全等三角形全章教案集
(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教学分析1、内容分析:本章主要内容是学习全等三角形的概念、性质以及判定方法,应用全等三角形的性质和判定探索角平分线的性质,能够应用全等三等三角形的性质和判定以及角平分线的性质解决简单的几何总是,初步掌握推理证明的方法。
2、教材分析:学生已经学过线段、角、相交线、平行线、有关三角形的一些知识,通过本章的学习可以丰富和加深学生对已学图形的认识,同时为学习其它图形打好基础,教材力求创设与生活场景相近的、有趣的问题情境引入,使学生经历了从现实生活探索并抽象出几何模型,并应用几何模型解决实际问题的过程,在内容上重点探索三角形全等的判定方法经及应用,至于角平分线的改天换地的两上互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆定理的概念,通过结合具体问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培养学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。
2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图作一个角等于已知角、作一个角的角平分线。
4、经历角平分线的性质和判定方法的探究过程,灵活应用角平分线的性质和判定解决问题.三、本章教学建议(一)注重探索结论(二)注重推理能力的培养1.注意减缓坡度,循序渐进。
2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。
(三)注重联系实际三、几个值得关注的问题(一)关于内容之间的联系(二)关于证明一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
《第12章 全等三角形》全章教案

课题§12.1 全等三角形序号12备课时间8.27 授课时间主备人王暖清授课班级8.1 8.2课标要求理解全等三角形的概念,能识别全等三角形中的对应边、对应角.1.理解全等形和全等三角形的概念,能识别全等三角形中的对应边、对应角.教学目标2.掌握全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.教学重点全等三角形的性质.掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角教学难点形的对应元素.课型新授课教学准备PPT课件教学过程(一)观察实践,得到概念问题1:观察下列图案,找出这些图案中形状、大小相同的图形.师生活动:学生说出图案中形状、大小相同的图形.追问1:你能再举出一些类似的例子吗?师生活动:学生根据生活实际举出类似的例子.追问2:如果把这些形状、大小相同的图形放在一起,能够完全重合吗?问题2:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?师生活动:学生动手操作,通过实践说明形状、大小相同的图形放在一起是完全重合的.教师顺势说出概念:能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(板书课题)【设计意图】学生通过生活经验判断、猜想,进而动手实际操作,得到这些图形是能够完全重合的.培养学生观察、动手能力.(二)图形变换,加深理解图1 图2 图3问题3:(如图1)把△ABC平移,得到△DEF.(如图2)把△ABC沿直线BC翻折180°,得到△DBC.(如图3)把△ABC绕点A旋转,得到△ADE.追问:平移、翻折、旋转前后的图形,什么变化了,什么没有变化?它们全等吗?师生活动:学生分组根据要求操作,小组讨论得到平移、翻折、旋转前后的图形位置变化了,形状和大小没变,它们依然全等.教师巡回指导,并利用多媒体动画展示给学生看,加深印象.问题4:全等用符号“≌”表示,读作“全等于”.如,△ABC≌△DEF.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.追问1:你能把图2和图3中全等三角形用符号表示出来,并说出它们的对应顶点、对应边和对应角吗?师生活动:教师讲解两个三角形全等的符号表示,结合图1讲解找两个全等三角形的对应顶点、对应边、对应角的方法.学生完成图2、图3中全等三角形的符号表示,并说出它们的对应顶点、对应边和对应角.追问2:上述几对全等三角形,它们的对应边和对应角有什么关系?为什么?师生活动:学生很容易得到全等三角形的对应边相等,全等三角形的对应角相等.教师板书指出这是全等三角形的性质.追问3:全等三角形的性质怎样用几何语言表示?因为△ABC≌△DEF所以 AB=DE,AC=DF,BC=EF (全等三角形的对应边相等)∠A=∠D,∠C=∠F,∠B=∠E (全等三角形的对应角相等)【设计意图】利用三角形的平移、翻折、旋转的不变性,让学生通过具体操作直观感知,进一步理解全等三角形的概念.通过观察,猜测并验证全等三角形的性质,这种效果是抽象的讲授难以达到的.利用基本三角形变换出各种图形,然后观察它们的对应边、对应角的变化,有利于提高学生识别图形的能力.(三)习题练习,巩固新知问题5:练习:教科书第32页练习第2题.如图4,△OCA≌△OBD,点C和点B,点A和点D是对应顶点.说出这两个三角形中相等的边和角.解:AC=DB, OA=OD, OC=OB;∠A=∠D, ∠C=∠B, ∠AOC=∠DOB.师生活动:学生回答图中相等的边和角.问题6:如图5,将△ABC沿直线BC平移,得到△DEF,说出图中相等的量.解:可能的结论有:对应角方面:∠A=∠D, ∠B =∠DEF, ∠ACB=∠F;对应边方面:AB=DE, AC=DF, BC=EF;间接的其他结论:AB∥DE, AC∥DF, BE=CF, 四边形ABEG与四边形FDGC面积相等.师生活动:学生独立完成后,分组讨论答案,教师巡回指导.【设计意图】通过练习,加强学生找全等三角形中对应边和对应角的能力,提高学生识别图形的能力.(四)小结与反思1.什么是全等形?什么是全等三角形?2.什么是全等三角形的对应顶点、对应边和对应角?3.全等三角形的性质是什么?4.怎样找全等三角形的对应边和对应角?【设计意图】通过小结,梳理本节课所学内容,总结方法,体会找全等三角形的对应边和对应角的一些具体方法.(五)布置作业A类:教科书第33页习题12.1第1题,B类:教科书第33页习题12.1第2题.板书设计§12.1 全等三角形1.全等形:能够完全重合的两个图形叫做全等形.例:2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点、对应边、对应角3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.(二)构建三角形全等判定的探索思路追问1:如果两个三角形满足上述六个条件中的一个可以判定两个三角形全等吗?(1)一条边相等.(2)一个角相等.追问2:如果两个三角形满足上述六个条件中的两个可以判定两个三角形全等吗?(1)一条边和一个角相等.(2)两个角相等.(3)两条边相等.追问3:如果两个三角形满足上述六个条件中的三个可以判定两个三角形全等吗?满足三个条件又有哪些情况呢?师生活动:教师引导学生分析,满足一个条件、两个条件分别有哪些情况.学生通过画图说明均不能判定两个三角形全等,接着分析满足三个条件有哪几种情况.【设计意图】让学生通过思考、实践形成认知,渗透分类讨论的思想.(三)尺规作图,探究“边边边”判定方法问题2我们先研究两个三角形满足三边分别相等的情况.任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′= BC,A′C′= AC,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?画法:(1)画B′C′= BC;(2)分别以B′、C′为圆心,线段AB、AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′、A′C′.追问:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?文字语言:三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).符号语言:在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SSS).师生活动:师生共同进行尺规作图,学生操作、观察是否全等.然后引导学生得出“边边边”判定方法,掌握文字和符号语言.【设计意图】通过作图、剪图、比较图的过程让学生感悟到基本事实的正确性,获得“边边边”的判定方法,培养学生发现问题的能力,锻炼学生使用数学语言的能力.(四)应用新知,解决问题问题3如图:AB=AD,BC=DC,△ABC与△ADC全等吗?为什么?师生活动:学生先口述理由,然后写出完整的证明过程,教师规范步骤.【设计意图】让学生初步掌握证明两个三角形全等的一般程序,并善于从具体问题中发现隐含条件,比如公共边等.问题4例1 在如图所示的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD.师生活动:学生分析解题思路,然后写出完整的证明过程.【设计意图】巩固新知,培养学生规范的解题步骤.问题5:作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.师生活动:学生在教师的指导下进行作图,并掌握画法.学生思考:为什么画出的角等于已知角?【设计意图】为了作一个角等于已知角,实际上是先作出了一对全等的三角形,由全等三角形的对应角相等可知所作出的角等于已知角,这也启发学生:如果得到了全等的三角形,就能得到相等的角,当然也能得到相等的边,这为证明角相等、线段相等提供了全新的思路.师生活动:教师画一个△ABC,学生先讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等.简写成“边角边”或“SAS”.【设计意图】坚持让学生动手发现,在学习三角形画法的基础上探索全等条件.三、实际应用例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C不经过池塘可以直接到达A和B。
最新人教版八年级上册第12章《全等三角形》全章教案(共8份)

一、课前导学:(学生自学课本31-32页内容,并完成下列问题)(一)全等有关定义: 1、能够______________的两个图形叫做全等形, 能够______________的两个三角形叫做全等三角形,两个全等图形的______和_____ 完全相同.2、一个图形经过平移、______、_________后所得的图形与原图形全等.3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .“全等”用“ ”表示,读作 .4.若△ABC 与△DEF 全等,记作:_________________,(对应顶点的字母写在对应位置上)对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,______和____,_____和_____.(二)全等三角形的性质:1.思考:全等三角形的对应边、对应角有什么关系?为什么?2.归纳:全等三角形的_________;全等三角形的___________.3.几何语言描述:∵△ABC ≌ △DEF (已知)∴ AB=DE,_____ ,______ (全等三角形的对应边相等) ∠ A=∠ D, _______ ,________ (________________ ) (三)找全等三角形的对应元素1. 若△ABC ≌△DBC , 2 若△ABC ≌△CDA ,对应边是_____________ , 对应边是_____________ ,对应角是_____________ ; 对应角是_____________ ;教 学 过 程 设 计B C E F A B CDBAB C E F【思考】:找全等三角形的对应元素时有什么规律呢?二、合作、交流、展示:(一) 交流展示1:找全等三角形对应元素1.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点, 2.如图,△ABN ≌△ACM ,∠B和∠C 是对应角,AB 与AC 是对应边.写出这两个三角形中的对应边和对应角. 写出其他对应边及对应角.【归纳】:寻找全等三角形的对应元素的一般规律.(二).交流展示2: 全等三角形性质及其应用1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、巩固与应用1. 课本第33页第3题;2. 课本第34页第6题;3. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; (2)若∠A =50°,∠E=75°,则∠ACB= 度.四、小结:1.知识: 2.思想方法: 五、作业:《作业本》第8页. 六、课后反思:N M CB ANMGH FEDCBEAF EDCB A DC B O一、课前导学:(学生自学课本35-37页内容,并完成下列问题)1.三角形全等条件的探究:两个三角形满足三边分别相等,三个角分别相等,则这两个三角形全等. 思考:判定两个三角形全等是否一定要六个条件?条件能否尽可能少呢?(动手画一画并回答下列问题) (1).只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2).给出两个条件画三角形,有____种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等 (3)、给出三个条件画三角形,有____种情形.按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等②三组对应边相等(按课本35页探究2画图实验)2.归纳三角形全等判定方法(1)归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”. 用数学语言表述: 在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ ( )教 学 过 程 设 计C 'B 'A 'C B AAB O3.运用“边边边”证明两个三角形全等:已知:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .证明:∵D 是BC∴ =∴在△ 和△ 中 AB= BD= AD=∴△ABD △ACD( )【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论. 二、合作、交流、展示:1.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整. 解:∵BE=CF (_____________) ∴BE+EC=CF+EC 即BC=EF在ΔABC 和ΔDEF 中 AB=________ (________________)__________=DF (_______________) BC=__________∴ΔABC ≌ΔDEF (_____________)变式1:你能证明∠ A=∠ D 吗? 变式2;请你能提出几个要证明的结论?2.如图,已知AB=DE ,BC=EF ,AF=DC ,求证: EF ∥BC .3.已知:∠AOB. 求作:∠A ′O ′B ′ ,使∠A ′O ′B ′=∠AOB. 作法:1)以点___为圆心,任意长为半径画弧,分别交OA ,____于点C ,D ; 2)画一条射线O ′A ′,以点___为圆心,___长为半径画弧,交__于点C ′; 3)以点C ′为圆心,____长为半径画弧,与第2步中所画的弧交于点D ′; 4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB. 三、巩固与应用:课本第37页第1、2题;四、小结:1.全等判定方法: 2.证明全等格式: 3.思想方法: 五、作业:《作业本》第9页. 六、课后反思:A B C D EF A B D EFC 'B 'A 'C B A一、课前导学:(学生自学课本37-39页内容,并完成下列问题) 1. 探究新知 探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试(请在右方空白处作图) 已知:△ABC求作:'''A B C ∆,使''A B AB =,''A C AC =,'A A ∠=∠ 作法:①画∠DA ’E=∠A ;②在射线AD ’上截取A ’B ’=AB,在射线A ’E 上截取A ’C ’=AC ; ③连接B ’C ’.(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ ( )2.探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出: 3 .运用“边角边”证明两个三角形全等:教 学 过 程 设 计证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧==∠=CB CA 1 ∴ △ABC ≌ ( )∴ AB= . 【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来(按边-角—边)C 、写出全等结论.二、合作、交流、展示:1.如图1,已知AD ∥BC ,AD =CB ,求证:△ABC ≌△CDA 。
第十二章全等三角形12.1全等三角形教案

在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形全章学案人教版(优秀教案)

《全等三角形》全章教案全等三角形学习目标.知道什么是全等形、全等三角形;.能娴熟找出全等三角形的对应元素,能用符号正确地表示两个三角形全等;.掌握全等三角形的性质.要点 : 全等三角形的观点、性质。
难点 :对应边和对应角确实定。
自主学习一、全等形、全等三角形的观点阅读课本内容,回答课本思虑问题,并达成下边填空:.能够完好重合的两个图形叫做.全等图形的特点:全等图形的和都相同..能够完好重合的两个三角形叫做.二、全等三角形的对应元素及表示阅读课本第一个思虑及下边两段内容,达成下边填空:.平移翻折旋转A D AD EB CAB C E F D B C甲乙丙启迪:一个图形经过平移、翻折、旋转后,变化了,?但、都没有改变,所以平移、翻折、旋转前后的图形,这也是我们经过运动的方法寻全等的一种策略..全等三角形的对应元素()对应极点(三个)重合的极点()对应边(三条)重合的边()对应角(三个)重合的角请同学们写出上图甲、乙、丙的对应极点、对应边、对应角图甲:对应边是:对应极点是:对应角是:图乙:对应边是:对应极点是:对应角是:图丙:对应极点是:对应边是:对应角是:找寻对应元素的规律()有公共边的,公共边是对应边;()有公共角的,公共角是对应角;()有对顶角的,对顶角是对应角;()全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;()全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.“全等”用“≌”表示,读作“全等于”如图甲记作 : △≌△读作:△全等于△如图乙记作 :读作:如图丙记作 :读作:注意:两个三角形全等时,往常把表示对应极点的字母写在对应的地点上三、全等三角形的性质。
.阅读课本第二个思虑及下边内容,达成下边填空:全等三角形的性质:全等三角形的相等,相等.练习. 如图,△≌△,和,和是对应极点,说出这两个三角形中相等的边和角.AC BOA DB D E C图. 如图,已知△≌△,∠∠,∠∠,图?指出其余的对应边和对应角.讲堂小结本节课你有哪些收获?稳固练习.下边是两个全等的三角形,按以下图形的地点摆放,指出它们的对应极点、对应边、对应角 .()()().如图,△≌△,与,与是对应边,已知:∠°,∠°,求∠的大小.ADEB C讲堂检测. 全等用符号表示,读作:.. 若△≌△,则∠ , ∠ , .. 判断题)全等三角形的对应边相等,对应角相等. ())全等三角形的周长相等,面积也相等.())面积相等的三角形是全等三角形.())周长相等的三角形是全等三角形.(). 如图 : △≌△ , 找出图中的对应边, 对应角 .答: ∠的对应角是,∠的对应角是,∠的对应角是;的对应边是,的对应边是,的对应边是 .BDA课后作业:课本习题第、题板书设计:.全等三角形一、全等形、全等三角形的观点二、全等三角形的对应元素及表示三、全等三角形的性质教课反省:CF三角形全等的判断学习目标.理解三边对应相等的两个三角形全等的内容..会运用“边边边”条件证明两个三角形全等..会作一个角等于已知角.自主学习一、课前准备. 叫做全等三角形. 全等三角形的和相等. 将△沿直线平移,获得△,说出你获得的结论,说明原因?ADB E CF假如 , ∠°, ∠° ,那么,∠ .二、自主研究自主研究三角形全等的条件:阅读课本研究以前,回答下边问题:经过研究()只给一个条件对应相等的两个三角形必定全等吗?①只给一条边时;②只给一个角时;㎝㎝3cm???()假如给出两个条件画三角形,你能说出有哪几种可能的状况?①给出两个角时;②给出两条边时;③给出一条边和一个角时;()由上边的几种情形,两个三角形知足一个或两个条件时,它们必定全等吗?()假如两个三角形有三个条件对应相等,这两个三角形全等吗?我们也能够分状况议论,有哪几种状况?①我们先来研究两个三角形三个角相等的状况:②画出一个三角形,使它的三边长分别为 3cm、4cm、6cm , 把你画的三角形与小组内画的进行比较,它们必定全等吗?③上边的研究反应了什么规律?阅读课本研究至例前,回答下边问题:的两个三角形全等,简写为“”或“”.三、例题学习阅读课本例,学习“边边边”证明两个三角形全等的格式.稳固练习.如图,,,求证:()△≌△()∠∠()在△和△中(公共边)∴△≌△()证明:()∵△≌△∴∠∠(). 如图,已知、,点、、、在一条直线上,.要用“边边边”证明△≌△,除了已知中的,之外,还应当有什么条件?如何才能获得这个条件?证明:四、作一个角等于已知角阅读课本最后一段至,回答书中问题.讲堂小结本节课你有哪些收获?讲堂检测如图,,,△和△能否全等?试说明原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 1B 1CABA 1课题:§11.1 全等三角形 课型:新授 教学目标(一)知识技能: 1、了解全等形及全等三角形的概念。
2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
(二)过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。
(三)情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点: 全等三角形的性质.教学难点:找全等三角形的对应边、对应角. 教学方法:讲授法,讨论法,情景导入法 教学准备:多媒体,三角板预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教学过程(一)提出问题,创设情境出示投影片 :1.问题:你能发现这两个图形有什么美妙 的关系吗?这两个图形是完全重合的.2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F生:同一张底片洗出的同大小照片是能够完全重合的。
形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号.记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于”DA(注意强调书写时对应顶点字母写在对应的位置上)(二).新知探究利用投影片演示1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 3. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.(三)例题讲解[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.2小结:找对应边和对应角的常用方法有:DCABODCABE 乙DCAB 丙DCABE• (1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)课堂练习1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题1)全等三角形的对应边相等,对应角相等。
()2)全等三角形的周长相等,面积也相等。
()3)面积相等的三角形是全等三角形。
()4)周长相等的三角形是全等三角形。
()(五).课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,• 并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.找对应元素的常用方法有以下几种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.CBAED2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 3. 有公共边的,公共边是对应边. 4.有公共角的,公共角是对应角.5.有对顶角的,对顶角是对应角一对最长的边是对应边, 一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角(六)作业课本P4习题11.1、复习巩固1.2、综合运用3.(七) 板书设计(八) 教学反思:全等三角形的性质运用练习课1、如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ . 若∠BAE =120°,∠BAD =40°,则∠BAC =2.△ABC ≌△DEF ,且△ABC 的周长为12, 若AB =3,EF =4, 则AC = . 3、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点, 如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm . 第1题图4、如图 2, △ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=500, ∠AEC=1200,则∠DAC 的度数等于 . 5、如图3,若 △ABC ≌△DEF ,则∠E= °图2图46.如图4,△ABD ≌△ACE,对应角是___________________________,对应边是__________________.7、已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.8、.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°, 那么在△ABC 中与这100°角对应相等的角是( ) A.∠A B.∠B C.∠C D.∠B 或∠C 9、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A.△ABD 和△CDB 的面积相等 B.△ABD 和△CDB 的周长相等 C.∠A +∠ABD =∠C +∠CBD D.AD ∥BC ,且AD =BC§11.2 三角形全等的条件§11.2.1 三角形全等的条件(一)主备人:别斯托别乡中学:王亚峰 课型:新授图3DACB教学目标(一)知识与技能 1、三角形全等的“边边边”的条件.2、了解三角形的稳定性.3、作一个角等于已知角。
(二)过程与方法: 经历探索三角形全等条件的过程, 体会利用操作、 归纳获得数学结论的过程.(三)情感态度价值观: 体会探索全等的条件,通过合作交流, 形成良好的思维教学重点: 三角形全等的条件.教学难点: 寻求三角形全等的条件. 教学方法: 讨论法,复习导入教学准备: 课件、多媒体,三角板,圆规 课时:1课时预习导航: 1、已知三角形三边如何作三角形?2、如何判定三角形全等?3、如何作一个角等于已知角?教学过程(一).创设情境,引入新课出示投影片, 已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.(二).导入新课出示投影片活动1:探究1.只给一个条件(一组边相等或一组角相等),•画出的两个三角形一定全等吗? 2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm . ②三角形两内角分别为30°和50°. ③三角形两条边分别为4cm 、6cm .C 'B 'A 'C B A学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.③4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内角一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.活动2:已知三边作三角形已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1.画图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个△A ′B ′C ′,使AB=A ′B ′、AC=A ′C ′、BC=B ′C ′.将△A ′B ′C ′剪下,发现两三角形重合.这反映了一个规律:作法:(略)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”. 活动3:定理的应用 用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒[师生共析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.有前面的结论还可以得到作一个角等于已知角的方法。