完整word版七年级上册数学期末考试试卷及答案
七年级上册数学 期末试卷试卷(word版含答案)

七年级上册数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
七年级上册海南中学数学期末试卷测试卷 (word版,含解析)

同理: ∴ ∴
(2)解:∠ AOD 与∠ BOC 的大小关系为: 量关系为: (3)解: 理由如下:∵
∠ AOB 与∠ DOC 存在的数 仍然成立.
又∵ ∴
【解析】【分析】(1)先计算出
再根据
( 2 ) 根 据 (1) 中 得 出 的 度 数 直 接 写 出 结 论 即 可 . ( 3 ) 根 据
若不能,说明理由。
【答案】 (1)解:
设 A 点表示的数为原点,则 B 点表示的数为 12,P 点表示的
数为 3t,则 M 点表示的数为 t,点 Q 表示的数为 12+2t,点 N 表示的数为 12+t,
M 在 N 左侧,MN=12+t- t=12- t,
∵ MN= =4,
(2)若 AB=2DE,线段 DE 在直线 AB 上移动,且满足关系式 ________. 【答案】 (1)解:①
,则
又 E 为 BC 中点
②设 当
;
,因点 F(异于 A、B、C 点)在线段 AB 上,
,
和
时,
可知:
Hale Waihona Puke 此时可画图如图 2 所示,代入
解得:
,即 AD 的长为 3
得:
当
时,
此时可画图如图 3 所示,代入
即可得到
利用周角定义得
∠ AOB+∠ COD+∠ AOC+∠ BOD=360°,而∠ AOC=∠ BOD=90°,即可得到∠ AOB+∠ DOC=180°.
2.已知点 C 在线段 AB 上,AC=2BC,点 D、E 在直线 AB 上,点 D 在点 E 的左侧
(1)若 AB=18,DE=8,线段 DE 在线段 AB 上移动 ①如图 1,当 E 为 BC 中点时,求 AD 的长; ②点 F(异于 A,B,C 点)在线段 AB 上,AF=3AD,CE+EF=3,求 AD 的长;
(完整word版)七年级上学期数学期末测试卷【拔高】【含答案】

七年级上学期期末测试卷【7】一.选择题(共10小题)1.下列说法正确的是( )A.分数都是有理数B.﹣a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数2.现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A.②③B.③④C.②③④D.①②③④3.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据算式中的规律,为220的末位数字是( )A.2 B.4 C.6 D.84.一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚5.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.26.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.N C.m+n D.m,n中较大的数7.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.8.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,下列四个等式:①40m+10=43m﹣1;②③④40m+10=43m+1,正确的是()A.①②B.②④C.②③D.③④9.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN 的长度是()A.7cm B.3cm C.7cm或3cm D.5cm10.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向二.填空题(共10小题)11.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差kg.12.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2= .13.一个多项式减去x2+14x﹣6,结果得到2x2﹣x+3,则这个多项式是.14.(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣()][2b+(a﹣3c)].15.若4x4y n+1与﹣5x m y2的和仍为单项式,则m﹣n= .16.当a取整数时,方程﹣=有正整数解.17.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年岁.18.9点20分,钟表上时针与分针所成的钝角是度.19.已知线段AD=AB,AE=AC,且BC=6,则DE= .20.用度、分、秒表示35.12°=°′″.三.解答题(共10小题)21.化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.22.已知A=3x2﹣ax+6x﹣2,B=﹣3x2+4ax﹣7,若A+B的值不含x项,求a的值.23.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.24.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.25.某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?26.解方程:(1﹣)=﹣x+1.27.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.28.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?29.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.30.如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,OD的方向是;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是;(4)在(1)、(2)、(3)的条件下,∠COE= .七年级上学期期末测试卷【7】参考答案与试题解析一.选择题(共10小题)1.(2016春•普陀区期末)下列说法正确的是()A.分数都是有理数B.﹣a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数【解答】解:A、有理数包括整数和分数,故此选项正确;B、当a≤0时,﹣a是非负数,故此选项错误;C、π是正数但不是有理数,故此选项错误;D、绝对值等于本身的数有0和正数,故此选项错误;故选:A.2.现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A.②③B.③④C.②③④D.①②③④【解答】解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误;②正确;③正确;④当|x|=﹣x时,x≤0,错误.故选A.3.(2016•朝阳区校级模拟)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )A.2 B.4 C.6 D.8【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴220的末位数字是6.故选C.4.(2004•梅州)一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚【解答】解:根据题意,列式(30+60)﹣(30a+60b)=15(a﹣b),当b<a时,盈利,当b=a时,不赚不赔,当b>a时,亏损,由于不知a,b具体值,所以无法确定.故选D.5.(2014秋•临海市校级期中)若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.2【解答】解:∵多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,所以(1)和(2)(5)是错误的.故选C.6.(2010春•顺德区校级期末)若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.nC.m+n D.m,n中较大的数【解答】解:∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,而4m+n是常数项,∴多项式x m﹣y n﹣4m+n的次数应该是x,y中指数大的,∴D是正确的.故选D.7.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是() A.B.C.D.【解答】解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.8.(2015秋•鞍山期末)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②③④40m+10=43m+1,其中正确的是( )A.①②B.②④C.②③D.③④【解答】解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.9.(2015秋•端州区期末)已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.10.(2016•邯山区一模)如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.二.填空题(共10小题)11.(2014秋•龙岗区期末)某粮店出售三种品牌的大米,袋上分别标有质量为(25±0。
七年级数学期末试卷试卷(word版含答案)

七年级数学期末试卷试卷(word 版含答案)一、选择题 1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元2.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >03.下列说法错误的是( )A .2的相反数是2-B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是04.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .5.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行6.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元.A .100B .140C .90D .1207.下列方程为一元一次方程的是( )A .12y y +=B .x+2=3yC .22x x =D .3y=28.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 9.一5的绝对值是( )A .5B .15C .15- D .-510.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=11.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°12.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.13.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐14.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣1202015.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.用边长为10 cm 的正方形,做了一套七巧板.拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为______cm.17.若221x x -++= 4,则2247x x -+的值是________.18.3615︒'的补角等于___________︒___________′.19.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)20.若m+2n=1,则代数式3﹣m ﹣2n 的值是_____.21.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.22.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.23.若232a b -=,则2622020b a -+=_______.24.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______.25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.27.计算:(1)715|4|---(2)42112(3)6⎛⎫--⨯-÷- ⎪⎝⎭28.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ; (2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒.①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)29.解方程:(1)5(x+8)=6(2x-7)+5(2)2x 13-=2x 16+-1 30.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.31.我们经常运用“方程”的思想方法解决问题.已知∠1是∠2的余角,∠2是∠3的补角,若∠1+∠3=130°,求∠2的度数.可以进行如下的解题:(请完成以下解题过程)解:设∠2的度数为x ,则∠1= °,∠3= °.根据“ ”可列方程为: .解方程,得x = .故:∠2的度数为 °.32.如图,点A ,B 在长方形的边上.(1)用圆规和无刻度的直尺在长方形的内部作∠ABC =∠ABO ;(保留作图痕迹,不写作法)(2)在(1)的条件下,若BE 是∠CBD 的角平分线,探索AB 与BE 的位置关系,并说明理由.33.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.35.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)37.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.39.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.40.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOC MON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值? 41.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).42.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】不享受优惠即原价,打九折即原价×0.9,打八折即原价×0.8.因此可得200×0.9=180,200×0.8=160,160<162<180,由此可知一次性购书付款162元,可能有两种情况.即162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选C .考点:打折销售问题2.A解析:A【解析】【分析】根据图示知b <a <0,然后利用不等式的性质对以下选项进行一一分析、判断.【详解】解:如图:根据数轴可知,b <a <0,A 、a >b ,正确;B 、ab >0,故B 错误;C 、0b a -<,故C 错误;D 、0a b +<,故D 错误;故选:A.【点睛】本题考查了利用数轴比较大小,解题的关键是根据数轴得到b <a <0.3.D解析:D【解析】【分析】根据相反数的定义,倒数的定义,绝对值的意义,以及有理数比较大小,分别对每个选项进行判断,即可得到答案.【详解】解:A 、2的相反数是2-,正确;B 、3的倒数是13,正确; C 、3-的绝对值是3,正确;D 、11-,0,4这三个数中最小的数是11-,故D 错误;故选:D.【点睛】本题考查了相反数、倒数的定,绝对值的意义,以及比较有理数的大小,解题的关键数熟记定义.4.B解析:B【解析】【分析】根据角的表示方法和图形逐个判断即可.【详解】解:A 、不能用∠1,∠AOB ,∠O 三种方法表示同一个角,本选项错误;B 、能用∠1,∠AOB ,∠O 三种方法表示同一个角,本选项正确;C 、不能用∠1,∠AOB ,∠O 三种方法表示同一个角,本选项错误;D、不能用∠1,∠AOD,∠O三种方法表示同一个角,本选项错误;故选:B.【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和判断能力.5.C解析:C【解析】【分析】根据补角的定义、对顶角的定义、锐角的钝角的定义以及平行公理对每一项进行解答判断即可.【详解】根据补角的定义:两角之和等于180°,同角或等角的补角相等,A正确;对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,对顶角度数的大小相等,B正确;锐角的范围0°<锐角<90°,90°<钝角<180°,锐角的2倍不一定是钝角,C错误.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.D正确.故答案选C.【点睛】本题考查了补角、对顶角、锐角钝角的定义及平行公理,熟练掌握它们的定义是解决本题的关键.6.C解析:C【解析】【分析】设该商品进价为x元,则售价为(x+70)×75%,进一步利用售价-进价=利润列出方程解答即可.【详解】设该商品进价为x元,由题意得(x+70)×75%-x=30,解得:x=90,答:该商品进价为90元.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.7.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.8.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B 正确;3∠与AOD ∠互为补角,C 正确;AOD ∠与BOC ∠是对顶角,故D 错误;故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.9.A解析:A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A .10.B解析:B【解析】【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【详解】A 、7a +a =8a ,故本选项错误;B 、22232x y yx x y -=,故本选项正确;C 、5y−3y =2y ,故本选项错误;D 、3a +2b ,不是同类项,不能合并,故本选项错误;【点睛】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.11.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12=∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.12.D解析:D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解:A、两点之间线段最短,正确;B、过直线外一点有且只有一条直线与这条直线平行,正确;C、过直线外一点有且只有一条直线与这条直线垂直,正确;D、若AC BC=,则点C是线段AB的中点,错误;故选:D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.13.D解析:D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选:D .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B .【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.15.A解析:A【解析】【分析】根据单项式与多项式的次数的定义以及多项式的项数的定义求解即可.【详解】解:A . 单项式232ab -的次数是2,系数为92-,此选项正确; B . 2341x y x -+-是三次三项式,常数项是-1,此选项错误;C . 单项式a 的系数是1,次数是1,此选项错误;D . 单项式223x y -的系数是23-,次数是3,此选项错误. 故选:A .【点睛】本题考查的知识点是单项式与多项式的有关定义,熟记各定义是解此题的关键.二、填空题16.50【解析】【分析】读图分析阴影部分与整体的位置关系;易得阴影部分的面积即为△ABC 的面积,是原正方形的面积的一半.【详解】观察得到阴影部分为正方形的一半,即为.故答案为50.【点睛】解析:50【解析】【分析】读图分析阴影部分与整体的位置关系;易得阴影部分的面积即为△ABC 的面积,是原正方形的面积的一半.【详解】 观察得到阴影部分为正方形的一半,即为2110=502⨯. 故答案为50.【点睛】本题目考查了七巧板;正方形的性质.主要考查正方形对角线相互垂直平分相等的性质,读图也很关键.根据图形之间的关系得出面积关系是解题关键. 17.1【解析】【分析】先根据已知条件求出x2-2x=-3的值,将代数式变形后再代入进行计算即可得解.【详解】∵=4,∴x2-2x=-3,∴.故答案为:1.【点睛】本题考查了代数式求值解析:1【解析】【分析】先根据已知条件求出x 2-2x=-3的值,将代数式变形后再代入进行计算即可得解.【详解】∵221x x -++=4,∴x 2-2x=-3,∴22247=2(2)72(3)7671x x x x -+-+=⨯-+=-+=.故答案为:1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.18.45【解析】【分析】根据补角定义直接解答.【详解】的补角等于:180°−=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题解析:45【解析】【分析】根据补角定义直接解答.【详解】︒'=143°45′.3615︒'的补角等于:180°−3615故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念.19.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故+解析:a b【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.20.2【解析】试题解析:故答案为2.解析:2【解析】试题解析:21m n +=,()3232312m n m n .∴--=-+=-=故答案为2.21.150【解析】设该商品的标价为每件x 元,由题意得:80%x ﹣100=20,解得:x=150, 故答案为150.解析:150【解析】设该商品的标价为每件x 元,由题意得:80%x ﹣100=20,解得:x =150,故答案为150.22.一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答解析:一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.23.2016【解析】【分析】将变形为后再代入求解即可.【详解】∵,∴.【点睛】本题考查代数式的化简求值,解题的关键是能将变形为.解析:2016【解析】【分析】将2622020b a -+变形为22(3)2020a b --+后再代入求解即可.【详解】∵232a b -=,∴226220202(3)20202220202016b a a b -+=--+=-⨯+=.【点睛】本题考查代数式的化简求值,解题的关键是能将2622020b a -+变形为22(3)2020a b --+. 24.同角的补角相等.【解析】【分析】根据同角的余角性质解答即可.【详解】解:根据题意可得∠1和∠2互为余角,∠2和∠3互为余角,∴根据同角的余角相等可得∠1=∠3.故答案为:同角的余角相等解析:同角的补角相等.【解析】【分析】根据同角的余角性质解答即可.【详解】解:根据题意可得∠1和∠2互为余角,∠2和∠3互为余角,∴根据同角的余角相等可得∠1=∠3.故答案为:同角的余角相等.【点睛】本题考查同角的余角的性质.25.爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上解析:爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上的字.理解正方体的平面展开图的特点,是解决此题的关键.三、解答题26.(1)x=4;(2)x=2.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得:-5x+3x=-5-3合并得:﹣2x=﹣8,解得:x=4;(2)去括号得:4x﹣3+3x=11,移项得:4x+3x=11+3移项合并得:7x=14,解得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.;(2)107;27.(1)12【解析】【分析】(1)先去掉绝对值后即可计算,(2)根据有理数的运算法则即可计算.【详解】解:(1)原式=7-15-4=−12;(2)原式=-1-2×9×(-6)=-1+108=107【点睛】本题考查有理数的混合运算,涉及绝对值的性质,属于简单题,熟悉有理数运算法则,注意运算的优先级是解题关键..28.(1)-2 ;(2)当t为4秒时,点O恰好是PQ的中点;(3)104025,, 374【解析】【分析】(1)利用中点公式计算即可;(2)①用t表示OP,OQ,根据OP=OQ列方程求解;②分别以P、Q、C为三等分点,分类讨论.【详解】解:(1)∵点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.∴点C表示的数为:-12+8=-2 2故答案为:-2(2)①设t秒后点O恰好是PQ的中点.根据题意t秒后,点由题意,得-12+2t=-(8-t)解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=10-2t,QC=10-t,所以10-2t=2(10-t)或10-t=2(10-2t)解得t=103;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=-10+2t,PQ=20-3t∴-10+2t=2(20-3t)或20-3t=2(-10+2t)解得t=254或t=407;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ ∵当P、Q相遇时,两点都停止运动∴此情况不成立.综上,t=104025,,374秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点睛】本题考查一元一次方程应用,利用数形结合思想分类讨论是解答的关键.29.(1)x=11;(2)56x =-. 【解析】【分析】(1)按去括号、移项、合并同类项、系数化为1的步骤进行求解即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.【详解】(1)去括号,得5x+40-5=12x-42,移项,得5x-12x=-42+5-40,合并同类项,得-7x=-77,系数化为1,得x=11;(2)去分母,得2(2x+1)-(10x+1)=6,去括号,得4x+2-10x-1=6,移项,得4x-10x=6+1-2,合并同类项,得-6x=5,系数化为1,得x=56-. 【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.30.3a 2b-ab 2+4;18.【解析】【分析】先解出a 与b 的值,再化简代数式代入求解即可.【详解】 根据2(2)10a b ++-=,可得:a=-2,b=1. 22225(3)4(31)a b ab ab a b ---+-=15a 2b-5ab 2+4ab 2-12a 2b+4=3a 2b-ab 2+4将a=-2,b=1代入得:原式=3×(-2)2×1-(-2)×12+4=12+2+4=18.【点睛】本题考查代数式的化简求值,关键在于先通过非负性求出a,b 的值.31.(90﹣x );(180﹣x );∠1+∠3=130°;(90﹣x )+(180﹣x )=130;70;70.【解析】【分析】根据余角和补角的定义解答即可.【详解】设∠2的度数为x,则∠1=(90﹣x)°,∠3=(180﹣x)°.根据“∠1+∠3=130°”可列方程为:(90﹣x)+(180﹣x)=130.解方程,得x=70.故:∠2的度数为70°.【点睛】此题考查了余角和补角的意义,互为余角的两角的和为90︒,互为补角的两角之和为180︒.解此题的关键是能准确的找出角之间的数量关系.32.(1)如图所示,∠ABC即为所求作的图形;见解析;(2)AB与BE的位置关系为垂直,理由见解析.【解析】【分析】(1)根据角平分线定义即可在长方形的内部作ABC ABO∠=∠;(2)根据(1)的条件下,BE是CBD∠的角平分线,即可探索AB与BE的位置关系.【详解】如图所示,(1)∠ABC即为所求作的图形;(2)AB与BE的位置关系为垂直,理由如下:∵∠ABC=∠ABO=12∠OBC∵BE是∠CBD的角平分线,∴∠CBE=12∠CBD∴∠ABC+∠CBE=12(∠ABC+∠CBD)=12⨯180°=90°∴AB⊥BE.所以AB与BE的位置关系为垂直.【点睛】本题考查了作图-复杂作图、矩形的性质,角平分线的定义,解决本题的关键是根据角平分线的定义准确画图.33.(1)113,23(2)所以和谐数为15,26,37,48,59;(3)F(t)的最大值是34.【解析】【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b 表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F (13)=113,F (24)=23; (2)原两位数可表示为10(1)b a -+新两位数可表示为101a b +-∴10110(1)36a b b a +----=∴101101036a b b a +--+-=∴9927a b -=∴3a b -=∴3a b =+ (16b <≤且b 为正整数 )∴b =2,a =5; b =3,a =6, b =4,a =7,b =5,a =8 b =6,a =9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F (t )的最大值是34. 【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题. 四、压轴题34.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.35.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】【分析】 ()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P 从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后.【详解】()1设A 表示的数为x ,设B 表示的数是y . x 24=,x 0<∴x 24=-又y x 12-=y 241212.∴=-+=-故答案为24-;12-.。
北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(word版,含答案)

βα石景山区2023-2024学年第一学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m -(C )6.8m(D ) 6.8m -3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养 老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10 534人次. 其中,数字10 534用科学记数法可表示为 (A )310.53410⨯ (B )41.053410⨯ (C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1 (B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是 (A )20︒ (B )40︒ (C )50︒(D )70︒考生须知1.本试卷共4页,共三道大题,28道小题,满分100分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
-3b a -2-12106. 下列运算正确的是(A )325+=a b ab (B )2222-=c c(C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 (A )0ab >(B )<-a b(C )20+>a(D )20->a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________. 10. 如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是 .÷3平方-2结果输入x11. 若233m x y -与253mx y --是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为 . 13. 如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在 (请在,,D E F中选择)处可使所用管道最短,理由是 .河岸FE D 村庄B村庄A第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=, (1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.l三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312-+-. 18.计算:11124(834-⨯-+19.计算:3122(7)2-+⨯-÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=-. 22.解方程:211123x x +--=. 23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ; (2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: .25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点. (1)如图,若=4AC ,求CD 的长. 根据题意,补全解题过程:∵10,4AB AC CB ===,AB - , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.石景山区2023-2024学年第一学期初一期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1- 13.E ;两点之间线段最短 14. 22()a r π-15.(1)4;(2)1 16.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=-+- ………………………… 3分 1=-. ………………………… 5分 19.解:原式82(7)2=-+⨯-⨯ ………………………… 2分 828=-- ………………………… 4分 36=-. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x ---=. ………………………… 5分 21.解:移项,得53182x x -=--. ………………………… 2分 合并同类项,得 220x =-. ………………………… 4分 系数化为1,得10x =-. ………………………… 5分 ∴10x =-是原方程的解.22.解:去分母,得 3(21)2(1)6x x +--=. ………………………… 2分去括号,得 63226x x +-+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分 系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =---+2217x =-. …………………………4分 当2x =-时,原式22(2)17=⨯--.9=-. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套. …… 1分 根据题意可得,180210(50)9600x x +-=. ………………………… 3分 解得:30x =. 则5020x -=. ………………………… 5分 答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB - AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分 27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒, ∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒-︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x -≤≤. …………………………7分。
初中七年级数学上册期末考试题及答案【可打印】

初中七年级数学上册期末考试题及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若单项式am﹣1b2与的和仍是单项式, 则nm的值是()A. 3B. 6C. 8D. 92.如图, 点D, E分别在线段AB, AC上, CD与BE相交于O点, 已知AB=AC, 现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.如图, 若AB, CD相交于点O, ∠AOE=90°, 则下列结论不正确的是()A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角5.如图所示, 已知∠AOB=64°, OA1平分∠AOB, OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3, 则∠AOA4的大小为()A. 1°B. 2°C. 4°D. 8°6.有理数m, n在数轴上分别对应的点为M, N, 则下列式子结果为负数的个数是()①;②;③;④;⑤.A. 2个B. 3个C. 4个D. 5个7.下列图形既是轴对称图形, 又是中心对称图形的是()A. B.C. D.8.如图, 已知在四边形中, , 平分, , , , 则四边形的面积是()A. 24B. 30C. 36D. 429.已知实数a、b满足a+b=2, ab= , 则a﹣b=()A. 1B. ﹣C. ±1D. ±10.将一副直角三角板按如图所示的位置摆放, 使得它们的直角边互相垂直, 则 的度数是( )A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a 、b 为实数, 且b = +4, 则a+b =________.2.如图, AB ∥CD, FE ⊥DB, 垂足为E, ∠1=50°, 则∠2的度数是_____.3. 若 , , , , 则 ________ .4.如果一个数的平方根是a+6和2a ﹣15, 则这个数为________.5. 分解因式: 4ax2-ay2=_____________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2. 已知关于x 的不等式组 恰有两个整数解,求实数a 的取值范围.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 为了解学生对“垃圾分类”知识的了解程度, 某学校对本校学生进行抽样调查, 并绘制统计图, 其中统计图中没有标注相应人数的百分比. 请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生, 请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6. 某网店销售甲、乙两种羽毛球, 已知甲种羽毛球每筒的售价比乙种羽毛球多15元, 王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球, 共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求, 该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒, 且甲种羽毛球的数量大于乙种羽毛球数量的, 已知甲种羽毛球每筒的进价为50元, 乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒, 则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出, 请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式, 并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.D3.C4.C5.C6.B7、D8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.<4.815.a(2x+y)(2x-y)6.5三、解答题(本大题共6小题, 共72分)1.(1)x=5;(2)x=-72.-4≤a<-3.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4.略.5.(1)20%;(2)6006、(1)该网店甲种羽毛球每筒的售价为60元, 乙种羽毛球每筒的售价为45元;(2)①进货方案有3种, 具体见解析;②当m=78时, 所获利润最大, 最大利润为1390元.。
(完整word版)北师大版七年级数学上册期末试卷及答案

510、若 1x1= 2 ,lyl = 8,且 xVy贝 Ux + y =学记数法表示应为()A. 0.25 107B. 2.5 107C. 2.5 106D. 25 1055、小明调查了本班同学最喜欢的球类运动情况,并作出了统计图, A. 从图中可以直接看出全班总人数B. 从图中可以直接看出喜欢足球运动的人数最多C. 从图中可以直接看出喜欢各种球类运动的具体人数D. 从图中可以直接看出喜欢各种球类运动的人数的百分比6、请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为( )A.32B.29C.25D.23填空题(每小题3分,共27 分)7、我市某天最高气温是 11 C ,最低气温是零下 3 C,那么当天的最大温差是 ___________ &若x= 4是关于x 的方程 5 X — 3m= 2的解,则.19、如果 m —n=,那么一3 (n —m) =(上)部分学校期终调研测试试卷七年级数学(北师大版)(满分120分)一选择题(每小题3分,共18分)1、1 的倒数是311A 3B -C -3D—332、在丨 -2 I , - I 01 , (-2) 5, - I -2 I , - (-2 )这5个数中负数共有A 1个B 2个C 3个D 4个3、右图是某一立万体的侧面展开图则该立万体是B.c.4、青藏高原是世界上海拔最高的高原,它的面积约为 O OF 面说法正确的是(13、标价为x 元的某件商品,按标价八折出售仍盈利b 元,已知该件商品的进价是a 元,则x 14、 已知线段 AB= 10cm ,点D 是线段AB 的中点,直线 AB 上有一点C 并且BC = 2cm ,则线段 DC =.15、 当乂 = 1 ,y=— 1时,代数式ax + by — 3的值为0,那么当x=— 1 ,y= 1时, 代数式ax + by — 3的值为.三解答题(本大题 8个小题,共75分)116 ( 8 分)计算:—13—( 1— 0.5 )X _2—(— 3) 2:.31 1117 ( 9 分)先化简,再求值: 一X( — 4 x + 2 x — 8) — ( — x — 1),其中x=—.4 2 2 5x 1 2x 118 ( 9分)解方程:注」—丝」=1.3 619 ( 9分)下图是由一些相同的小立方块搭成的几何体,请画出这个几何体的三视图20 (9分)在下列事件中,哪些是不确定事件,哪些是确定事件?若为确定事件,请判断是必 然事件还是不可能事件。
初中七年级数学上册期末考试卷及答案【完整版】

初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卷拟试年级数学模七
选择题一、日每天的最高气温与最低气温如下表:日至242013年12月211.我市
121212日12A
2最高气51
图-2℃-5℃-4℃最低气温-3℃】其中温差最大的一天是………………………………………………………………………………………【日.12月2412月23日 D 12月21日B.12月22日C.A.】A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B对应的数为【2.如图1所示,4 .-3
.-D B.-2 CA.-1
222333++】3.与算式的运算结果相等的是…………………………………………………………………【
65333332C..B. A.D21--)x)2((x+3.化简4】的结果是………………………………………………………………【32111111--+5x D A.B.C..+7x---+x5x5 33663108.8×,下列说法中正确的是………………………………………【】5.由四舍五入法得到的近似数
个有效数字2 A.精确到十分位,有2个有效数字B.精确到个位,有C.精确到百位,有2个有效数字个有效数字.精确到千位,有4 D 】6.如下图,下列图形全部
属于柱体的是……………………………………………………………………
【
D
A B C
】直角顶点重合.如图72,一副三角板()摆放在桌面上,若∠AOD=150等于……………【°,
则∠BOC
60D °.°.30 A.°B45 C50 .°
50cm
4
图3图图2
1
8.如图3,下列说法中错误的是……………………………………………………………………………【】..A.OA的
方向是东北方向B.OB的方向是北偏西60°
C.OC的方向是南偏西60°D.OD的方向是南偏东60°
9. 如图4,宽为50cm的长方形图案由10个大小相等的小长方形拼成,其中一个小长方形的面
积为…【】
4000cm B. 600cm C. 500cm D. 400cm 2222 A.
二、填空题()20分4小题,每小题5分,满分本大题共10.已知∠α=36°14′25″,
则∠α的余角的度数是_________ .
11.王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是
度.
12x=3,则最后输出的结果是____ ..按下图所示的程序流程计算,若开始输入的
值为
是)x+1x(x输入输出结果值大于100
的值计算2
否x将值给,再次运算
13.已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是
cm.
三、解答题(共90分)
14.计算下列各式(本题共2小题,每小题8分,共计16分)
12311172223-------((24+)3)2÷÷(×)+24×75)+(250.÷(+)3×(1).)1 ()
(2432283
15.先化简再求值(8分)
122--)+b)22(aba(52+ba()+24(ab+32+)=a,,9b=其中2
2
17.某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分
2 图图1
株;2号果树幼苗的数量是1()实验所用的号果树幼苗的成活数,并把图2的统计图补充完整;(2)请求出3 8分))你认为应选哪一种品种进行推广?请通过计算说明理由.(3(
18(单位:地面结构如图所示.根据图中的数据.小王家购买了一套经济适用房,他家准备将地面铺上地砖,),解答下列问题:m x y、)写出用含的代数式表示地面总面积;(12280地砖的平均费用为倍,铺(2)已知客厅面积比卫生间面积多21m,且地面总面积是卫生间面积的151m
y3 分)元,求铺地砖的总费用为多少元?(10 卫2
室卧生房厨2
x客厅
6
3
19.如图所示,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,若
∠MON=40°,试求∠AOC与∠AOB的度数.(10分)
的和AD的中点,BM=6cm,求CM∶25∶3三部分,M为AD.已知,如图,20B,C两点把线段AD分成10分)长.(
A D C M
B A
是用电的:0000,21:至次日8至21.据电力部门统计,每天8:0021:00是用电的高峰期,简称“峰时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,低谷时期,简称“谷时”对用电实行“峰谷分时电价”新政策,具体见下表:
换表后换表前时间:00)次日谷时(21:00~8008峰时(:00~21:)元0.30每度每度0.55元电价0.52每度元(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?(12分)
4
2014年度第一学期期末考试2013~
卷试学模拟七年级数数学参考答案及评分标准一、选择题
10 8 9 5 6 7 1 2 3 4 题号D
C
D
B
C
A
C
A
A
D
答案二、填空题12
或14.813 12.150 .231 11.53°45′35″
三、解答题32171112232-------()+4+2×3)÷2÷(()24×.75)+(+0.25÷())×(31 1)15.2()(234382334157111--(×)9+4×(×)+4---24×+××4×(241)+×24分……==4…4分2294348--4+66-9033+561+=6分…………6分=
-8 8分…………8分=0
=
22--)a++b)b2(22a+b)+3(2a+b)5(a4(2)1.(162)+b+b)+(2a(2a分 (3)
=
11=a×2+b=+9=102a9b=,所以因为,……6分
2222110=+10+b)=10(2a+b)+(2a分……8 故
X=1
)(2 X=-1 117.()
1 (18.1)100 ……分
……2 分89.6%=112(株) )(2500×25%×统计图如图所示:……4分
各品种细菌成活数统计图135%90×100%=号果树幼苗成活率为1 (3)成活数(株)150150 135 117
85112
%%100=85×号果树幼苗成活率为2100 85
10050 117%6=100×%93.号果树幼苗成活率为41250
品种号4 号3 号2 号1 5
因为93.6%>90%>89.6%>85%
所以应选择4号品种进行推广……8分
2)+18+2y(6x m ……………319.(1)地面总面积为:
分(2 分……………6 32分……………8 (所以地面总面积为m)45+18=×y+18=6×4+26x+222 10分45×80=3600 因为铺1 m(元)…………地砖的平均费用为80元,所以铺地砖的总费用为:
11分……………∠AOBAOB,所以∠AOM=2∠AOC,∠AON=20.因为OM、ON平分∠AOC 和∠2211分………………………………4AOB=40°所以∠MON=∠AOM-∠AON= ∠AOC-∠22分………………………………6又因为∠AOC与∠AOB互补,所
以∠AOC+∠AOB=180°,11 -°∠AOB∠
AOC=4022 故可得方程组°180∠AOC+∠AOB=8分………………………………分……………………………10 解得∠AOC=130°,∠AOB=50°
xxx cm
cm21.解:设AB=2,cm,BC=5CD=3x 2分……………………………cm
AD=AB+BC+CD=10 所以1x AM=MD=是AD的中点,所以AB=5 cm 因为M
2xxx 6分……………………………所以BM=AM-AB=5 -2=3 cm
xx分=6,=2 ……………………………83 因为BM=6 cm,所以xxxx分…………………10 -故CM=MDCD=53-AD=10=2=2×2= 4cm,2=20 cm =10×
(元)=36.4.22(1)换表前:0.52×(50+20)(元)20=33.50.55换表后:×50+0.30×36.4=-2.9(元)-33.5 6分元.…………………………所以若上月初换表,则相对于换表前小张家的电费节省了2.9xx)度,度,则“谷时电”为(95-)设小张家这个月使用“峰时电”
是(2--x9552×95...550.x+03(95)=060=x-,解之得60=35由题意可得方程,,95分…………………………12 35度,即小张家这个月使用“峰时电”60“谷时电”度.
6。