCD E R PHQB图 1∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC.由(1)知 △AMN ∽ △ABC .∴ AM MN ABBC=,即45x MN=. ∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==.在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BCAC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分 (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∴ △AMO ∽ △ABP .∴ 12AM AO ABAP==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,BD 图 2P图 3∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分综上所述,当83x =时,y 值最大,最大值是2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得3k =-, 以直线AB的解析式为43y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=,∴GB=2BD=32,OH=OE+HE=OE+BG=37222+=∴,7 2)(3)设OP=x,则由(2)可得D(,22x x+)若ΔOPD的面积为:13(2)224x x+=解得:3x-=所以P(3-,0)567解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.……………1分∵AB∥CD,∴DG=CH,DG∥CH.∴四边形DGHC为矩形,GH=CD=1.∵DG=CH,AD=BC,∠AGD=∠BHC=90∴△AGD≌△BHC(HL).∴AG=BH=2172-=-GHAB=3.………2分∵在Rt△AGD中,AG=3,AD=5,∴DG=4.∴()174162ABCDS+⨯==梯形.………………………………………………3分(2)∵MN∥AB,ME⊥AB,NF⊥AB,∴ME=NF,ME∥NF.∴四边形MEFN为矩形.∵AB∥CD,AD=BC,∴∠A=∠B.∵ME=NF,∠MEA=∠NFB=90°,∴△MEA≌△NFB(AAS).∴AE=BF.……………………4分设AE=x,则EF=7-2x.……………5分A BE FG HA BE FG H∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .∴DGMEAG AE =. ∴ ME =x 34. …………………………………………………………6分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4.∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m . 解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k . ∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分 设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k , ∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分9解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ,······································································· 1分点A C ,都在抛物线上,∴抛物线的解析式为233y x x =-·········································· 3分∴顶点1F ⎛ ⎝⎭,··········································································· 4分 (2)存在 ······················································································ 5分1(0P ······················································································ 7分2(2P ······················································································ 9分 (3)存在 ····················································································· 10分 理由: 解法一:延长BC到点B',使B C BC'=,连接B F'交直线AC于点M,则点M就是所求的点. ·················································································11分过点B'作B H AB'⊥于点H.B点在抛物线233y x x=-(30)B∴,在Rt BOC△中,tan OBC∠=,30OBC∴∠=,BC=在Rt BB H'△中,12B H BB''==6BH H'==,3OH∴=,(3B'∴--, ·······································12分设直线B F'的解析式为y kx b=+3k bk b⎧-=-+⎪∴⎨=+⎪⎩解得6kb⎧=⎪⎪⎨⎪=⎪⎩y x∴=·············································································13分yy x⎧=⎪∴⎨=⎪⎩解得377xy⎧=⎪⎪⎨⎪=-⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛⎫-⎪⎪⎝⎭,.14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ···································11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠图9同方法一可求得(30)B ,. 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,可求得GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形, AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.0H ⎛∴ ⎝⎭, ·································· 12分 设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=············································································ 13分y y ⎧=⎪∴⎨⎪=⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛ ⎝⎭,.110解:(1)点E 在y 轴上 ································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=点B 在x 轴上,∴点E 在y 轴上. ····················································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D的坐标为122⎛⎫⎪ ⎪⎝⎭, ··································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ····································································· 6分抛物线2y ax bx c =++经过点E ,由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧+=⎪⎨++=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:2829y x x =--+ ······································· 9分(3)存在符合条件的点P ,点Q . ···················································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ·········································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上 解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,22)Q ;当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ·································· 14分 (以上答案仅供参考,如有其它做法,可参照给分)。
压轴题03:图形的平移与旋转综合专练20题(解析版)-学年八年级数学下学期期末精选题汇编(北师大版)

压轴题03:图形的平移与旋转综合专练20题(解析版)一、单选题1.如图,在ABC中,AB=BC=3,∠ABC=30°,点P为ABC内一点,连接P A、PB、PC,求P A+PB+PC的最小值()A.B.C.D.【答案】A【分析】将∠ABP绕点B逆时针旋转60°得到∠BFE,连接PF,E C.易证P A+PB+PC=PC+PF+EF,因为PC+PF+EF≥EC,推出当P,F在直线EC上时,P A+PB+PC的值最小,求出EC的长即可解决问题.【详解】解:将∠ABP绕点B逆时针旋转60°得到∠BFE,连接PF,E C.由旋转的性质可知:∠PBF是等边三角形,∠PB=PF,∠P A=EF,∠P A+PB+PC=PC+PF+EF,∠PC+PF+EF≥EC,∠当P,F在直线EC上时,P A+PB+PC的值最小,由旋转可知:BC=BE=BA=3,∠CBE=∠ABC+∠ABE=90°,∠EB∠BC,∠ECBC =∠P A +PB +PC 的最小值为故选A .【点睛】本题旋转变换,等边三角形的判定和性质,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.2.如图,在平面直角坐标系中,点()0,2A 点B 在x 轴的正半轴上,30ABO ∠=︒,现把AOB 绕点O 顺时针旋转30°得到A OB ''△,点B '恰好落在一次函数y b =+的图象上,则b 的值为( )A .1B .C .2D .-【答案】D【分析】 如图,过B '作B C x '⊥轴于C ,在Rt AOB △中,2AO =,30ABO ∠=︒,求出AB 和OB 的长,再利用OB OB '=,BOB AOA ''∠=∠=30︒,可得到CB '和OC 的长,得到B '的坐标,代入一次函数即可得出结果.【详解】如图,过B '作B C x '⊥轴于C ,由题意知BOB AOA ''∠=∠=30︒,∠在Rt AOB △中,2AO =,30ABO ∠=︒,∠4AB =,由勾股定理得OB =在Rt OCB '△中OB OB =='则CB '=同理,由勾股定理得,3OC =,∠(3,B ',将(3,B '代入y x b =+中,得b =-故选:D .【点睛】本题考查一次函数及应用,涉及旋转、30°的直角三角形性质及勾股定理,比较综合,解题的关键是求出B '的坐标.3.如图,已知ABC 中90BAC ∠=︒,AB AC =,//BD AC ,30D ∠=︒,若把ABD △绕点A 逆时针旋转一个角度()090αα︒<<︒,使它与原ABC 的重叠部分为等腰三角形.则α为( )A .15︒或30B .30或45︒C .15︒或45︒D .30或60︒【答案】C【分析】 由∠BAC =90°,AB =AC 可判断∠ABC 为等腰直角三角形,则∠ABC =∠ACB =45°,再由BD ∠AC 得∠ABD =∠BAC =90°,则利用互余可计算出∠BAD =60°,由于把∠ABD 绕点A 逆时针旋转一个角度α(0<α<90°),使它与原∠ABC 的重叠部分为等腰三角形,而等腰三角形的腰不能确定,所以分类讨论:当AE =AF 时,如图1,根据旋转的性质得∠BAB ′=α,∠B ′AD =60°,可判断∠AEF 为等边三角形,得到∠1=∠2=60°,则可根据三角形外角性质可计算出∠BAB ′=∠1-∠ABC =15°,即α=15°;当AF A =FC 时,如图2,∠BAB ′=α,根据等腰三角形的性质得∠ACB =∠F AC =45°,所以∠BAB ′=45°,即α=45°,由此得到α的值为15°或45°.【详解】解:∠∠BAC=90°,AB=AC,∠∠ABC为等腰直角三角形,∠∠ABC=∠ACB=45°,∠BD∠AC,∠∠ABD=∠BAC=90°,∠∠D=30°,∠∠BAD=60°,把∠ABD绕点A逆时针旋转一个角度α(0<α<90°),使它与原∠ABC的重叠部分为等腰三角形,当AE=AF时,如图1,则∠BAB′=α,∠B′AD=60°,∠∠AEF为等边三角形,∠∠1=∠2=60°,而∠1=∠B+∠BAB′,∠∠BAB′=60°-45°=15°,即α=15°;当AF=FC时,如图2,则∠BAB′=α,∠∠ACB=45°,∠∠F AC=45°,∠∠BAB′=90°-45°=45°,即α=45°;综上所述,α的值为15°或45°.故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.4.如图,在Rt ABC △中,AB AC =,D ,E 是斜边BC 上两点,且45DAE ∠=︒,将ADC 绕点A 顺时针旋转90°后,得到AFB △,连接EF ,下列结论:∠AED AEF ≌△△;∠ABE ACD △≌△;∠BE DC DE +>;∠222BE DC DE +=。
北师大新版中考数学30题函数综合压轴题及答案

1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠NBC,∴Rt△NCB∽Rt△BOA,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形若能,求出m的值;若不能,请说明理由.【分析】(1)由题意抛物线的顶点D(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【解答】解:(1)由题意抛物线的顶点D(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M 在y=﹣x 2+4上, ∴m ﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N 是正方形.情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入y=﹣x 2+4中,2﹣m=﹣(m ﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N 是正方形. 综上,四边形PMP′N 能成为正方形,m=﹣3或6.【点评】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.3.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时, ①在点P 1(,0),P 2(,),P 3(,0)中,⊙O 的关联点是 P 2,P 3 .②点P 在直线y=﹣x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围. (2)⊙C 的圆心在x 轴上,半径为2,直线y=﹣x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.【分析】(1)①根据点P 1(,0),P 2(,),P 3(,0),求得OP 1=,OP 2=1,OP 3=,于是得到结论;②根据定义分析,可得当最小y=﹣x 上的点P 到原点的距离在1到3之间时符合题意,设P (x ,﹣x ),根据两点间的距离公式即可得到结论;(2根据已知条件得到A (1,0),B (0,1),如图1,当圆过点A 时,得到C (﹣2,0),如图2,当直线AB 与小圆相切时,切点为D ,得到C (1﹣,0),于是得到结论;如图3,当圆过点A ,则AC=1,得到C (2,0),如图4,当圆过点B ,连接BC ,根据勾股定理得到C (2,0),于是得到结论. 【解答】解:(1)①∵点P 1(,0),P 2(,),P 3(,0),∴OP 1=,OP 2=1,OP 3=,∴P 1与⊙O 的最小距离为,P 2与⊙O 的最小距离为1,OP 3与⊙O 的最小距离为,∴⊙O ,⊙O 的关联点是P 2,P 3; 故答案为:P 2,P 3;②根据定义分析,可得当最小y=﹣x 上的点P 到原点的距离在1到3之间时符合题意,∴设P (x ,﹣x ),当OP=1时, 由距离公式得,OP==1,∴x=,当OP=3时,OP==3,解得:x=±;∴点P 的横坐标的取值范围为:﹣≤x ≤﹣,或≤x ≤;(2)∵直线y=﹣x+1与x 轴、y 轴交于点A 、B , ∴A (1,0),B (0,1), 如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC=,∴C(1﹣,0),≤1﹣;∴圆心C的横坐标的取值范围为:﹣2≤xC如图3,当圆过点A,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC==2,∴C(2,0).∴圆心C的横坐标的取值范围为:2≤xC≤2;综上所述;圆心C的横坐标的取值范围为:﹣2≤xC ≤1﹣或2≤xC≤2.【点评】本题考查了一次函数的性质,勾股定理,直线与圆的位置关系,两点间的距离公式,正确的作出图形是解题的关键.4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B (3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC 长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x==,P∵点P在抛物线y=﹣x2+4x﹣3上,∴y=﹣3=,P∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P 在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴的交点,点Q在对称轴上,可设出Q点的坐标,则可表示出M的坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、正方形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中构造三角形相似是解题的关键,注意有两种情况,在(3)中确定出P、Q的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.6.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.【分析】(1)把A点坐标代入抛物线解析式可求得b的值,则可求得抛物线解析式,进一步可求得其顶点坐标;(2)①由对称可表示出P′点的坐标,再由P和P′都在抛物线上,可得到关于m的方程,可求得m的值;②由点P′在第二象限,可求得t的取值范围,利用两点间距离公式可用t表示出P′A2,再由点P′在抛物线上,可以消去m,整理可得到关于t的二次函数,利用二次函数的性质可求得其取得最小值时t的值,则可求得m的值.【解答】解:(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),∴0=1﹣b﹣3,解得b=﹣2,∴抛物线解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4);(2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,∵点P′与P关于原点对称,∴P′(﹣m,﹣t),∵点P′落在抛物线上,∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=或m=﹣;②由题意可知P′(﹣m,﹣t)在第二象限,∴﹣m<0,﹣t>0,即m>0,t<0,∵抛物线的顶点坐标为(1,﹣4),∴﹣4≤t<0,∵P在抛物线上,∴t=m2﹣2m﹣3,∴m2﹣2m=t+3,∵A(﹣1,0),P′(﹣m,﹣t),∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;∴当t=﹣时,P′A2有最小值,∴﹣=m2﹣2m﹣3,解得m=或m=,∵m>0,∴m=不合题意,舍去,∴m的值为.【点评】本题为二次函数的综合应用,涉及待定系数法、中心对称、二次函数的性质、勾股定理、方程思想等知识.在(1)中注意待定系数法的应用,在(2)①中求得P′点的坐标,得到关于m的方程是解题的关键,在(2)②中用t表示出P′A2是解题的关键.本题考查知识点较多,综合性较强,难度适中.7.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.8.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是 D ..1 C 或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.【分析】(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可;(3)根据m的范围确定出顶点纵坐标范围即可.【解答】解:(1)∵函数y=﹣x2+(m﹣1)x+m(m为常数),∴△=(m﹣1)2+4m=(m+1)2≥0,则该函数图象与x轴的公共点的个数是1或2,故选D;(2)y=﹣x2+(m﹣1)x+m=﹣(x﹣)2+,把x=代入y=(x+1)2得:y=(+1)2=,则不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=,当m=﹣1时,z有最小值为0;当m<﹣1时,z随m的增大而减小;当m>﹣1时,z随m的增大而增大,当m=﹣2时,z=;当m=3时,z=4,则当﹣2≤m≤3时,该函数图象的顶点坐标的取值范围是0≤z≤4.【点评】此题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键.9.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN =S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN +S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.10.在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x<1,综上所述:m<n,所求x0的取值范围0<x<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.11.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P 在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P (1,)是抛物线C的勾股点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ =S△ABP的Q点(异于点P)的坐标.【分析】(1)根据抛物线勾股点的定义即可得;(2)作PG⊥x轴,由点P坐标求得AG=1、PG=、PA=2,由tan∠PAB==知∠PAG=60°,从而求得AB=4,即B(4,0),待定系数法求解可得;(3)由S△ABQ =S△ABP且两三角形同底,可知点Q到x轴的距离为,据此求解可得.【解答】解:(1)抛物线y=﹣x2+1的勾股点的坐标为(0,1);(2)抛物线y=ax2+bx过原点,即点A(0,0),如图,作PG⊥x轴于点G,∵点P的坐标为(1,),∴AG=1、PG=,PA===2,∵tan∠PAB==,∴∠PAG=60°,在Rt△PAB中,AB===4,∴点B坐标为(4,0),设y=ax(x﹣4),将点P(1,)代入得:a=﹣,∴y=﹣x(x﹣4)=﹣x2+x;(3)①当点Q在x轴上方时,由S△ABQ =S△ABP知点Q的纵坐标为,则有﹣x2+x=,解得:x1=3,x2=1(不符合题意,舍去),∴点Q的坐标为(3,);②当点Q在x轴下方时,由S△ABQ =S△ABP知点Q的纵坐标为﹣,则有﹣x2+x=﹣,解得:x1=2+,x2=2﹣,∴点Q的坐标为(2+,﹣)或(2﹣,﹣);综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).【点评】本题主要考查抛物线与x轴的交点及待定系数法求函数解析式,根据新定义求得点B的坐标,并熟练掌握待定系数求函数解析式及三角形面积问题是解题的关键.12.如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE 的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN =S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.13.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)抛物线的解析式可变形为y=(x+1)(x﹣3),从而可得到点A和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A和点E的坐标代入求得k和b的值,从而得到AE的解析式;(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=x2+x.由三角形的面积公式得到△EPC的面积=﹣x2+x,利用二次函数的性质可求得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.然后利用轴对称的性质可得到点G和点H的坐标,当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF,FQ=FQ三种情况求解即可.【解答】解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∴tan∠KCP=.∵OD=1,OC=,∴tan∠OCD=.∴∠OCD=∠KCP=30°.∴∠KCD=30°.∵k是BC的中点,∠OCB=60°,∴OC=CK.∴点O与点K关于CD对称.∴点G与点O重合.∴点G(0,0).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG==.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数的解析式、轴对称最短路径问题、等腰三角形的定义和性质,找到KM+MN+NK取得最小值的条件是解答问题(2)的关键;分为QG=FG、QG=QF,FQ=FQ三种情况分别进行计算是解答问题(3)的关键.14.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC =S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,。
北京师范大学附属中学九年级数学上册第三单元《旋转》测试题(答案解析)

一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D . 2.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .83.下列图形中,是中心对称图形的是( )A .B .C .D . 4.如图,△ABC 中,AB =6,AC =4,以BC 为对角线作正方形BDCF ,连接AD ,则AD 长不可能是( )A .2B .4C .6D .85.如图所示,ABC 中,65C =︒∠,将ABC ∆绕点A 顺时针旋转后,得到AB C ''∆,且C '在边BC 上,则B C B ''∠的度数是( )A .46°B .48°C .50°D .52°6.下列图形中,是中心对称图形的是( )A .B .C .D .7.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .88.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0- 9.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 10.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2) 11.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 12.下列图形是中心对称图形的是( )A .B .C .D .二、填空题13.如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线长分别为12和16时,则阴影部分面积为_________.14.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.15.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .16.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.17.已知点()2,3A x -与点()4,5B y -关于原点对称,则xy 的值等于______. 18.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.19.如图,Rt ABC 中,90BAC ∠=︒,∠C=30°,AB=2,将ABC 绕着点A 顺时针旋转,得到AMN ,使得点B 落在BC 边上的点M 处,MN 与AC 交于点D ,则ADM △的面积为____.20.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.三、解答题21.将边长为4的正方形ABCD 与边长为5的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.将正方形ABCD 绕点A 逆时针旋转一周,直线EB 与直线DG 交于点P ,(1)DG 与BE 的数量关系:______;DG 与BE 的位置关系:______.(2)如图2,当点B 在线段DG 上时,求ADG 的面积.(3)连结PF ,当42PE =时,求PF 的值.22.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 绕着点A 顺时针旋转90︒,画出旋转后得到的△AB 1C 1;直接写出点B 1的坐标;(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点B 2的坐标. 23.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C .(1)请画出ABC ∆向左平移5个单位长度后得到的111A B C ∆;并写出1A 、1B 、1C 的坐标;(2)请画出ABC ∆关于原点对称的222A B C ∆;并写出2A 、2B 、2C 的坐标. 24.己知,如图,点P 是等边△ABC 内一点,∠APB=112°,如果把△APB 绕点A 旋转,使点 B 与点C 重合,此时点P 落在点P '处,求PP C '∠的度数.25.在正方形ABCD 中,点E 是BC 上的一点,连结AE .(1)画出△ABE 绕点A 逆时针旋转90°后的图形(点E 的对应点为F );(2)若AB =3,则四边形AECF 的面积为 .26.解下列方程:(1)x 2-2x-24=0 (2)用配方法解方程:x 2+6x ﹣1=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A 、既是轴对称又是中心对称图形,故此项正确;B 、是轴对称,不是中心对称图形,故此项错误;C 、不是轴对称,是中心对称图形,故此项错误;D 、是轴对称,不是中心对称图形,故此项错误.故选:A .本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.B解析:B【分析】连接DP ,根据题意,得OP OD =,=60DOP ∠,从而得到120AOP COD ∠+∠=;再根据等边三角形和三角形内角和性质,得120AOP OPA ∠+∠=,从而得COD OPA ∠=∠,通过全等三角形判定,即可得到答案.【详解】如图,点D 落在BC 上,连接DP∵线段OP 绕点O 逆时针旋转60°得到线段OD∴OP OD =,=60DOP ∠∴180120AOP COD DOP ∠+∠=-∠=∵等边△ABC∴180120AOP OPA A ∠+∠=-∠=∴COD OPA ∠=∠即:OP OD COD OPA A C =⎧⎪∠=∠⎨⎪∠=∠⎩∴AOP CDO △≌△∴AP OC =∵AC=8,AO=3∴5OC AC AO =-=∴5AP OC ==故选:B .【点睛】本题考查了等边三角形、全等三角形、旋转、三角形内角和的知识;解题的关键是熟练掌握等边三角形、全等三角形、旋转、三角形内角和的性质,从而完成求解.3.D解析:D根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.D解析:D【分析】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC,DE=AD,等腰Rt△ADE中AE=2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10求出AD的范围即可.【详解】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC=6,DE=AD,在Rt△ADE中由勾股定理得AE=2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10,<,2<AD<52=508故选:D.【点睛】本题考查AD的范围问题,掌握正方形的性质,和旋转性质,由条件分散,将已知与未知化归一个三角形中,利用旋转构造等腰直角三角形△ACE实现转化,利用三边关系确定AE 的范围是解题关键.5.C解析:C【分析】根据旋转的性质和∠C=65°,从而可以求得∠AC′B′和∠AC′C的度数,从而可以求得∠B′C′B 的度数.【详解】∵将△ABC绕点A顺时针旋转后,可以得到△AB′C′,且C′在边BC上,∴AC=AC′,∠C=∠AC′B′,∴∠C=∠AC′C,∵∠C=65°,∴∠AC′B′=65°,∠AC′C=65°,∴∠B′C′B=180°−∠AC′B′−∠AC′C=50°,故选:C.【点睛】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.6.C解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的概念.7.C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO ,∴△AOP ≌△CDO ,∴AP=CO=6.故选:C .【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.8.C解析:C【分析】计算出前几次跳跃后,点P 1,P 2,P 3,P 4,P 5,P 6,P 7的坐标,可得出规律,继而可求出点P 2013的坐标.【详解】解:∵点1P 与点O 关于点A 成中心对称,∴P 1(2,0),过P 2作P 2D ⊥OB 于点D ,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环,∵2013=335…3,6∴点P2013的坐标为(0,-2).故选C.【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.9.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.B解析:B【详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.11.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.二、填空题13.48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答【详解】如图所示:∵菱形的两条对角线的长分别为12和16菱形的面积∵是菱形解析:48根据菱形的面积等于对角线乘积的一半求出菱形的面积,再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答.【详解】如图所示:∵菱形ABCD 的两条对角线的长分别为12和16,菱形ABCD 的面积11216962=⨯⨯=, ∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴OEG OFH ∆≅∆,四边形OMAH ≅四边形ONCG ,四边形OEDM ≅四边形OFBN ,∴阴影部分的面积11964822ABCD S ==⨯=菱形, 故答案为:48.【点睛】本题考查了菱形的性质、中心对称图形的性质、菱形的面积公式,熟知菱形的面积公式,利用菱形的性质判断出阴影的面积是菱形面积的一半是解答的关键. 14.【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP 的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x 轴上∴∠POP´=∠A 解析:52【分析】根据旋转的性质,AOP 绕点O 顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP 的长,进而可求得PP´的长.【详解】解:∵AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P 坐标为(3,4), ∴22345+=,∴PP´2252OP OP '+= 故答案为:52本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.15.【分析】先根据旋转的定义和性质可得从而可得再利用勾股定理即可得【详解】由旋转的定义和性质得:在中故答案为:【点睛】本题考查了旋转的定义和性质勾股定理熟练掌握旋转的性质是解题关键【分析】先根据旋转的定义和性质可得111,60A AC C CAC ==∠=︒,从而可得190BAC ∠=︒,再利用勾股定理即可得.【详解】由旋转的定义和性质得:111,60A AC C CAC ==∠=︒,30BAC ∠=︒,1190AC BAC AC B C ∴∠=+=∠∠︒,在1Rt ABC 中,1BC ===,【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键. 16.24°【分析】根据旋转的性质得出边和角相等找到角之间的关系再根据三角形内角和定理进行求解即可求出答案【详解】解:设=x°根据旋转的性质得∠C=∠=x°=AC=AB ∴∠=∠B ∵∴∠C=∠CA=x°∴∠解析:24°【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案.【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB.∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°.∴∠'AB B =∠C+∠CA 'B =2x°.∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒,∴x+2x+108=180.解得x=24.∴C '∠的度数为24°.故答案为24°.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质.17.-4【分析】利用关于原点对称点的性质求出xy 的值进而求出答案【详解】解:∵点与点关于原点对称∴x-2=-4y-5=-3∴x=-2y=2∴xy=(-2)×2=-4故答案为:-4【点睛】本题考查了关于原解析:-4【分析】利用关于原点对称点的性质求出x ,y 的值,进而求出答案.【详解】解:∵点()2,3A x -与点()4,5B y -关于原点对称,∴x-2=-4,y-5=-3,∴x=-2,y=2,∴xy=(-2)×2=-4.故答案为:-4【点睛】本题考查了关于原点对称点的性质,根据与原点对称的点的坐标特点(纵坐标,横坐标都互为相反数)得出x ,y 的值是解题关键.18.15°或60°【分析】分情况讨论:①DE ⊥BC②AD ⊥BC 然后分别计算的度数即可解答【详解】解:①如下图当DE ⊥BC 时如下图∠CFD =60°旋转角为:=∠CAD =60°-45°=15°;(2)当AD解析:15°或60°.【分析】分情况讨论:①DE ⊥BC ,②AD ⊥BC ,然后分别计算α的度数即可解答.【详解】解:①如下图,当DE ⊥BC 时,如下图,∠CFD =60°,旋转角为:α=∠CAD =60°-45°=15°;(2)当AD ⊥BC 时,如下图,旋转角为:α=∠CAD =90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.19.【分析】先根据直角三角形的性质可得再根据旋转的性质可得然后根据等边三角形的判定与性质可得又根据三角形的外角性质三角形的内角和定理可得最后根据直角三角形的性质勾股定理可得据此利用直角三角形的面积公式即解析:2【分析】先根据直角三角形的性质可得60B ∠=︒,再根据旋转的性质可得2,60AM AB AMN B ==∠=∠=︒,然后根据等边三角形的判定与性质可得60AMB ∠=°,又根据三角形的外角性质、三角形的内角和定理可得30DAM ∠=︒,90ADM ∠=︒,最后根据直角三角形的性质、勾股定理可得1,DM AD ==用直角三角形的面积公式即可得.【详解】在Rt ABC 中,90,30,2BAC C AB ∠=︒∠=︒=,60B ∴∠=︒,由旋转的性质可知,2,60AM AB AMN B ==∠=∠=︒,ABM ∴是等边三角形,60AMB ∴∠=︒,30DAM AMB C ∴∠=∠-∠=︒,18090ADM DAM AMN ∴∠=︒-∠-∠=︒,在Rt ADM △中,11,2DM AM AD ====,则ADM △的面积为11122DM AD ⋅=⨯=,故答案为:2. 【点睛】 本题考查了旋转的性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等知识点,熟练掌握旋转的性质是解题关键.20.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛 解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.三、解答题21.(1)相等;垂直;(2)4234ADG S =+△;(3)7PF =. 【分析】(1)由题意可得△DAG ≌△BAE ,从而可得DG=BE ,再利用全等三角形的性质和直角三角形的知识可以得知DG ⊥BE ;(2)连结AC 交DG 于点 O ,则由勾股定理可得OG 的长度,从而得到△ADG 的面积; (3)连结GE 并旋转△PGF 至△HEF ,由勾股定理即可得到正确解答.【详解】(1)在△DAG 与△BAE 中,DA=BA ,∠DAG=∠BAE=90°,AG=AE ,∴△DAG ≌△BAE ,∴DG=BE ,∠DGA=∠BEA ,∴∠BEA+∠GDE=∠DGA+∠GDE=90°,∴∠DPE=90°,∴DG ⊥BE ;(2)如图,当B 在线段DG 上时,连结AC 交DG 于点O ,则22AO =,()2252217OG =-=2217DG =(122172242342ADG S =⨯⨯=+△ (3)如图,连结GE ,以F 为中心旋转△FGP 至△FEH ,则与(1)类似有△DAG ≌△BAE ,∴∠DGA=∠BEA ,∴∠DGE+∠GEP=∠DGA+45°+∠GEP=45°+∠BEA+∠GEP=45°+45°=90°,∴∠GPE=90°, ∴()()2222524232PG GE PE =-=-=,由旋转性质可知∠FEH=∠FGP ,∴∠FEH+∠FEP=∠FGP+∠FEP=360°-(∠GFE+∠GPE )=360°-180°=180°,∴P 、E 、H 三点共线,且PFH △是等腰直角三角形,∵PH=PE+EH=PE+GP=423272=∴(222227298,49PF PH PF ====,PF=7.【点睛】本题考查正方形的综合应用,灵活运用三角形全等的判定与性质、旋转的性质和勾股定理求解是解题关键.22.(1)作图见解析; B 1(4,-2);(2)作图见解析;B 2(-4,-4)【分析】(1)利用网格特点和旋转的性质画出点B 、C 的对应点B 1、C 1,从而得到△AB 1C 1,再写出点B 1的坐标;(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.【详解】(1)如图,B 1(4,-2);(2)如图,B2(-4,-4).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)图象见解析,A1(-4,1),B1(-1,2)C1(-2,4);(2)图象见解析,A2(-1,-1),B2(-4,-2)C2(-3,-4).【分析】(1)依据平移的方向和距离,即可得到△A1B1C1,依据图象写出1A、1B、1C的坐标即可;(2)依据中心对称,即可得到△A2B2C2,依据图象写出1A、1B、1C的坐标即可.【详解】解:(1)△A1B1C1如图所示,A1(-4,1),B1(-1,2)C1(-2,4);(2)△A2B2C2如图所示,A2(-1,-1),B2(-4,-2)C2(-3,-4).【点睛】本题主要考查作图-平移变换与旋转变换,求关于原点对称的点坐标,解题的关键是掌握平移变换与旋转变换的定义与性质,并据此得出变换后所得对应点.24.52°【分析】根据旋转的性质得到AP'=AP,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB≌AP'C,∴∠AP'C=∠APB=112°,且AP'=AP,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键.25.(1)见解析;(2)9【分析】(1)根据旋转的性质即可画出△ABE绕点A逆时针旋转90°后的图形(点E的对应点为F);(2)根据AB=3和旋转的性质可得四边形AECF的面积即为正方形ABCD的面积.【详解】(1)如图,△ADF即为△ABE绕点A逆时针旋转90°后的图形;(2)根据旋转可知:四边形AECF的面积=正方形ABCD的面积=AB2=9.故答案为:9.【点睛】本题考查了作图-旋转变换、正方形的性质、旋转的性质,解决本题的关键是掌握旋转的性质.26.(1)x=-4,x=6;(2)x=﹣10.【解析】试题分析:(1)把左边进行因式分解即可;(2)用配方法解方程即可.试题解:(1)(x+4)(x-6)=0,x=-4,x=6.(2)x2+6x+9=10,即(x+3)2=10,x=﹣.。
北师大版九下数学压轴题专题--压轴题专题(含答案)

1压轴题专题1. 如图,抛物线y =ax 2-bx +3交x 轴于B (1,0),C (3,0)两点,交y 轴于点A ,连接AB ,点P 为抛物线上一动点. (1)求抛物线的解析式; (2)当点P 到直线AB时,求点P 的横坐标; (3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图22. 如图1,在平面直角坐标系中,直线y =x +4与抛物线212y x bx c =-++(b ,c是常数)交于A ,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C . (1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A ,B 重合). ①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求PDOD的最大值; ②如图3,若点P 在x 轴上方,连接PC ,以PC 为一边作正方形CPEF .随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.图1图2图333.如图,抛物线y=ax2+bx+4(a≠0)交x轴于点A(4,0),B(-2,0),交y轴于点C.(1)求抛物线的解析式.(2)点Q是x轴上位于点A,B之间的一个动点,点E为线段BC上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE的面积为S,点Q的横坐标为m,求出S关于m的函数关系式,并求出当S取最大值时点Q的坐标.(3)点P为抛物线上位于AC上方的一个动点,过点P作PF⊥y轴,交直线AC于点F,点D的坐标为(2,0),若O,D,F三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P的坐标;若不存在,请说明理由.454. 如图,抛物线234y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,直线334y x =+经过点A ,C .(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t .①若以点C ,O ,M ,P 为顶点的四边形是平行四边形,求t 的值. ②当射线MP ,MC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为a,点P的横坐标为m,求a关于m的函数关系式(不必写出m的取值范围),并求出a的最大值.(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.图1图266.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)求b,c的值.(2)点E是直角三角形ABC斜边AB上一动点(点A,B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标.(3)在(2)的条件下:①求以点E,B,F,D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,直接写出所有点P的坐标;若不存在,说明理由.77.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x轴于A,C两点,与直线y=x-1交于A,B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标;(3)在平面直角坐标系中,以点B,E,C,D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.898. 如图,已知抛物线2342y ax x =++的对称轴是直线x =3,且与x 轴相交于A ,B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A ,B 两点的坐标.(2)若点P 是抛物线上B ,C 两点之间的一个动点(不与B ,C 重合),则是否存在一点P ,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点N 的坐标.图1图2109. 如图,抛物线213y x bx c =++经过点A(0)和点B (0,-2).(1)求该抛物线的解析式;(2)若△OAB 以每秒2个单位长度的速度沿射线BA 方向运动,设运动时间为t ,点O ,A ,B 的对应点分别为D ,E ,C ,直线DE 交抛物线于点M . ①当点M 为DE 的中点时,求t 的值;②连接AD ,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图10.如图,抛物线y=ax2+bx-2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(-2,0),点P为抛物线上的一个动点,过点P 作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式.(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积.(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.备用图1111.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式.(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使12PE DE.①求点P的坐标和△P AB的面积.②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,直接写出符合条件的所有点M的坐标;若不存在,请说明理由.1212.如图,抛物线y=ax2+bx+2与直线y=-x交第二象限于点E,与x轴交于A(-3,0),B两点,与y轴交于点C,EC∥x轴.(1)求抛物线的解析式;(2)点P是直线y=-x上方抛物线上的一个动点,过点P作x轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N为顶点的四边形是平行四边形,请直接写出所有满足条件的点M的坐标.1313.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4交于B,D两点.(1)求抛物线的解析式及点D的坐标;(2)点P为直线BD下方抛物线上的一个动点,求△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B,D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.备用图1备用图21414.如图,抛物线y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE∥x轴,PF∥y 轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M 的坐标.图1图21515.如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的对称轴与x轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A是y轴正半轴上一动点,点B是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM中有一边的长等于MP时,请直接写出点A的坐标.备用图1616.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1过A,B两点,并与过点A的直线112y x=--交于点C.(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C为顶点的三角形与△AOC相似?若存在,求出点N的坐标;若不存在,请说明理由.备用图1717.如图,直线l:12y x m=+与x轴交于点A(4,0),与y轴交于点B,抛物线y=ax2+bx+c(a≠0)经过A,B两点,且与x轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P是抛物线上一动点,当点P在直线l下方的抛物线上运动时,过点P作PM∥x轴交l于点M,过点P作PN∥y轴交l于点N,求PM+PN的最大值;(3)在(2)的条件下,当PM+PN的值最大时,将△PMN绕点N旋转,当点M落在x轴上时,直接写出此时点P的坐标.备用图1818.如图,已知抛物线y=ax2+x+c与y轴交于点C(0,3),与x轴交于点A和点B(3,0),点P是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P是点B与点C之间的抛物线上的一个动点,过点P向x轴作垂线,交BC于点D,求线段PD长度的最大值;(3)当点P移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.1919.在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D到直线AC的最大距离以及此时△ADC 的面积;(3)过点D作DF⊥AC,垂足为点F,连接CD.若△CFD与△AOC相似,求点D的坐标.2020.如图,抛物线y=ax2+bx-3过A(1,0),B(-3,0),直线AD交抛物线于点D,点D的横坐标为-2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式.(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m 的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.2121.如图,抛物线y=-x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上的一动点,求△BCP面积S的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M的坐标.备用图2223242526272829303132333435363738394041424344。
九年级数学几何模型压轴题专题练习(解析版)

九年级数学几何模型压轴题专题练习(解析版)一、初三数学旋转易错题压轴题(难)1.如图 1,在 Rt∆ΛSC 中,Z4 = 90o, AB=AC f点 D, E 分别在边 AB, AC 上,AD=AE f连接DC,点M, P, N分别为DE, DC, BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是_,位置关系是_;(2〉探究证明:把AADF绕点A逆时针方向旋转到图2的位置,连接BD, CE,判断APMN的形状,并说明理由;(3)拓展延伸:把AADF绕点A在平面内自由旋转,若AD=4, AB=IO f请直接写出APMN面积的最人值.【答案】(I)PM=PΛ∕, PM丄PN;(2) APMN是等腰直角三角形.理由见解析;(3)49 S A.PMN⅜⅛大=.【解析】【分析】(1)由已知易得加=C利用三角形的中位线得出PM = ;CE , PN = ;BD,即可2 2得出数量关系,再利用三角形的中位线得出PM//CE得出ZDPM = ZDc4,最后用互余即可得出位置关系;(2)先判断出MBQ三AACE,得出皮) = CE,同(1)的方法得出PM=-BD i2PN = LBD t即可得出PM = PN,同(1)的方法由2ZMPN = ZDCE+ ZDCB+ ZDBC= ZACB+ ZABC ,即可得出结论;(3〉方法1:先判断出MN最人时,APMN的面积最大,进而求出AN, AM,即可得出MN最)<=AM + AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,WMN的面积最大,而Br)最人是AB + AD = 14,即可得出结论.【详解】解:(1)•••点P, N是BC, CD的中点,.∙.PN□BD, PN = -BD,2•••点P, M是CD,DE的中点,..PM//CE9 PM=丄CE ,2∙.∙AB=AC, AD=AE^:.BD = CE ,:.PM = PN,-PN//BD f.∙. ZDPN = ZADC,':PMIlCE.:.ZDPM = ZDCA,∙.∙ ZfiAC = 90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴题几何专项训练(三) ——有关旋转、平移、折叠问题
(旋转)1、如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将
BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD . (1)求证:COD △是等边三角形;
(2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?
A B
C
D O
(旋转)2、如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,
∠B =∠E =30°. (1)操作发现
如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;
②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是________.
(2)猜想论证
当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍 然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的 猜想.
(3)拓展探究
已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如
图4).若在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出....相应的BF 的长.
A (D )
B (E ) C
图1 A C B D E 图2
M
图3
A
B
C
D
E
N E
C
D
B
A
图4
(平移)3、如图(1)所示,一张三角形纸片ABC , ACB =90º,AC =8,BC =6.沿斜边AB 的中线CD 把这张纸片剪成△AC 1D 1和△BC 2D 2两个三角形,如图(2)所示.将纸片△AC 1D 1沿直线D 2B (AB )方向平移(点A 、D 1、D 2、B 始终在同一条直线上),当点D 1与点B 重合时,停止平移.在平移的过程中,C 1D 1与BC 2交于点E ,AC 1与C 2D 2、BC 2分别交于点F 、P .
(1)当△AC 1D 1平移到如图(3)所示的位置时,猜想图中D 1E 与D 2F 的数量关系,并证明你的猜想;
(2)设平移距离D 2D 1为x ,△AC 1D 1和△BC 2D 2重叠部分的面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围;
(3)对于(2)中的结论是否存在这样的x ,使得重叠部分的面积等于原△ABC 纸片面积的1
4
?若存在,请求出x 的值;若不存在,请说明理由.
(折叠)4、如图1,矩形纸片ABCD中,AD=14cm,AB=10cm。
(1)将矩形纸片ABCD沿折线AE对折,使AB边与AD边重合,B点落在F点处,如图2所示;再剪去四边形CEFD,余下的部分如图3所示。
若将余下的纸片展开,则所得的四边形的ABEF的形状是____;它的面积为____cm2。
(2)将图3中的纸片沿折线AG对折,使AF与AE边重合,F点落在H点处,如图4所示;再沿HG将△HGE剪去,余下的部分如图5所示。
把图5的纸片完全展开,请你在图6的矩形ABCD中画出展开后图形的示意图,剪去的部分用阴影表示,折痕用虚线表示;
(3)求图5中的纸片完全展开后的图形面积(结果保留整数)。