全等三角形复习学案

合集下载

第十二章全等三角形总复习导学案(付淑)

第十二章全等三角形总复习导学案(付淑)

《全等三角形》复习学案复习目标1. 全等三角形的概念和性质。

2.掌握全等三角形的判定条件 ,并能进行简单的证明和计算。

3.掌握角平分线的性质及判定,并能灵活应用。

题组练习一(问题习题化)1.(2013•柳州)如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x =4.(2013•铁岭)如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC =EC ,∠B =∠E B .BC =EC ,AC =DC C .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D 3.(2013•巴中)如图,已知点B 、C 、F 、E 在同一直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是2.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .梳理知识点:。

一、全等图形的定义和性质 1.概念能够 的两个图形叫做全等图形. 能够 的两个三角形叫做全等三角形. 2.性质全等图形的__________、__________相等. 二、全等三角形的性质与判定 1.全等三角形的性质全等三角形的__________、__________分别相等. 2.全等三角形的判定(1)有三边对应相等的两个三角形全等,简记为( );(2)有两边和它们的夹角对应相等的两个三角形全等,简记为( ); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为( ); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为( ); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为( ).三、角平分线的性质与判定1.角平分线的性质:__________角平分线的判定:__________B题组练习二(知识网络化)7.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌△DCE ; (2)当∠AEB =50°,求∠EBC 的度数?6.如图,CD ⊥AB ,BE ⊥AC ,OB =OC.求证:∠1=∠2.5.如图,AB =DE ,AC =DF ,BE =CF.求证:AB ∥DE.题组练习三(选做题)如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.21E D C BAOABCDE FABCDE。

全等三角形复习学案

全等三角形复习学案

第27课时《全等三角形》复习学案一、命题与定理1、 叫做命题.正确的命题称为 ,错误的命题称为 。

如:(1) 如果两个角是对顶角,那么这两个角相等;( ) (2) 三角形的内角和是180°;( ) (3) 同位角相等;( )(4) 平行四边形的对角线相等;( ) (5) 菱形的对角线相互垂直( )2、把一个命题改写成“如果……那么……”的形式.其中,用“如果”开始的部分是 ,用“那么”开始的部分是 .3、从公理或其他真命题出发,用逻辑推理的方法判断是正确的命题,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做 .二、逆命题与逆定理1、原命题和逆命题的关系: 。

每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,使可得到原命题的逆命题。

例如: 条件 结论原命题:两直线平行,同位角相等。

逆命题: , 2.定理、逆定理: 例如:勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(1) 勾股定理的逆命题: (是真还是假命题)(2)∴(1)与(2)互为逆定理3..等腰三角形的判定 1)。

等腰三角形的判定: 。

2)。

勾股定理的逆定理: 。

例1.如图7,P 是等边三角形ABC 内的一点,连结PAPB PC ,,,以BP 为边作60PBQ ∠=,且BQ BP =,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.2.如图,在△ABC 中,AB=AC,∠BAD=20°,且AE=AD,则∠CDE= 。

例3.如图在6×6的网格(小正方形的边长为1)中有一个△ABC ,则△ABC 的周长是 。

图7Q C P A B例3.请作一条直线,将下面的三角形分成两个三角形,是每个三角形都是 等腰三角形,并标出相关的数据。

三.角平分线、线段的垂直平分1)。

角平分线性质定理: 。

逆定理: 。

2)。

垂直平分线定理: 。

逆定理: 。

例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm . 例2. 如图,在△ABC 中,BC =8cm, AB 的垂直平分线交AB 于点D , 交AC 于点E , △BCE 的周长等于18cm, 则AC 的长等于( ) (A) 6cm (B) 8cm(C)10cm (D) 12cm例3. 如图,Rt △ABC 中,∠C=90°, ∠CAB=30°, 用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).例4.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.5.如图,△ABC 中,AB 与AC 的垂直平分线相交于F,且分别交AB 于D ,交AC 于E 。

三角形的全等复习学案教案

三角形的全等复习学案教案

全等三角形一、知识梳理1、_________的两个三角形全等;2、全等三角形的对应边_____;对应角______;3、证明全等三角形的基本思路 (1)已知两边⎪⎩⎪⎨⎧_____)(___________)(_____________)__________看是否是直角三角形找夹角找第三边( (2)已知一边一角⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧(_____)(_______)(_____)(_____)(______)已知是直角,找一边找一角已知一边与对角找这边的对角找这个角的另一边找这边的另一邻角已知一边与邻角(3)已知两角 ⎪⎩⎪⎨⎧_____)(_____________)__________找夹边外任意一边找夹边( 4、角平分线的性质为________________________________________ 用法:∵_____________;_________;_________∴QD=QE5、角平分线的判定_____________________________________ 用法:∵_____________;_________;_________∴点Q 在∠AOB 的平分线上(4与5的图如下)二、基础过关1、下列条件能判断△ABC和△DEF全等的是()A)、AB=DE,AC=DF,∠B=∠EB)、∠A=∠D,∠C=∠F,AC=EFC)、∠A=∠F,∠B=∠E,AC=DED)、AC=DF,BC=DE,∠C=∠D2、在△ABC和△DEF中,如果∠C=∠D,∠B=∠E,要证这两个三角形全等,还需要的条件是()A)、AB=ED B)、AB=FD C)、AC=DF D)、∠A=∠F3、在△ABC和△A’B’C’中,AB=A’B’,AC=A’C’,要证△ABC≌△A’B’C’,有以下四种思路证明: ①BC=B’C’;②∠A=∠A’;③∠B=∠B’;④∠C=∠C’,其中正确的思路有() A)、①②③④B)、②③④C)、①②D)、③④4、判断下列命题:①对顶角相等;②两条直线平行,同位角相等;③全等三角形的各边对应相等;④全等三角形的各角对应相等。

全等三角形复习导学案

全等三角形复习导学案

全等三角形复习导学案一、学习目标1、理解全等三角形的概念,掌握全等三角形的性质和判定方法。

2、能够运用全等三角形的性质和判定解决相关的几何问题。

3、通过复习,提高逻辑推理能力和空间想象能力。

二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应线段(角平分线、中线、高线)相等;(4)全等三角形的面积相等,周长相等。

3、全等三角形的判定方法(1)“SSS”(边边边):三边对应相等的两个三角形全等。

(2)“SAS”(边角边):两边和它们的夹角对应相等的两个三角形全等。

(3)“ASA”(角边角):两角和它们的夹边对应相等的两个三角形全等。

(4)“AAS”(角角边):两角和其中一角的对边对应相等的两个三角形全等。

(5)“HL”(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

三、典型例题例 1:已知:如图,△ABC ≌△DEF,∠A = 70°,∠B = 50°,BF = 4,求∠DFE 的度数和 EC 的长。

解:因为△ABC ≌△DEF,所以∠DFE =∠ACB。

在△ABC 中,∠ACB = 180°∠A ∠B = 180° 70° 50°= 60°,所以∠DFE = 60°。

因为△ABC ≌△DEF,所以 BC = EF。

又因为 BF = 4,所以 EC = BC BF = EF BF = 0。

例 2:如图,在△ABC 中,AD 是中线,BE 交 AD 于点 F,且 AE = EF,求证:AC = BF。

证明:延长 AD 至点 G,使 DG = AD,连接 BG。

因为 AD 是中线,所以 BD = CD。

在△ADC 和△GDB 中,AD = GD,∠ADC =∠GDB,CD = BD,所以△ADC ≌△GDB(SAS),所以 AC = GB,∠CAD =∠G。

全等三角形复习教案

全等三角形复习教案

方法
利用全等三角形的对应角 相等,结合角度的性质来 证明线段垂直。
05
全等三角形的练习题及解析
基础练习题
01
02
03
04
题目1
两个直角三角形,一个锐角和 斜边分别相等,则这两个三角 形全等。
题目2
两个三角形,两边和夹角分别 相等,则这两个三角形全等。
题目3
两个三角形,两角和夹边分别 相等,则这两个三角形全等。
题目4
两个三角形,三边分别相等, 则这两个三角形全等。
提高练习题
题目5
题目6
两个三角形,两边和其中一边的对角分别 相等,则这两个三角形全等。
两个三角形,两角和其中一角的对边分别 相等,则这两个三角形全等。
题目7
题目8
两个三角形,其中一组等角的对边相等, 并且这组等角的对边上的中线与另一边相 等,则这两个三角形全等。
全等三角形复习教案

CONTENCT

• 全等三角形的定义和性质 • 全等三角形的应用 • 全等三角形的证明方法 • 全等三角形的常见题型及解题思路 • 全等三角形的练习题及解析
01
全等三角形的定义和性质
全等三角形的定义
02
01
03
两个三角形能够完全重合,则这两个三角形是全等的 。 全等三角形的大小和形状完全相同。
两个三角形,其中一组等角的对边相等, 并且这组等角的对边上的高与另一边相等 ,则这两个三角形全等。
综合练习题
题目9
两个三角形,其中一组等角的对边相等,并且这组等角的对边上 的中线与另一边相等,同时另一组等角的对边上的高与另一边相 等,则这两个三角形全等。
题目10
两个三角形,其中一组等角的对边相等,并且这组等角的对边上 的高与另一边相等,同时另一组等角的对边的中线与另一边相等 ,则这两个三角形全等。

人教版八年级数学上册1三角形全等的判定复习学案

人教版八年级数学上册1三角形全等的判定复习学案

12.2全等三角形的判定复习【学习目标】1、进一步熟练掌握三角形全等的判定方法,并能利用全等三角形的判定证明有关线段相等、角相等的问题;2、经历运用三角形全等的条件解决问题的过程,发展合情推理能力和演绎推理能力.【重点难点】重点:利用全等三角形的判定证明有关线段相等、角相等的问题;难点:根据已知条件选择合适的判定方法证明两个三角形全等【学习过程】一、知识回顾:1、判定两个三角形全等的方法有哪些?2、判定两个直角三角形全等的方法有哪些?二、合作探究:证明两个三角形全等常见思路有哪些?(1)当条件中有两条边对应相等时,如何选择判定方法?(2)当条件中有一条边对应相等,一个角对应相等时,如何选择判定方法?(3)当条件中有两个角对应相等时,如何选择判定方法?三、例题探究:例1、已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件__;(2) 若要以“ASA”为依据,还缺条件__;(3) 若要以“AAS”为依据,还缺条件__;(4)若要以“SSS”为依据,还缺条件__;(5)若∠B=∠DEF=90°要以“HL”为依据还缺条件__;例2、已知:如图,AD是△ABC 的中线,求证:ACABAD+<2四、尝试应用1、如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有()A、1对B、2对C、3对D、4对2、下列条件中,不能判定两个直角三角形全等的是()A、一锐角和斜边对应相等B、两条直角边对应相等C、斜边和一直角边对应相等D、两个锐角对应相等3、下列四组中一定是全等三角形的为()A.三内角分别对应相等的两三角形B、斜边相等的两直角三角形C、两边和其中一条边的对角对应相等的两个三角形D、三边对应相等的两个三角形4、已知:如图∠ABC=∠DCB, AB=DC,求证: (1)AC=BD; (2)S△AOB = S△DOC5、如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需添加一个条件是_____________。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形复习教案(全)

全等三角形复习教案(全)

全等三角形一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质 (1)全等三角形对应边相等; (2)全等三角形对应角相等; (3)全等三角形周长、面积相等。

3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要注意以下几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找: ①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS) (三)疑点、易错点 1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形 一、知识梳理
1、_________的两个三角形全等;
2、全等三角形的对应边_____;对应角______;
3、证明全等三角形的基本思路 (1)已知两边
⎪⎩⎪

⎧_____)(___________)(_____________)__________看是否是直角三角形找夹角找第三边(
(2)已知一边一角
⎪⎪⎪⎩⎪⎪⎪⎨
⎧⎪⎩⎪
⎨⎧⎪⎩⎪⎨⎧(_____)(_______)(_____)(_____)(______)已知是直角,找一边找一角已知一边与对角找这边的对角找这个角的另一边
找这边的另一邻角
已知一边与邻角(3)已知
两角
⎪⎩⎪⎨⎧
_____)(_____________)__________找夹边外任意一边找夹边(
4、角平分线的性质为
________________________________________ 用法:∵_____________;_________;_________
∴QD=QE
5、角平分线的判定
_____________________________________ 用法:∵_____________;_________;_________
∴点Q 在∠AOB 的平分线上 (4与5的图如下)
二、基础过关
1、下列条件能判断△ABC 和△DEF 全等的是( ) A )、AB=DE ,AC=DF ,∠B=∠E B )、∠A=∠D ,∠C=∠F ,AC=EF C )、∠A=∠F ,∠B=∠E ,AC=DE D )、AC=DF ,BC=DE ,∠C=∠D
2、在△ABC 和△DEF 中,如果∠C=∠D ,∠B=∠E ,要证这两个三角形全等,还需要的条件是( ) A )、AB=ED B )、AB=FD C )、AC=DF D )、∠A=∠F
3、在△ABC 和△A’B’C’中,AB=A’B’,AC=A’C’,要证△ABC ≌△A’B’C’,有以下四种思路证明
: ①BC=B’C’;②∠A=∠A’;③∠B=∠B’;④∠C=∠C’,其中正确的思路有( ) A )、①②③④ B )、②③④ C )、①② D )、③④
4、判断下列命题:①对顶角相等;②两条直线平行,同位角相等;③全等三角形的各边对应相等;④全等三角形的各角对应相等。

其中有逆定理的是( )
A )、①②
B )、①④
C )、②④
D )、②③ 三、解答题
1、如图:A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE=BF ,AC=BD 。

求证:△ACF ≌△BDE
2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC
3、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN 。

4、如图:∠BAC=90°,CE ⊥BE ,AB=AC ,∠1=∠2,求证:BD=2EC
5、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF. 求证:BC ∥EF
6、如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过
A B C E F B C M F E F A M N
E 1
2
34B C
E
D
点E,则AB与AC+BD相等吗?请说明理由
7、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。

求证:
(1)EC=BF;(2)EC⊥BF
8、如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上
A
E
B
M
C
F
图12
A E
B M
C
F。

相关文档
最新文档