八年级数学下册 17.1 勾股定理导学案1(新版)新人教版

合集下载

八年级数学下册 17.1.3 勾股定理导学案 (新版)新人教版

八年级数学下册 17.1.3 勾股定理导学案 (新版)新人教版

八年级数学下册 17.1.3 勾股定理导学案 (新版)新人教版17、1、3勾股定理预习案一、学习目标1、利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等、2、利用勾股定理,能在数轴上找到表示无理数的点、3、进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题、二、预习内容1、阅读课本第26-27页2、勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么:(或)变形:(或)(或)3、对应练习:(1)、①在Rt△ABC,∠C=90,a=3,b=4,则c= 。

②在Rt△ABC,∠C=90,a=5,c=13,则b= 。

(2)、如图,已知正方形ABCD的边长为1,则它的对角线AC= 。

三、预习检测1、已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。

2、已知等边三角形的边长为2cm,则它的高为,面积为。

3、已知等腰三角形腰长是10,底边长是16,这个等腰三角形的面积为____________。

4、将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A、16B、32C、8πD、64 探究案一、合作探究(9分钟),要求各小组组长组织成员进行先自主学习再合作探究、讨论。

【探究一】XXXXX:运用勾股定理证明全等判定方法:斜边直角边(HL)已知:如图,在中和中,,求证:≌、【探究二】XXXXX:如何在数轴上画出表示的点?点拨:①:由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可、②长为的线段能否是直角边为正整数的直角三角形的斜边呢?设c =,两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13、若a,b为正整数,则13必须分解为两个正整数的平方和,即13=2+2、所以长为的线段是直角边为、的直角三角形的斜边、请在数轴上完成作图、二、合作、交流、1、例1:已知:如图,△ABC中,AB=4,∠C=45,∠B=60,根据题设可求出什么?【点拨】如何添加辅助线将一般三角形的问题转化为直角三角形的计算问题呢?2、例2:已知:如图,∠B=∠D=90,∠A=60,AB=4,CD=2、求:四边形ABCD的面积、【点拨】如何将四边形的问题转化为三角形问题求解,如何添加辅助线?3、问题:根据勾股定理,你能做出哪些长为无理数的线段呢?欣赏下图,你会得到什么启示?每小组口头或利用投影仪展示,一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)交流内容展示小组(随机)点评小组(随机)____________第______组第______组____________第______组第______组三、归纳总结这节课我们学习了(1)勾股定理的应用;(2)分类、转化、方程思想、你能说说具体内容吗?四、课堂达标检测1、△ABC中,AB=AC=25cm,高AD=20cm,则BC= ,S△ABC= 。

八年级数学下册 第十七章 勾股定理 17.1勾股定理(一)导学案(新版)新人教版

八年级数学下册 第十七章 勾股定理 17.1勾股定理(一)导学案(新版)新人教版

17.1勾股定理〔一〕二、答疑解惑我最棒〔约8分钟〕 甲: 乙:丙:丁:同伴互助答疑解惑 三、合作学习探索新知〔约15分钟〕 1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题◆关于直角三角形,你知道哪些方面的知识?〔1〕直角三角形叫Rt △〔2〕两锐角互余∠A+∠B=90°〔3〕三角形的面积s=21ab=21hc〔4〕30°所对的直角边等于斜边的一半〔5〕证明两个直角三角形全等有“HL 〞◆毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500•年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯学习活动 设计意图却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突破恍然大悟的样子,站起来,大笑着跑回家去了.同学们,你想知道大哲学家发现了什么吗?〔见课件〕问题:大正方形的面积与两个小正方形的面积有什么关系?学习活动设计意图◆在约公元前1100年,我国古算书?周髀bì算经?记载,人们已经知道,如果勾是三,股是四,那么弦是五.在我国古代,人们将直角三角形中的短的直角边叫做勾长的直角边叫做股斜边叫做弦.四、归纳总结稳固新知〔约15分钟〕1、知识点的归纳总结:〔1〕经过证明被确认正确的命题叫做定理〔2〕勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么即 直角三角形两直角边 的平方和等于斜边的平方。

2、运用新知解决问题:〔重点例习题的强化训练〕◆, Rt △ABC 中,a ,b 为的两条直角边,c 为斜边,求:⑴: a =3, b =4,求c⑵: c =10,a =6,求b◆课本P24页练习◆课本P28页习题17.1第1题学习活动 设计意图五、课堂小测〔约5分钟〕 1.Rt ∆ABC 的两条直角边a=3, b=4,那么斜边c= .2.:如图在△ABC 中,∠ACB=90°,以△ABC 的各边为在△ABC 外作三个正方形分别表示这三个正方形的面积, 那么的边长为〔 〕A.6B.36C.64D.83 .假设直角三角形两直角边分别为12,16,那么此直角三角形的周长为〔 〕A.28B.36C.32D.484 .直角三角形的三边长分别为3,4,x ,那么x 2等于〔 〕A.5B.25C.7D.25或7六、独立作业我能行 1、预习课本P25-26页,思考预习提纲222a b c +=。

最新人教版八年级数学下册第十七章勾股定理导学案

最新人教版八年级数学下册第十七章勾股定理导学案

5、如图,滑杆在机械槽内运动,∠ACB 为直角,已知滑杆 AB 长 100cm,顶端 A 在 AC 上运动,量 得滑杆下端 B 距 C 点的距离为 60cm,当端点 B 向右移动 20cm 时,滑杆顶端 A 下滑多长?
A E
A
1m
B (四)达标检测
实际问题 数学模型 2、如图,一个 3 米长的梯子 AB,斜靠在一竖直的墙 AO 上,这时 AO 的距离为 2.5 米.如果梯子的顶 端 A 沿墙下滑 0.5 米,那么梯子底端 B 也外移 0.5 米吗?(计算结果保留两位小数) A A C O C O B D O B
(1) 观察图 1-1。 A 的面积 是__________个单位面积; B 的面积是 __________ 个单 位面积; C 的面积是 __________ 个单 位面积。
《17.1 勾股定理》导学案(2)
学习目标:1.会用勾股定理进行简单的计算。 2.勾股定理的实际应用,树立数形结合的思想、分类讨论思想。 学习重点:勾股定理的简单计算。 学习难点:勾股定理的灵活运用。 学习过程 一、自学导航(课前预习) 1、直角三角形性质有:如图,直角△ABC 的主要性质是:∠C=90°, (用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边: (3)直角三角形斜边上的 (4)三边之间的关系: 等于斜边的 。 ; ; 。
A D
_____________________________________________________________________ 。 (3)展示提升(质疑点拨) 1.在 Rt△ABC 中, C 90 , S1 S2 S3
C
B
(1)如果 a=3,b=4,则 c=________; (2)如果 a=6,b=8,则 c=________; (3)如果 a=5,b=12,则 c=________;

八年级数学下册 17_1 勾股定理 第1课时 勾股定理导学案 (新版)新人教版

八年级数学下册 17_1 勾股定理 第1课时 勾股定理导学案 (新版)新人教版

第十七章勾股定理17.1 勾股定理第1课时勾股定理1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.自学指导:阅读课本22页至24页,完成下列问题.知识探究1.毕达哥拉斯在朋友家做客时,发现了用砖铺的地面反映了直角三角形三边的某种数量关系.2.通过你的观察,你发现了等腰直角三角形两直角边的平方和等于斜边的平方.3.命题一:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.4.汉代赵爽利用弦图证明了命题一,把这个命题称作勾股定理.而西方人认为是毕达哥拉斯证明,所以西方人称作毕达哥拉斯定理.自学反馈1.在直角三角形中,两条直角边的平方和等于斜边的平方.2.在直角三角形中,两直角边分别为3、4,那么斜边为5.3.在直角三角形中,斜边为10,一直角边为6,则另一直角边为8.运用勾股定理“两直角边的平方和等于斜边的平方”计算.活动1 小组讨论探究一:探究勾股定理:两直角边的平方和等于斜边的平方.(1)如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A的面积=4;B的面积=9;(2×3)=13;C的面积=52-4×12所以A+B=C.A′=9;B′=25;C′=82-4×1(5×3)=34;2所以A′+B′=C′.所以直角三角形的两直角边的平方和等于斜边的平方.(2)赵爽弦图解:朱实=1ab;黄实=(a-b)2;2ab×4=a2+b2-2ab+2ab=a2+b2;正方形的面积=4朱实+黄实=(a-b)2+12又正方形的面积=c2,所以a2+b2=c2,即直角三角形两直角边的平方和等于第三边的平方.探究二:求出直角三角形中未知边的长度.解:∵Rt△ABC中,∠C为直角,∴BC2+AC2=AB2,即62+AC2=102.∴AC2=64.∵AC>0,∴AC=8.探究三:一个门框的尺寸如图所示,一块长3米,宽2.2米的薄木板能否从门框内通过?为什么?分析:木板横着、竖着,都不可能从门框内通过,所以只能试试斜着能否通过.对角线AC(或BD)是斜着能通过的最大长度.求出AC,再与木板的宽比较,就能知道木板能否通过.解:∵Rt△ABC中,∠B为直角,根据勾股定理,得:AC2=AB2+BC2=12+22=5.∴AC=5≈2.236.∵AC大于木板的宽,∴木板能从门框通过.活动2 跟踪训练1.在Rt△ABC中,∠A、∠B、∠C的对边为a、b、c,∠C=90°.(1)已知a=3,b=4.则c=5.(2)已知c=25,b=15.则a=20.(3)已知c=19,a=13.则b=83.(结果保留根号)(4)已知a∶b=3∶4,c=15,则b=12.利用方程的思想求直角三角形有关线段的长.2.(1)直角三角形两条直角边的长分别为6和8,则斜边上的中线为5.(2)在Rt△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=1∶3∶2.(3)在Rt△ABC中,∠C=90°,AC=BC,则AC∶BC∶AB=1∶1∶2.若AB=8,则AC=42.又若C D⊥AB于D,则CD=4.3.一个3 m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5米,如果梯子的顶端A沿着墙下滑0.5 m,那么梯子底端B也外移0.5 m吗?解:∵在Rt△AOB中,OB2=AB2-AO2=32-2.52=2.75,∴OB≈1.658(m).在Rt△COD中,OD2=CD2-CO2=32-22=5,∴OD≈2.236(m),BD=OD-OB≈2.236-1.658=0.578(m),BD≠0.5(m).4.等边△ABC的边长为a,则高AD=?面积S=?解:添加辅助线:作AD⊥BC构建直角三角形.∵三角形ABC为等边三角形,∴AD平分BC,BD=12a.在Rt△ABD中,AD2=a2-(12a)2=34a2,∴3,S=12·a33a2.活动3 课堂小结1.勾股定理的内容及证明.2.勾股定理的简单应用.。

八年级数学下册17勾股定理171勾股定理第1课时导学案新人教版

八年级数学下册17勾股定理171勾股定理第1课时导学案新人教版

勾股定理课型: 新授课上课时间:课时: 1【学习目标】a)了解勾股定理的文化背景,体验勾股定理的探索过程。

b)了解利用拼图验证勾股定理的方法。

c)利用勾股定理,已知直角三角形的两边求第三边的长。

【重点难点】重点:探索和体验勾股定理。

难点:用拼图的方法验证勾股定理。

【授课时数】四课时第一课时【导学过程】一、自主学习毕达哥拉斯是古希腊著名的数学家,相传2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

是什么呢?我们来研究一下吧。

阅读教材内容,思考、讨论、合作交流后完成下列问题。

1.请同学们观察一下,教材图中的等腰直角三角形有什么特点?请用语言描述你发现的特点。

2.等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足这种特点?你能解决教材P65的探究吗?由此你得出什么结论?2.我们如何证明你得出的结论呢?你看懂我国古人赵爽的证法了吗?动手摆一摆,想一想,画一画,证一证吧。

二、合作探究a)教材习题第1题。

b)求下图字母A,B所代表的正方形的面积。

3.在直角三角形A BC中,∠C=90°,若a=4,c=8,则b= .三、课堂展示四、感悟释疑五、课堂小结本节课你学到了什么知识?还存在什么困惑?与同伴交流一下。

六.达标测试1.直角三角形的两边长分别是3cm,5cm,试求第三边的长度。

2.你能用下面这个图形证明勾股定理吗?【课后反思】2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.若分式21x x +有意义,则x 满足的条件是( ) A .1x =-B .1x ≠-C .0x =D .0x ≠ 2.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若EF=2,则菱形ABCD 的周长为( )A .16B .8C .42D .43.下面哪个点在函数y =2x -1的图象上( ) A .(-2.5,-4) B .(1,3) C .(2.5,4) D .(0,1)4.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法.由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”.如图是京剧《华容道》中关羽的脸谱图案.在下面的四个图案中,可以通过平移图案得到的是( )A .B .C .D .5.如图,过平行四边形ABCD 对角线交点O 的线段EF ,分别交AD ,BC 于点E ,F ,当AE =ED 时,△AOE 的面积为4,则四边形EFCD 的面积是( )A .8B .12C .16D .32 6.函数y=中自变量x 的取值范围是( ) A .x≥﹣1B .x≤﹣1C .x >﹣1D .x <﹣1A.1l B.2l C.3l D.4l8.分式21xx-有意义,则x 的取值范围是()A.x = 1 B.x ≠ 0 C.x ≠ 1 D.x ≠-19.下列命题,其中正确的有()①平行四边形的两组对边分别平行且相等②平行四边形的对角线互相垂直平分③平行四边形的对角相等,邻角互补④平行四边形只有一组对边相等,一组对边平行A.1个B.2个C.3个D.4个10.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC二、填空题11.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是______12.分解因式:224a b-= .13.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P 变换后的对应点P′的坐标为_____.14.对我国首艘国产航母002型各零部件质量情况的调查,最适合采用的调查方式是_____.15.当a=______时,211a a --的值为零. 16.式子23x x --有意义的条件是__________. 17.如图,已知:在▱ABCD 中,AB=AD=2,∠DAB=60°,F 为AC 上一点,E 为AB 中点,则EF+BF 的最小值为 .三、解答题18.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标. (3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.19.(6分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知(),DE DF AB DE A D AB AC=>∠=∠,求证:ABC DEF ∽△△)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.格比一件B 种文具的价格便宜5元,且用600元买A 种文具的件数是用400元买B 种文具的件数的2倍. (1)求一件A 种文具的价格;(2)根据需要,该校准备在该商店购买A 、B 两种文具共150件.①求购买A 、B 两种文具所需经费W 与购买A 种文具的件数a 之间的函数关系式;②若购买A 种文具的件数不多于B 种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?21.(6分)如图,在平面直角坐标系xOy 中,O 为坐标原点,已知直线1l 经过点A (-6,0),它与y 轴交于点B,点B 在y 轴正半轴上,且OA=2OB(1)求直线1l 的函数解析式(2)若直线2l 也经过点A (-6,0),且与y 轴交于点C ,如果ΔABC 的面积为6,求C 点的坐标22.(8分)计算:(1127123(2)))2515151-. 23.(8分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A 、C 分别在坐标轴上,顶点B 的坐标为(6,4),E 为AB 的中点,过点D (8,0)和点E 的直线分别与BC 、y 轴交于点F 、G .(1)求直线DE 的函数关系式;(2)函数y=mx ﹣2的图象经过点F 且与x 轴交于点H ,求出点F 的坐标和m 值;(3)在(2)的条件下,求出四边形OHFG 的面积.24.(10分)甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<x<15的时间内,速度较快的人是(填“甲”或“乙”);(2)求乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?(4)在15<x<20的时间段内,求两人速度之差.25.(10分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;(1)求证:△ABE∽△EGB;(2)若AB=4,求CG的长.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据分式有意义的条件可得x+1≠0,再解即可.【详解】解:由题意得:x+1≠0,解得:x≠-1【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.2.A【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∴菱形ABCD的周长=4BC=4×4=1.故选A.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.3.C【解析】【分析】将点的坐标逐个代入函数解析式中,若等号两边相等则点在函数上,否则就不在.【详解】解:将x=-2.5,y=-4代入函数解析式中,等号左边-4,等号右边-6,故选项A错误;将x=1,y=3代入函数解析式中,等号左边3,等号右边1,故选项B错误;将x=2.5,y=4代入函数解析式中,等号左边4,等号右边4,故选项C正确;将x=0,y=1代入函数解析式中,等号左边1,等号右边-1,故选项D错误;故选:C.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数y=kx+b,(k≠0,且k,b为常数)的图像是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.4.A【解析】结合图形,根据平移的概念进行求解即可得.【详解】解:根据平移的定义可得图案可以通过A平移得到,故选A.【点睛】.关键是要观察比较平移前后物体的位本题考查平移的基本概念及平移规律,是比较简单的几何图形变换置.5.C【解析】【分析】根据等底等高的三角形面积相等可得S△DOE=S△AOE=4,进而可得S△COD=S△AOD=8,再由平行四边形性质可证明△COF≌△AOE(ASA),S△COF=S△AOE=4,即可得S四边形EFCD=1.【详解】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD∴∠DAC=∠ACB,∵∠AOE=∠COF∴△COF≌△AOE(ASA)∵S△AOE=4,AE=ED∴S△COF=S△DOE=S△AOE=4,∴S△AOD=8∵AO=CO∴S△COD=S△AOD=8∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=1;故选:C.【点睛】本题考查了平行四边形性质,全等三角形判定和性质,三角形面积等知识点,关键要会运用等底等高的三角形面积相等.6.A【解析】【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,,解得.故选:A.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.D【解析】【分析】根据轴对称图形的概念求解.矩形是轴对称图形,可以左右重合和上下重合.【详解】解:矩形是轴对称图形,可以左右重合和上下重合,故4l可以是矩形的对称轴,故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.8.C【解析】分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.详解:由题意得:x﹣1≠0,解得:x≠1.故选C.点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.9.B【解析】【分析】根据平行四边形的性质判断即可.【详解】解:①平行四边形的两组对边分别平行且相等,正确;②平行四边形的对角线互相平分,但不一定垂直,组相等,一组平行,错误,正确的有2个.故选B.【点睛】本题考查了平行四边形的性质,平行四边形的两组对边分别平行且相等,对角线互相平分,对角相等,邻角互补,熟练掌握平行四边形的性质是解题的关键.10.C【解析】【详解】A. ∵AB=CD ,AB ∥CD ,∴四边形ABCD 为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD 为平行四边形;B. ∵∠A=∠C ,∠B=∠D ,∴四边形ABCD 为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD 为平行四边形;C. 由AB=AD ,BC=CD ,不能判定四边形ABCD 为平行四边形;D. ∵AB=CD ,AD=BC ,∴四边形ABCD 为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD 为平行四边形故选C.【点睛】本题考查平行四边形的判定.二、填空题11.x>1【解析】分析:根据两直线的交点坐标和函数的图象即可求出答案.详解:∵直线y 1=kx+b 与直线y 2=mx 交于点P (1,m ),∴不等式mx >kx+b 的解集是x >1,故答案为x >1.点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小. 12.(2)(2)a b a b +-.【解析】试题分析:原式=(2)(2)a b a b +-.故答案为(2)(2)a b a b +-.考点:因式分解-运用公式法.13.(a+3,b+2)【解析】【分析】找到一对对应点的平移规律,让点P的坐标也作相应变化即可.【详解】点B的坐标为(-2,0),点B′的坐标为(1,2);横坐标增加了1-(-2)=3;纵坐标增加了2-0=2;∵△ABC上点P的坐标为(a,b),∴点P的横坐标为a+3,纵坐标为b+2,∴点P变换后的对应点P′的坐标为(a+3,b+2).【点睛】解决本题的关键是根据已知对应点找到各对应点之间的变化规律.14.普查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】对我国首艘国产航母002型各零部件质量情况的调查是事关重大的调查,最适合采用的调查方式是普查.故答案为:普查【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.﹣1.【解析】【分析】根据分式的值为零的条件列式计算即可.【详解】由题意得:a2﹣1=2,a﹣1≠2,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为2;②分母不为2.这两个条件缺一不可.16.2x ≥且3x ≠【解析】【分析】x-2≥0,x-3≠0,解出x 的范围即可. 【详解】式子3x -有意义,则x-2≥0,x-3≠0,解得:2x ≥,3x ≠,故答案为2x ≥且3x ≠. 【点睛】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.17..【解析】试题分析:首先菱形的性质可知点B 与点D 关于AC 对称,从而可知BF=DF ,则EF+BF=EF+DF ,当点D 、F 、E 共线时,EF+BF 有最小值.解:∵▱ABCD 中,AB=AD ,∴四边形ABCD 为菱形.∴点D 与点B 关于AC 对称.∴BF=DF .连接DE .∵E 是AB 的中点,∴AE=1.∴=又∵∠DAB=60°,∴cos∠DAE=.∴△ADE为直角三角形.∴DE===,故答案为:.【点评】本题主要考查的是最短路径、平行四边形的性质以及菱形的性质和判定,由轴对称图形的性质将EF+FB的最小值转化为DF+EF的最小值是解题的关键.三、解答题18.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.19.见解析【解析】【分析】在AB 上截取AG=DE ,作GH ∥BC ,则可得△AGH ∽△ABC ,再由已知条件证明△AGH ≌△DEF 即可证明:△ABC ∽△DEF .【详解】证明:在AB 上截取AG DE =,作//GH BC .AGH ABC ∴△∽△.AG AH AB AC ∴=. ∵,DE DF AG DE AB AC==, ∴AH DF =,∵A D ∠=∠,∴AGH DEF △≌△,∴ABC DEF ∆∆∽.【点睛】本题考查了相似三角形的判定和性质以及全等三角形的判定,解题的关键是正确作出辅助线构造全等三角形.20.(1)一件A 种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A 种玩具100件,B 种玩具50件,最低费用为2500元.【解析】【分析】(1)根据题意可以得到相应的分式方程,从而可以求得一件A 种文具的价格;(2)①根据题意,可以直接写出W 与a 之间的函数关系式;②根据题意可以求得a 的取值范围,再根据W 与a 的函数关系式,可以得到W 的最小值,本题得以解决.【详解】(1)设一件A 种文具的价格为x 元,则一件B 种玩具的价格为(x+5)元,60040025x x ⨯+= 解得,x=15,经检验,x=15是原分式方程的解,答:一件A种文具的价格为15元;(2)①由题意可得,W=15a+(15+5)(150-a)=-5a+3000,即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,∴()2150 530002750 a aa≤--+≤⎧⎨⎩,解得,50≤a≤100,∵a为整数,∴共有51种购买方案,∵W=-5a+3000,∴当a=100时,W取得最小值,此时W=2500,150-a=100,答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.21.(1)132y x=+(2)C(0,5)或(0,1)【解析】【分析】(1)由OA=2OB可求得OB长,继而可得点B坐标,然后利用待定系数法进行求解即可;(2)根据三角形面积公式可以求得BC的长,继而可得点C坐标.【详解】(1)A(-6,0),∴OA=6 ,OA=2OB,∴OB=3 ,B在y轴正半轴,∴B(0,3),∴设直线1l解析式为:y=kx+3(k ≠0),将A(-6,0)代入得:6k+3=0,解得:1k2 =,∴ 1y x 32=+; (2)ΔABC BC AO S 62⨯== , AO=6,∴BC=2 ,又∵B(0,3),3+2=5,3-2=1,∴C(0,5)或(0,1).【点睛】本题考查了待定系数法求一次函数解析式,三角形的面积等,熟练掌握相关知识是解题的关键.22.(1;(1)2 【解析】【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(1)利用平方差和完全平方公式计算.【详解】解:(1)原式;(1)原式1+1﹣[1﹣1]﹣5+1+1.故答案为:(1;(1). 【点睛】本题考查了二次根式的混合运算.23.(1)直线DE 的函数关系式为:y=﹣x+8;(2)点F 的坐标为;(4,4);m=;(3)18.【解析】试题分析:(1)由顶点B 的坐标为(6,4),E 为AB 的中点,可求得点E 的坐标,又由过点D (8,0),利用待定系数法即可求得直线DE 的函数关系式;(2)由(1)可求得点F 的坐标,又由函数y=mx ﹣2的图象经过点F ,利用待定系数法即可求得m 值;(3)首先可求得点H 与G 的坐标,即可求得CG ,OC ,CF ,OH 的长,然后由S 四边形OHFG =S 梯形OHFC +S △CFG ,求得答案.解:(1)设直线DE的解析式为:y=kx+b,∵顶点B的坐标为(6,4),E为AB的中点,∴点E的坐标为:(6,2),∵D(8,0),∴,解得:,∴直线DE的函数关系式为:y=﹣x+8;(2)∵点F的纵坐标为4,且点F在直线DE上,∴﹣x+8=4,解得:x=4,∴点F的坐标为;(4,4);∵函数y=mx﹣2的图象经过点F,∴4m﹣2=4,解得:m=;(3)由(2)得:直线FH的解析式为:y=x﹣2,∵x﹣2=0,解得:x=,∴点H(,0),∵G是直线DE与y轴的交点,∴点G(0,8),∴OH=,CF=4,OC=4,CG=OG﹣OC=4,∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.24.(1)5000;甲;(2)2005000(015){4008000(1520)x xyx x-+<<=-+≤≤;(3)750米;(4)150米/分.【解析】【分析】(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<x<15的时间内,y y甲乙,所以甲跑的快;(2)分段求解析式,在0<x <15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤x ≤20的时间内,由点(15,2000),(20,0)来求解析式;(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离; (4)在15<x <20的时间段内,求得乙的速度,然后计算他们的速度差.【详解】(1)根据图象信息可知,他们在进行5000米的长跑训练,在0<x<15的时间段内,直线y 甲的倾斜程度大于直线y 乙的倾斜程度,所以甲的速度较快;(2)①在0<x <15内,设y=kx+b ,把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,所以y=-200x+5000;②在15≤x ≤20内,设y k x b ''=+,把(15,2000),(20,0)代入解析式,解得400k '=-,8000b '=,所以y=-400x+8000,所以乙距终点的路程y (米)与跑步时间x (分)之间的函数关系式为:2005000(015){4008000(1520)x x y x x -+<<=-+≤≤; (3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米,此时乙距终点2000米,所以他们的距离为2000-1250=750米;(4)在15<x <20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.考点:函数图象;求一次函数解析式.25. (1)证明见解析;(2)CG=6.【解析】【分析】(1)由正方形的性质与已知得出∠A =∠BEG ,证出∠ABE =∠G ,即可得出结论;(2)由AB =AD =4,E 为AD 的中点,得出AE =DE =2,由勾股定理得出BE =△ABE ∽△EGB ,得出AE BE EB GB =,求得BG =10,即可得出结果. 【详解】(1)证明:∵四边形ABCD 为正方形,且∠BEG =90°,∴∠A =∠BEG ,∵∠ABE+∠EBG =90°,∠G+∠EBG =90°,∴∠ABE =∠G ,∴△ABE ∽△EGB ;(2)∵AB =AD =4,E 为AD 的中点,∴AE =DE =2,在Rt △ABE 中,BE ==由(1)知,△ABE ∽△EGB ,∴AEBEEB GB ==∴BG =10,∴CG =BG ﹣BC =10﹣4=6.【点睛】本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是()A.DE∥BC B.DE=12BC C.S1=14S D.S1=12S2.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m3.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm4.如图,在ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE,若30COE∠=,50ADC∠=,则BAC∠=()A.80°B.90°C.100°D.110°5.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为()A.9环与8环B.8环与9环C.8环与8.5环D.8.5环与9环6.若一个直角三角形的两边长为12、13,则第三边长为()A .5B .17C .5或17D .5或7.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与 点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM=x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.如果•6(6)x x x x -=-,那么( ) A .0x ≥ B .6x ≥ C .06x ≤≤ D .x 为一切实数9.已知一次函数y kx b =+的图象如图所示,则下列说法正确的是( )A .k 0<,0b <B .k 0<,0b >C .0k >,0b >D .0k >,0b <10.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是( )A .B .C .D .二、填空题11.分解因式:x 3-3x=______.12.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).13.如图,在矩形ABCD 中,2AB =,1BC =,E 是AB 边的中点,点F 是BC 边上的一动点,将EBF △沿EF 折叠,使得点B 落在G 处,连接CG ,BEG m BCG ∠=∠,当点G 落在矩形ABCD 的对称轴上,则m 的值为______.14.在□ABCD 中,O 是对角线的交点,那么12AB AC -=____. 15.在一个不透明的盒子中装有n 个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是___.16.如图,将平行四边形ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,有以下四个结论①MN ∥BC ;②MN=AM ;③四边形MNCB 是矩形;④四边形MADN 是菱形,以上结论中,你认为正确的有_____________(填序号).17.如图,以△ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=9,S 3=25,当S 2=_____时∠ACB =90°.三、解答题18.某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.组别单次营运里程“x”(千米) 频数第一组0<x≤572第二组5<x≤10 a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据以上信息,解答下列问题:(1)表中a= ,样本中“单次营运里程”不超过15千米的频率为;(2)请把频数分布直方图补充完整;(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)19.(6分)中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.20.(6分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.21.(6分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.22.(8分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?23.(8分)已知一次函数1(0)y kx b k =+≠的图象过点(0,2)-,且与一次函数21y x =+的图象相交于点(2,)P m .(1)求点P 的坐标和函数1y 的解析式;(2)在平面直角坐标系中画出1y ,2y 的函数图象;(3)结合你所画的函数图象,直接写出不等式127y y -<≤的解集.24.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1) 这个八年级的学生总数在什么范围内?(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人? 25.(10分)如图,在四边形ABCD 中,AD ∥BC ,CA 平分∠DCB ,DB 平分∠ADC(1)求证:四边形ABCD 是菱形;(2)若AC =8,BD =6,求点D 到AB 的距离参考答案一、选择题(每题只有一个答案正确)。

八年级数学下册 17 勾股定理 17.1 勾股定理 17.1.2 勾股定理导学案(新版)新人教版

八年级数学下册 17 勾股定理 17.1 勾股定理 17.1.2 勾股定理导学案(新版)新人教版

八年级数学下册 17 勾股定理 17.1 勾股定理17.1.2 勾股定理导学案(新版)新人教版17、1、2 勾股定理》班级小组姓名一、学习目标:毛目标A:能对勾股定理进行灵活变形目标B:能运用勾股定理的数学模型解决现实世界中的实际问题目标C:体会数形结合的数学思想二、问题引领问题A:(1)求出下列直角三角形中未知的边、(2)在长方形ABCD中,宽AB为1m,长BC为2m ,则AC= m、问题B:一个门框的尺寸如图所示,一块长3m,宽2、2m的长方形薄木板能否从门框内通过?为什么?问题C:如图,一架2、6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2、4 m,如果梯子的顶端A沿墙下滑0、5m,那么梯子底端B 也外移0、5 m吗?三、专题训练训练A :1、若一直角三角形两边长为5和12,则第三边长为、2、已知矩形的长是宽的2倍,其对角线长是5cm,则这个矩形的较长的边为、3、如图,在ΔABC中,CE平分∠ACB,CF平分∠ACD,EF∥BC交AC于M,若EF=5,则CE2 +CF2 = 、第3题第4题4、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米、训练B:5、在ΔABC中,AB=15,AC=13,高AD=12,则ΔABC的周长为、6、有一根长70的木棒,要放在长、宽、高分别为30,40,50的木箱中,能放进去吗?简述理由、7、小东拿着一根长竹竿进一个宽3米的城门,他先横着拿进不去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端正好顶着城门的对角,问竿长几米?训练C:8、如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长100cm,顶端A在AC上运动,量得滑杆下端B距C点的距离为60cm,当端点B向右移动20cm时,滑杆顶端A下滑多长?9、如图,有一根高为16米的电线杆在点A处断裂,电线杆顶点C落到离电线杆底部B点8米处的地方,求电线杆的断裂处A 离地面的距离、四、课堂小结1、勾股定理的应用;2、分类、转化、方程思想、班级小组姓名五、课后作业1、有一个边长为50dm的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少为 dm(结果保留根号)2、一旗杆离地面6m处折断,其顶部落在离旗杆底部8m处,则旗杆折断前高 m、3、如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是米,水平距离是米、4、已知:如图,等边△ABC的边长是6cm、⑴等边△ABC的高CD= cm、⑵S△ABC= cm、5、如图,分别以Rt△ABC的三边为直径作半圆,其面积分别为、、,且,,则= 、6、如图,直线同侧有三个正方形、、,若、的面积分别为5和12,则的面积为、【能力提升】在△ABC中,∠BAC=120AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,△ABP为直角三角形、。

人教版八年级下数学导学案17.1 第1课时 勾股定理

人教版八年级下数学导学案17.1 第1课时 勾股定理

第十七章 勾股定理17.1 勾股定理第1课时 勾股定理【学习目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;2.培养在实际生活中发现问题总结规律的意识和能力.学习重点:勾股定理的内容及证明.学习难点:勾股定理的证明.学习过程一、自学导航(课前预习) 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S 正方形=_______________=____________________方法二;已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=______________右边S=_______________ 左边和右边面积相等,即 化简可得。

二、合作交流(小组互助)思考:(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢?A BD(1)观察图1-1。

A 的面积是__________个单位面积; B 的面积是__________个单位面积; C 的面积是__________个单位面积。

ba D Cb b b bc c c c a a a bb b ac c由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_______________________________________________________________________________________。

(三)展示提升(质疑点拨)1.在Rt △ABC 中,90C ∠=︒ ,(1)如果a=3,b=4,则c=________;(2)如果a=6,b=8,则c=________;(3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________.2、下列说法正确的是( ) A.若a 、b 、c 是△ABC 的三边,则222a b c +=B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则222a b c +=D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。

(人教版)数学下八年级导学案:17.1 勾股定理(1)

(人教版)数学下八年级导学案:17.1  勾股定理(1)

课型新授课课题17.1 勾股定理(1)学习目标1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2 、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

重点难点重点:勾股定理的内容及证明。

难点:勾股定理的证明方法---面积法。

设计意图教学流程二次学习复习巩固相关知识,思考其中的联系渗透从特殊到一般的数学思想,培养学生的类比迁移能力【知识链接课前自我学习】(1)已知R t△ABC中的两条直角边长分别为a、b ,则S△ABC= .(2)完全平方公式:(a±b)2=.【课堂新知探究】【探究1】等腰直角三角形:下面第一个图中,每个小方格的面积均为1,请分别计算出下图中正方形P、Q、R的面积,看看能得出什么结论.(1)发现:正方形_______的面积+正方形________的面积=正方形________的面积;(2)你能用三角形ABC的边长表示正方形的面积吗?你能发现等腰直角三角形ABC三边长度之间存在什么关系吗?(3)归纳:在等腰直角三角形中:两直角边的等于斜边的。

【探究2】任意直角三角形:第二个图中,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C的面积,看看能得出什么结论.归纳:任意直角三角形中:两直角边的______等于斜边的_______。

命题:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么_______ 。

【拓展】拼一拼、摆一摆,归纳证明定理:(1)已知:在△ABC中,、∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

【分析】(1)请利用手中4个直角三角形模型,拼摆不同的形状,利用面积相等进行证明。

(2)若拼成如右图所示,大正方形面积有两种表示方法:即:___________________和_______________________其等量关系为:_____________(3)若拼成如下图所示,求证:a2+b2=c2分析:左右两边的正方形边长相等,则两个正方形的面积相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册 17.1 勾股定理导学案1(新版)
新人教版
17、1勾股定理
【学习目标】
XXXXX:
1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2、培养在实际生活中发现问题总结规律的意识和能力。

学习重点:勾股定理的内容及证明。

学习难点:勾股定理的证明。

学习过程
一、自学导航(课前预习)
1、直角△ABC的主要性质是:∠C=90(用几何语言表示)(1)两锐角之间的关系:
(2)若D为斜边中点,则斜边中线(3)若∠B=30,则∠B 的对边和斜边:
(1)观察图1-1。

A的面积是__________个单位面积;B的面积是__________个单位面积;C的面积是__________个单位面积。

(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的
呢?由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a、b,斜边为c,那么
_________________________________________________________ ____________________________
二、合作交流(小组互助)思考:
2、勾股定理证明:方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S正方形=
_______________=____________________方法二;已知:在
△ABC中,∠C=90,∠
A、∠
B、∠C的对边为a、b、c。

求证:a2+b2=c2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边
S=______________右边S=_______________左边和右边面积相等,即化简可得。

第4题图S1S2S3勾股定理;如果直角三角形的两直角边分别为a、b,斜边为c,那么__________________ (三)展示提升(质疑点拨)
1、在Rt△ABC中,,(1)如果a=3,b=4,则
c=________;(2)如果a=6,b=8,则c=________;(3)如果
a=5,b=12,则c=________;(4)
如果a=15,b=20,则c=________、2、下列说法正确的是()
A、若、、是△ABC的三边,则
B、若、、是Rt△ABC的三边,则
C、若、、是Rt△ABC的三边,,则
D、若、、是Rt△ABC的三边,,则
3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()
A、斜边长为25
B、三角形周长为25
C、斜边长为5
D、三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________、
5、一个直角三角形的两边长分别为5cm和12cm,则第三边的长为。

2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为。

4、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高、求①AD的长;课题:
17、1勾股定理(2)学习目标:
1、会用勾股定理进行简单的计算。

2、勾股定理的实际应用,树立数形结合的思想、分类讨论思想。

学习重点:勾股定理的简单计算。

学习难点:勾股定理的灵活运用。

学习过程
一、自学导航(课前预习)
1、直角三角形性质有:如图,直角△ABC的主要性质是:
∠C=90,(用几何语言表示)(1)三边之间的关系:。

(2)已知在Rt△ABC中,∠B=90,a、b、c是△ABC的三边,则c= 。

(已知a、b,求c)a= 。

(已知b、c,求a)b= 。

(已知a、c,求b)、2(1)在Rt△ABC,∠C=90,a=3,b=4,则c= 。

(2)在Rt△ABC,∠C=90,a=6,c=8,则b= 。

(3)在
Rt△ABC,∠C=90,b=12,c=13,则a= 。

二、合作交流(小组互助)例1:一个门框的尺寸如图所示、BC1m2mA实际问题数学模型若薄木板长3米,宽
2、2米呢?

2、如图,一个3米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为
2、5米、如果梯子的顶端A沿墙下滑 0、5米,那么梯子底端B也外移0、5米吗?(计算结果保留两位小数)OBDCCACAOBODBAC
(三)展示提升(质疑点拨)
1、一个高
1、5米、宽0、8米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为。

第2题
2、从电杆离地面5m处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离为。

3、有一个边长为50dm的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少为(结果保留根号)
4、一旗杆离地面6m处折断,其顶部落在离旗杆底部8m处,则旗杆折断前高。

5 如下图,池塘边有两点A,B,点C是与BA 方向成直角的AC方向上一点、测得CB=60m,AC=20m,你能求出
A、B两点间的距离吗?AEBDC
6、如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长100cm,顶端A在AC上运动,量得滑杆下端B距C点的距离为60cm,当端点B向右移动20cm时,滑杆顶端A下滑多长?
7、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( )
A、12 cm
B、10 cm
C、8 cm
D、6 cm
8、在⊿ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB与D。

求:(1)AC的长;(2)⊿ABC的面积;(3)CD的长。

课题:
17、1勾股定理(3)学习目标:
1、能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想。

2、会用勾股定理解决简单的实际问题。

学习重点:运用勾股定理解决数学和实际问题学习难点:勾股定理的综合应用。

ABCD 学习过程
一、自学导航(课前预习)
1、(1)在Rt△ABC,∠C=90,a=3,b=4,则c= 。

(2)在Rt△ABC,∠C=90,a=5,c=13,则b= 。

2、如图,已知正方形ABCD的边长为1,则它的对角线
AC= 。

二、合作交流例:用圆规与尺子在数轴上作出表示的点,并补充完整作图方法。

步骤如下:
1、在数轴上找到点A,使OA=;
2、作直线l垂直于OA,在l上取一点B,使AB=;
3、以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点、分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

如图,已知OA=OB, (1)说出数轴上点A所表示的数(2)在数轴上作出对应的点
三、展示提升(质疑点拨)
1、你能在数轴上找出表示的点吗?请作图说明。

2、已知直角三角形的两边长分别为5和12,求第三边。

3、已知:如图,等边△ABC的边长是6cm。

(1)求等边
△ABC的高。

(2)求S△ABC。

四、达标检测
1、已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。

2、已知等边三角形的边长为2cm,则它的高为,面积为。

3、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。

4、在数轴上作出表示的点。

5、已知:在Rt△ABC中,∠C=90,CD⊥AB于D,∠A=60,CD=,求线段AB的长。

相关文档
最新文档