AC-DC电源测试解决方案
AC-DC-DC电源技术方案

A C-D C-D C电源技术方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN直流电源设计方案目录1.概述................................... 错误!未定义书签。
2 系统的整体结构设计..................... 错误!未定义书签。
3.三相六开关APFC电路设计............................... 错误!未定义书签。
4. 移相全桥ZVS PWM变换器分析与设计 ............. 错误!未定义书签。
5.高压直流二次电源DC/DC变换器设计 .......... 错误!未定义书签。
6. 器材选取 .............................................................. 错误!未定义书签。
7. 电源系统散热分析 .............................................. 错误!未定义书签。
8. 参数设计仿真结果 .............................................. 错误!未定义书签。
1.概述目的和意义目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。
为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。
电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。
因此,大功率开关电源的功率因数校正技术及 DC/DC变换器软开关技术是当前研究的热点。
开关电源技术发展现状开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。
2013全国电子设计竞赛AC-DC变换电路(A题)设计报告+++资料

2013年全国大学生电子设计竞赛单相AC/DC变换电路(A题)2013年9月7日摘要本系统以Boost升压斩波电路为核心,采用PFC功率因数校正专用控制芯片UCC28019产生PWM波形,进行闭环反馈控制,从而实现稳压输出。
实验结果表明:电源进线的交流电压和负载电流在比较宽的范围内变化时,电源输出直流电压能够保持较高的稳定性,电源交流输入功率因数达到89%,效率达到92%,具有良好的电压调整率和负载调整率,此外,本系统还具有输出2.5A过流保护,输出功率因数的测量与显示功能。
关键词:开关电源UCC28019 Boost电路功率因数校正【Abstract】This system in order to Boost the Boost chopper circuit as the core, adopts PFC control chip dedicated power factor correction UCC28019 PWM waveforms, the closed-loop feedback control, so as to realize the voltage output. The experimental results show that the power supply into line voltage and load current changes in a comparatively wide scope, can maintain the stability of the high power output dc voltage, power supply ac input power factor reaches more than 89%, efficiency of 92%, has the good voltage regulation and load regulation, In addition, this system also has 2.5 A output over-current protection, the measurement and display of power factor of the output.目录1系统方案 (1)1.1 DC/DC变换模块的论证和选择 (1)1.2 PFC控制方案的论证和选择 (2)2系统理论分析与计算 (2)2.1电路设计的分析 (2)2.1.1主电路的分析 (2)2.1.2控制电路的分析 (3)2.1.3功率因数测量电路的分析 (6)2.2主回路器件的选择及参数计算 (6)2.3 PFC控制电路参数计算 (9)3电路与程序设计 (10)3.1电路的设计 (10)3.1.1系统总体框图 (10)3.1.2 主电路子系统框图与电路原理图 (11)3.1.3 辅助电路子系统框图与电路原理图 (12)3.1.4辅助电源 (12)3.2程序的设计 (13)3.2.1程序功能描述与设计思路 (13)3.2.2程序流程图 (13)4测试方案与测试结果 (14)4.1测试方案 (14)4.2 测试条件与仪器 (15)4.3 测试结果及分析 (15)4.3.1测试结果(数据) (15)4.3.2测试分析与结论 (16)附录1:电路原理图 (17)附录2:源程序.............................................. 错误!未定义书签。
AC-DC反激开关电源实验报告

反激开关电源的设计与调试1.实验目的:掌握反激电路、TOP255YN芯片的使用方法与各元器件的参数计算;掌握各种测试仪器的使用;输入220交流电压,得到12V电压,1.5A电流稳定主输出;副输出5V,1A。
频率f=66KHZ,输出功率23W,输出纹波100mV。
2.实验器材:示波器、负载、输入电源、测温器、万用表。
3.实验内容:(1)反激电路工作原理连续模式初级电流有前沿阶梯且从前沿开始斜坡上升。
在开关管关断期间,次级电流为阶梯上叠加衰减的三角波。
当开关管在下个周期开始导通瞬间,次级仍然维持有电流。
在下一个周期开关管开通时刻,变压器储存能量未完全释放,仍有能量剩余。
三、实验数据分析输入电压为220V 交流,整流后得到Vdc=311V 直流。
MOS 管上电压为Vdc+(Np/Ns )*(Vo+1)=400V 。
(1)变压器设计 占空比:)/)(1()1(8.0)/)(1(on Ns Np Vo Vdc T Ns Np Vo T ++-⨯+==0.4695 初级匝数:fAe Bpk T V N **⨯*⨯=2on o 2p =71匝取72匝 f=66khz 次级匝数:dc on of f 1o p s V T T V N N **+*=)(=8.2匝取9匝 次级峰值电流:=-=)1(o crs Ton Vo P I 2.83A 次级平均电流:csr of f ar I T I *==1.5AVoTon Po Icpr *=25.1=0.337A Top255芯片峰值电流:Ton I I /cpr p ==0.802A过载保护:典型值Ilimit=1.7ARil=12k 时,Ilimit0=61%Ilimit =1.037A (上图左边为百分比)说明:当Ip 大于Ilimit0时,top255停止工作以达到过载保护的效果。
(2)电感设计PoT Ton Vdc Vdc Lp *⨯-=5.22^))(1(=1198.3uH (3)测试数据变压器温度50摄氏度,TOP255温度30摄氏度。
AC-DC-DC电源技术方案

直流电源设计方案目录1.概述 (1)2 系统的整体结构设计 (3)3.三相六开关APFC电路设计 (23)4. 移相全桥ZVS PWM变换器分析与设计 (28)5.高压直流二次电源DC/DC变换器设计 (34)6. 器材选取 (40)7. 电源系统散热分析 (55)8. 参数设计仿真结果 (58)1.概述1.1 目的和意义目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。
为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。
电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。
因此,大功率开关电源的功率因数校正技术及DC/DC变换器软开关技术是当前研究的热点。
1.2 开关电源技术发展现状开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。
为了稳定输出电压,设计电压反馈电路对输出的电压进行采样,并把所采样的电压信号送到控制电路中,进行比较处理,调节输出的控制脉冲的占空比,最终使输出电压的纹波及电源的稳定满足设计指标。
开关电源通常包括EMI滤波模块、AC/DC变换模块、DC/DC变换模块、控制、驱动及保护模块、辅助电源模块等。
传统的开关电源输入电流中谐波含量高,功率因数低,开关损耗大、电磁干扰严重等一系列问题阻碍了电源技术向着高效率、绿色化、实用化的方向发展。
自20世纪80年代以来,随着有源功率因数校正技术和软开关技术的发展,上述问题得到了较好的解决,开关电源技术也步入了一个新的迅速发展的阶段。
1.3 本次设计的主要内容本次设计一款符合《航天地面直流电源通用规范》要求的直流电源系统。
非隔离降压型电源设计方案

非隔离降压型电源设计方案一款不带变压器的宽电压、低成本、非隔离式AC/DC降压转换器——输出持续电流500mA(2.5~12W)【关键词摘要】非隔离恒流恒压AC/DC电源芯片XD308H BUCK电路220V转5V220V转12V220V转24V380V转5V380V转12V380V转24V【概述】非隔离AC-DC电源芯片XD308H设计组成的降压恒流恒压电路,采用了BUCK电路拓扑结构,常用于小家电控制板电源以及工业控制电源供电。
其典型电路规格包含24V/500mA、12V/500mA和5V/500mA等,满足六级能效要求。
可通过雷击、EFT、浪涌等可靠性测试,可通过UL、CE、3C等认证。
其特点是:电路简单、BOM成本低(外围元件数目极少:无需变压器、光耦),电源体积小、无异常噪音、损耗小发热低。
1)220V转24V降压电路:输入32~380Vac,输出24V/500mA电源方案如图所示的电路为一个典型的输出为24V/500mA的非隔离电源。
它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。
此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。
220V转24V降压电路输入级由保险电阻RF1、防雷压敏电阻RV1、整流桥堆D1、EMI滤波电容C4和C5以及滤波电感L2组成。
保险电阻RF1为阻燃可熔的绕线电阻,它同时具备多个功能:a)将桥堆D1的浪涌电流限制在安全的范围;b)差模噪声的衰减;c)在其它任何元件出现短路故障时,充当输入保险丝的功能(元件故障时必须安全开路,不应产生任何冒烟、冒火及过热发光现象)。
压敏电阻RV1用于防雷保护,提高系统可靠性。
功率处理级由宽电压高效率电源芯片XD308H、续流二极管D2、输出电感L1及输出电容C3构成。
2)220V转12V降压电路:输入32~380Vac,输出12V/500mA电源方案如图所示的电路为一个典型的输出为12V/500mA的非隔离电源。
用示波器进行开关电源测量和分析

用示波器进行开关电源测量和分析
1 开关电源原理简介 1)、开关电源是一种高频开关式的能量变换电子电路,常作为设备的电源供应器,常见变换分类有:AC-DC、DC-
DC、DC-AC 等。
2)、开关电源原理框(1)市电进入电源后,首先经过是最前级的EMI
滤波电路部份,EMI 滤波的主要作用是滤除外界电网的高频脉冲对电源的干扰,同时还有减少开关电源本身对外界的电磁干扰。
实际上它是利电感和电容的特性,使频率为50Hz 左右的交流电可以顺利通过滤波器,而高于50Hz 以上的高频干扰杂波将被滤波器滤除。
(2)经过EMI 滤波,所得到较为平整的正弦波交流电被送入前级整流电路进行整流,整流工作都由全桥式整流二极管来担任。
经过全桥式整流二
级管整流后,电压全部变成正相电压。
不过此时得到的电压仍然存在较大的起伏,这就必须使用高压滤波电容进行初步稳压,将波形修正为起伏较小的波形。
(3)把直流电转化为高频率的脉动直流电,这一步由控制电路来完成。
输出部分通过一定的电路反馈给控制电路,控制电路用来调整高频开关元件的
开关时间比例,以达到稳定输出电压的目的。
控制电路目前已集成化,制成了
各种开关电源用集成电路。
(4)把得到的脉动直流电,送到高频开关变压器进行降压。
再由二极
管和滤波电容组成的低压滤波电路进行整流和滤波就得到了设备上使用的纯静
的低压直流电。
3)、开关电源特点:
(1)开关电源是一种非线性电源,体积和重量轻。
ACDC开关电源控制器的设计与应用

关键词:变换器,PWM控制,CV模式,CC模式,matlab仿真
武汉理工大学硕士学位论文
application circuit function and stability.At the same time,the system uses
multi—mode conversion to make the system more stable performance.In this paper,it
本文的主要工作可归结如下: 1、根据开关电源管理器控制模式的比较,提出了峰值电流模式控制PWM技术。 重点研究多种模式的转换,在此基础上引入PSM模式调节,通过对控制器功能 的需求分析,结合控制器的结构框图和峰值电流模式控制PWM技术的特点,设 计出了控制器的整体方案框图。 2、在matlab仿真环境下,研究控制器整个系统的软件架构,并重点设计软启动 模块、峰值电流的采集模块、模式转换模块和电路保护模块。通过研究控制器 系统,得到控制器的小信号模型,设计了控制级的传输函数,使系统得到补偿。 3、研究控制器的外围应用电路,重点设计高频变压器,进行参数的设计,系统 的调试,对系统进行完善。 4、针对在模块测试和系统测试中遇到的问题,提出一些合理的解决方案,使系 统的性能更加优化,得到稳定的系统运行。
Abstract
With the scientific and technological development,more and more people are inseparable from electronic products,especially portable products are more and more popular for all people,for example cell phones,laptops,digital cameras and SO on. They can be seen everywhere.But these electronic devices need power supply So a good performance of the power supply can make electronic devices work very well.
家庭储能系统整体电源解决方案

家庭储能系统整体电源解决方案一、引言 随着美国“百万太阳能屋顶计划”和德国“能源转型”的持续发展,家庭储能系统,尤其政府对民间使用光伏电力给予高额度的补贴,使得大部分民众实现家庭电力的自给自足,还可储存多余的电量,导致了德国乃至欧洲家庭储能市场的兴起。
家庭储能系统类似于一个微型储能电站,其运行不受城市供电压力影响。
在用电低谷时间,家庭储能系统中的电池组可自行充电,以备用电高峰或断电时使用。
除用作应急电源外,家庭储能系统也因能均衡用电负荷,从而节省家庭电力开支。
虽然当前家庭储能系统的市场需求更多出于民众对应急后备电源的需要,但在业内人士看来,使用家庭储能系统可以组合太阳能等新能源发电系统、推动新能源的推广以及构筑智能电网,市场前景广阔。
二、家庭储能系统基本结构及组件要求 家庭储能系统目前分为两种,一种为并网家庭储能系统,一种为离网家庭储能系统。
并网家庭储能系统由五大部分构成,包括:太阳能电池阵列、并网逆变器、BMS管理系统、电池组、交流负载。
系统采用光伏与储能系统混合供电。
市电正常时,由光伏并网系统和市电为负载供电;市电断电时,由储能系统和光伏并网系统联合供电。
并网家庭储能系统分为三种工作模式,模式一:光伏提供储能、余电上网;模式二:光伏提供储能、部分用户用电;模式三:光伏仅提供部分储能。
并网家庭储能如图一所示: 图一并网家庭储能系统图(图片来自网络) 离网家庭储能系统是独立的,和电网没有任何的电气连接,因此整个系统并不需要并网逆变器,光伏逆变器就可以满足要求。
离网家庭储能系统分为三种工作模式,模式一:光伏提供储能和用户用电(晴天);模式二:光伏和储能电池提供用户用电(阴天);模式三:储能电池提供用户用电(傍晚和雨天)。
离网家庭储能如图二所示: 图二离网家庭储能系统图(图片来自网络) 综上所述,目前需求的储能设备主要为BMS电池管理系统,光伏并网逆变器、储能逆变器。
针对以上家庭储能设备需求,并结合光伏系统各单元电路安全隔离特性,金升阳提出一整套控制单元的电源解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AC/DC 电源测试解决方案
电源发展概述
电源行业是整个电子产业的能源基础行业,随着电力电子设备的多样化及人们节能环保意识的增强,电源市场也随之繁荣活跃起来,竞争预演愈烈。
电源种类尤其复杂多样,大致可以分为AC/DC 电源、DC/AC 电源、
DC/DC 电源、AC/AC 电源等几类;用途上又可分为适配器、UPS、PC 电
源、通信电源、安防电源、医疗电源、航空电源等。
纵观这些种类的电源,其未来发展趋势正如业内专家所指出的:1、更小的外形因子,即功率密度的提升,2、更高的效率,即要达到80%乃至90%以上,3、更低的每瓦成本。
这些都对电源测试提出了更加严格的要求,以保障满足高要求的电源能够适应较为苛刻的使用环境。
本文主要介绍了由北京普源精电科技有限公司(RIGOL)提供的AC/DC 电源测试解决方案。
AC/DC 电源的主要测试参数
在门类众多的电源产品中,AC/DC 电源是应用最为广泛的电源之一。
如常
见的笔记本适配器、手机适配器、PC 电源等都是典型的AC/DC 开关电源,
电子市场上的AC/DC 开关电源模块也属于这个范畴。
电源厂商为了保证出厂产品的优良品质,并进一步提高AC/DC 电源的性能。