六年级最值问题教师版

合集下载

六年级奥数专题经典 最值问题及答案

六年级奥数专题经典 最值问题及答案

例1.1.有9个同学要进行象棋比赛,他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛。

他们一共最多能比赛多少场?2.直角三角形斜边长为10cm,求这个直角三角形面积的最大值。

3.一个边长为30的正方形,四个角减去四个正方形,剩下部分可以拼成一个无盖长方体,那么所得的长方体容积最大是多少?4.用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成两个多位数,那么这两个多位数的乘积最大是多少?5.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个⨯-⨯的计算结果的最大值。

数字组成一个三位数FGH和一个两位数IJ。

求算式ABC DE FGH IJ例2.1.如图,用1×2和1×3两种规格的小长方形地板砖铺满5×8的地面,至少需要地板砖多少块?2. 国际象棋的皇后可以控制她所在的横线、竖线和斜线,图中一个皇后(图中五角星)就把整个3×3的棋盘控制了。

那么为了控制一个4×4的棋盘至少要放几个皇后?3. 通过在表达式1÷2÷3中加括号,我们可以得到两个不同的值(1÷2)÷3=61和1÷(2÷3)=23,现在表达式1÷2÷3÷4÷5÷6÷7÷8中加上括号,问我们所能得到的最大值是多少?4. 把14分拆成几个自然数的和,再求出这些自然数的乘积,使得到的积尽可能大,这个乘积是多少?请证明你的结论。

5. 在1,3,5,……99中选取k 个数,使得它们的和为1949,那么k 的最大值是多少?6. A 、B 、C 、D 、E 、F 、G 、H 、I 表示9个各不相同的不为零的自然数,这9个数排成一排,如果其中任何五个相邻的数之和都大于40,那么这9个数的和最小是多少?。

小学六年级奥数第25讲 最大最小问题(含答案分析)

小学六年级奥数第25讲 最大最小问题(含答案分析)

第25讲 最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。

最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。

二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -ba+b的最大值。

根据题意,应使分子尽可能大,使分母尽可能小。

所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950 答:a -b a+b 的最大值是4950 。

练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -yx+y的最大值。

2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -ba+b的最小值。

3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+yx -y的最大值;②求x+yx -y的最小值。

【例题2】有甲、乙两个两位数,甲数27等于乙数的23。

这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。

由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。

练习2:1.有甲、乙两个两位数,甲数的310等于乙数的45。

这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。

这两个两位数的和最小是多少?3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。

问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。

小学六年级奥数 第十五章 最值问题

小学六年级奥数 第十五章 最值问题

第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。

当两个数相等时,它们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

3.把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。

典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况:13=0+13,0×13=0; 13=1+12,1×12=12;13=2+11,11×2=22; 13=3+10,3×10=30;13=4+9,4×9=36; 13=5+8,5×8=40;13=6+7,6×7=42。

由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。

解13÷2=6……1,6×(6+1)=42。

答:这两个整数分别为6和7。

例2 比较下面两个乘积的大小。

A=57128463×87596512 B=57128470×87596505点拨要比较A与B的大小,用计算的方法求积会很麻烦。

仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比较每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。

解 A组两个因数的差:87596512-57128463=30468049,B组两个因数的差:87596505-57128470=30468035。

因为30468049>30468035,所以B>A。

例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况:50=50×1,50+1=51;50=25×2,25+2=27;50=10×5,10+5=15。

最值问题题库

最值问题题库

最值问题(题库)六年级暑假:最值问题一、学习目标掌握小学类各种最值问题二、知识点拨(1)从极端情况入手我们在分析某些数学问题时,不妨考虑一下把问题推向“极端”。

因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解。

(2)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案。

(3)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法。

(4)构造在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果。

(5)应用求最大值和最小值的结论和一定的两个数,差越小,积越大。

积一定的两个数,差越小,和越小。

三、教学建议本讲重点是让学生体会加法和减法的意义,以及学习在面对错误时利用还原思想调整出正确答案的能力。

那么针对这个目标,教师在选题时,可以根据班级学生的知识体系结构以及学习能力选择题目。

其中类型一到类型六是必学的知识,建议可以只选每个类型的例题(练习可以根据班级情况适当选择),从简到难学习。

注:本建议适合班级学生程度中等。

四、经典例题[类型一]和一定差小积大、积一定差大和大【例 1】把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?分析:拆数问题尽可能多的出现3,解答:16÷3=5……1,所以16=3+3+3+3+3+4【巩固提高1】将17分成若干个自然数的和,再求这些自然数的乘积,要使得到的乘积尽可能大,这个乘积是多少?A【巩固提高2】把50拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?A【巩固提高3】将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?B【巩固提高4】将546分解成四个不同自然数的乘积,这四个自然数的和最大是多少?B【例 2】 用20厘米长得铁丝弯成边长是整数的长方形,这样的长方形不止一种。

沪教版(上海)六年级第二5.3绝对值优秀教学案例

沪教版(上海)六年级第二5.3绝对值优秀教学案例
在学生理解绝对值的概念后,我通过一系列练习题,让学生运用绝对值的性质解决问题。如“已知一个数的绝对值是5,求这个数。”我引导学生分情况讨论,得出结论。
最后,我以小组合作的方式,让学生探讨绝对值在实际生活中的应用,如计算两地之间的距离、判断点的位置等。通过小组讨论,让学生巩固绝对值的知识,提高解决问题的能力。
(二)问题导向
我采用问题导向的教学策略,引导学生主动思考和探究。在教学过程中,我提出了一系列问题,如“绝对值是什么?”,“绝对值的性质是什么?”,“如何运用绝对值解决实际问题?”等问题,引导学生进行思考和讨论。通过问题的引导,学生能够更深入地理解绝对值的概念和性质,提高解决问题的能力。
(三)小组合作
3.通过解决实际问题,让学生感受到数学在生活中的应用,提高学生对数学的价值认识。
三、教学策略
(一)情景创设
在本节课中,我注重创设贴近学生生活的情景,激发学生的学习兴趣。如在引入绝对值的概念时,我设计了一个小明从A地到B地,然后又返回A地的情景。学生通过思考小明总共行驶了多少公里,自然引入了绝对值的概念。此外,我还设计了一些实际问题,如计算两地之间的距离、判断点的位置等,让学生在解决实际问题的过程中,理解和运用绝对值的知识。
3.引导学生运用绝对值解决实际问题,培养学生的解决问题的能力和创新思维。
(三)情感态度与价值观
在本节课中,学生将培养对数学的兴趣和自信心,提高对数学的情感态度。具体包括:
1.通过实际问题的引入,激发学生对绝对值知识的好奇心,提高学生学习数学的兴趣。
2.鼓励学生在小组讨论中积极发表自己的观点,培养学生的自信心和自尊心。
(三)学生小组讨论
在讲授完绝对值的概念和性质后,我会组织学生进行小组讨论。我会提出几个讨论题目,如:“如何用绝对值表示一个数轴上的点?”,“绝对值在实际生活中有哪些应用?”让学生在小组内分享自己的观点和思考。通过小组讨论,学生能够更深入地理解绝对值的知识,提在小组讨论结束后,我会引导学生进行总结归纳。我会邀请几位学生分享他们在讨论中的收获和感悟,让学生总结绝对值的概念和性质,以及绝对值在实际生活中的应用。通过总结归纳,学生能够更好地巩固所学知识,提高对绝对值的理解和运用能力。

小学六年级奥数计算题及答案:最值问题

小学六年级奥数计算题及答案:最值问题

小学六年级奥数计算题及答案:最值问题
★这篇【小学六年级奥数计算题及答案:最值问题】,是特地为大家整理的,希望对大家有所帮助!
一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试( )次才能配好全部的钥匙和锁.
分析:第一把钥匙最坏的情况要试3次,把这把钥匙和这把锁拿出;剩下的3把锁和3把钥匙,最坏的情况要试2次,把这把钥匙和这把锁拿出;剩下的2把锁和2把钥匙,最坏的情况要试1次,把这把钥匙和这把锁拿出;剩下的1把锁和1把钥匙就不用试了.
解:3+2+1=6(次);
答:最多要试6次才能配好全部的钥匙和锁.
故答案为:6.。

小升初必考专题:最值问题(讲义)-2020-2021学年数学六年级下册-全国通用(含答案)

小升初必考专题:最值问题(讲义)-2020-2021学年数学六年级下册-全国通用(含答案)

把一个自然数n 拆分成若干个自然数的和,怎样拆这些分拆数的乘积最大?第一种情况:拆出的个数已指定结论:这些数越接近乘积越大第二种情况:拆出的个数随意结论:多拆3,少拆2,不拆1例3各位数码是0、1或2,且能被225整除的最小自然数是多少?例2n 200820082008200808个能被11整除,那么,n 的最小值为多少?例1一个数的20倍减1能被153整除,这样的自然数中最小的是多少?最值问题测试题1.从0,l ,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?2.要用竹篱笆围一个面积为6400平方米的矩形养鸡场。

如果每米篱笆要用去30千克毛竹,那么该怎样围,才能使毛竹最省?3.在六位数ABCDEF 中,不同的字母表示不同的数字,且满足A ,AB ,ABC ,ABCD ,ABCDE ,ABCDEF 依次能被2,3,5,7,11,13整除。

则ABCDEF 的最小值是 ;已知当ABCDEF 取得最大值时0C =,6F =,那么ABCDEF 的最大值是________。

4.在8个不同约数的自然数中,最小的一个是____。

5.从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____。

6.有13个不同的自然数,它们的和是100。

问其中偶数最多有多少个?最少有多少个?例6用1,3,5,7,9这5个数字组成一个三位数ABC 和一个两位数DE ,再用O ,2,4,6,8这5个数字组成一个三位数FGH 和一个两位数IJ 。

求算式ABC ×DE -FGH ×IJ 的计算结果的最大值。

例5用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成一个四位数和一个五位数,使乘积最大:则□□□□□×□□□□应该怎样填?例4已知自然数A 、B 满足以下两个性质:⑴A 、B 不互素;⑵A 、B 的最大公约数与最小公倍数之和为35。

小学六年级最值问题

小学六年级最值问题

最值问题1、六年级最值问题:难度:高难度表示一个四位数,表示一个三位数,A,B,C,D,E,F,G代表1至9的不同的数字。

已知,问:乘积的最大与最小值差多少?答:2、六年级六年级最值问题:难度:高难度一组互不相同的自然数,其中最小的数是1,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和,问:这组数之和最大值是多少?当这组数之和有最小值时,这组数都有哪些数?并说明和是最小值的理由。

答:3、六年级最值问题:难度:高难度将l,2,3…49,50任意分成l0组,每组5个数,在每组中取数值居中的那个数为“中位数”,求这l0个中位数之和的最大值及最小值。

答:4、六年级最值问题:难度:中难度把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?答:5、六年级最值问题:难度:高难度下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?答:1、六年级最值问题习题答案:【解】可以看出A=1,因为E≠O,1,所以B最大为7,这时E=2由于D、G都不能是O,1,所以D+G=13,C+F=8由于F≠O,1,2,所以C最大为5。

从而三位数最大为759,这时=34。

最小为234(这时=759最大)。

=(1000+)×(993-),=1000×993-1000×+993×一×=993000-7×—-×于是在最大时,乘积最小,最小时,乘积最大,因此,所求的差是(993000-7×234-234×234)-(993000-7×759-759×759)=7×(759-234)+759×759-234×234 =7×(759-234)+(759+234)×(759-234)=7×(759-234)+993×(759-234)=1000×<759-234)=525000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从A 地道B 地,可以乘火车,也可以乘汽车或乘轮船。

一天中,火车有4班,汽车有3班,轮船有2班。

那么从A 地道B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有3条道路(如下图)。

从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。

➢ 加法原理:为了完成一件事,有几类方法。

第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法…….第n 类方法中有n m 种不同的方法。

那么,完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法。

➢ 乘法原理:为了完成一件事,需要n 个步骤。

做第一步有1m 种不同的方法,做第二步有2m 种不同的方法……做第n 步有n m 种不同的方法。

那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法。

典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】 方法一:设这4袋为A 、B 、C 、D ,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A 、B 、C 袋糖有20、20、21块糖.第34讲 最值问题则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

相关文档
最新文档