浙教版八年级数学上册卷-

合集下载

浙教版数学八年级上册单元检测试题及答案(全册)

浙教版数学八年级上册单元检测试题及答案(全册)

浙教版数学八年级上册第一章测试卷一、选择题(每题3分,共30分)1.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°(第1题)(第3题)2.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是()A.3 cm,4 cm,8 cm B.4 cm,4 cm,8 cmC.5 cm,6 cm,8 cm D.5 cm,5 cm,12 cm3.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS4.如图,△ABC≌△A′B′C′,则∠C的度数是()A.56°B.51°C.107°D.73°(第4题)(第5题)(第7题)5.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC的周长为()A.12 B.13 C.15 D.166.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.同角或等角的补角相等7.如图,点B,E在线段FC上,且CE=BF,AB=DE,增加以下条件能判定△ABC≌△DEF的是()A.∠A=∠D B.∠C=∠FC.BC=EF D.AC=DF8.在△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5cm9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,若△ABC 的面积为16,则图中阴影部分的面积为()A.8 B.6 C.4 D.2(第9题) (第12题)(第15题)10.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出()A.3个B.5个C.6个D.7个二、填空题(每题3分,共24分)11.把命题“同角或等角的余角相等”改写成“如果……那么……”的形式为__________________________.12.如图,若△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.14.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是__________,设△ABC的周长是l,则l的取值范围是________.15.如图,在△ABC中,AB,AC的垂直平分线l1,l2相交于点O,若∠BAC=82°,则∠OBC=________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.(第16题)(第17题)(第18题)17.如图,要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED 的长就是AB的长.判定△EDC≌△ABC的理由是____________.18.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是长方形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA.若∠ACB=24°,则∠ECD的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高相等.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(写上证明的依据)(第20题)21.已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,AB∥CD,AM平分∠CAB,交CD于点M.(1)过点C作AM的垂线,垂足为N;(要求:用直尺和圆规作图,保留作图痕迹,不要求写出作法)(2)求证:△MCN≌△ACN.(第22题)23.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论.(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(第23题)24.如图①,已知线段AB,CD相交于点O,连结AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.(2)如图②,若∠CAB和∠BDC的平分线AP和DP相交于点P,AP与CD交于点M,AB与DP交于点N.①以线段AC为边的“8字型”有________个,以点O为交点的“8字型”有________个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间存在的数量关系,并说明理由.(第24题)答案一、1.C 2.C 3.A 4.D 5.B 6.C 7.D 8.A 9.C 10.D 二、11.如果两个角是同角或等角的余角,那么这两个角相等 12.120° 13.4:314.1<c <7;8<l <14 15.8°16.5 点拨:由已知可得∠ADC =∠BDF =∠BEC =90°,易得∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DC =DF =3.所以AF =AD -DF =8-3=5. 17.ASA18.22° 点拨:∵四边形ABCD 是长方形,∴AB ∥CD .∴∠ECD =∠BEC .∵∠F AE =∠FEA ,∴∠ACF =∠AFC =2∠BEC ,∴∠ACD =∠ACF +∠ECD =3∠ECD .∵∠ACB =24°,∴∠ACD =90°-24°=66°, ∴∠ECD =13∠ACD =22°.三、19.解:(1)条件:两条直线被第三条直线所截;结论:同旁内角互补.(2)条件:两个三角形全等;结论:它们对应边上的高相等. 20.证明:∵AB ∥CD (已知),∴∠B =∠C (两直线平行,内错角相等). 在△ABE 和△DCF 中,⎩⎨⎧∠B =∠C (已证),∠A =∠D (已知),AE =DF (已知),∴△ABE ≌△DCF (AAS )∴AB =CD (全等三角形的对应边相等). 21.解:∵(b -5)2+c -7=0,∴⎩⎨⎧b -5=0,c -7=0,解得⎩⎨⎧b =5,c =7. ∵a 为方程|a -3|=2的解, ∴a =5或a =1.当a =1,b =5,c =7时,1+5<7,不能组成三角形, 故a =1不符合题意. ∴a =5,∴△ABC 的周长=5+5+7=17. ∵a =b =5,∴△ABC 是等腰三角形. 22.(1)解:作图略.(2)证明:∵CN ⊥AM , ∴∠CNA =∠CNM =90°. ∵AB ∥CD ,∴∠CMA =∠MAB . ∵AM 平分∠CAB ,∴∠MAB =∠CAM .∴∠CMA =∠CAM . 在△MCN 和△ACN 中,∵⎩⎨⎧∠CMN =∠CAN ,∠CNM =∠CNA ,CN =CN ,∴△MCN ≌△ACN (AAS ). 23.解:(1)BD =CE ,BD ⊥CE .(2)BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAC -∠DAC =∠DAE -∠DAC .∴∠BAD =∠CAE .在△ABD 与△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE .延长BD 交AC 于点F ,交CE 于点H .在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC ,∴∠CHF =∠BAF =90°,∴BD ⊥CE .24.(1)证明:∵∠A +∠C =180°-∠AOC ,∠B +∠D =180°-∠BOD ,∠AOC=∠BOD ,∴∠A +∠C =∠B +∠D . (2)解:①3;4②以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP ,∴2∠P +∠BAP +∠CDP =∠B +∠C +∠CAP +∠BDP . ∵AP ,DP 分别平分∠CAB 和∠BDC , ∴∠BAP =∠CAP ,∠CDP =∠BDP , ∴2∠P =∠B +∠C . ∵∠B =100°,∠C =120°,∴∠P =12(∠B +∠C )=12×(100°+120°)=110°. ③3∠P =∠B +2∠C ,其理由是: ∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP , ∴∠C -∠P =∠CDP -∠CAP =13(∠CDB -∠CAB ),∠P -∠B =∠BDP -∠BAP =23(∠CDB -∠CAB ), ∴2(∠C -∠P )=∠P -∠B , ∴3∠P =∠B +2∠C .第二章 测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18°B .24°C .30°D .36°(第2题) (第4题) (第8题)3.在直角三角形ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A.365B.1225C.94D.3344.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC ≌Rt △ABD ,以下给出的条件合适的是( ) A .AC =ADB .BC =ADC .∠ABC =∠ABD D .∠BAC =∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20°B .120°C .20°或120°D .36°6.在△ABC 中,AB 2=(a +b )2,AC 2=(a -b )2,BC 2=4ab ,且a >b >0,则下列结论中正确的是( ) A .∠A =90° B .∠B =90°C .∠C =90°D .△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是( ) A .5B .6C .6.5D .128.如图,在△ABC 中,AD ,CE 分别是△ABC 的中线和角平分线,若AB =AC ,∠CAD =20°,则∠ACE 的度数是( ) A .20°B .35°C .40°D .70°9.如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于( ) A .3B .4C .5D .6(第9题)(第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题)(第16题)(第17题)(第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题)24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF.(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.(第24题)答案一、1.D 2.A3.A 点拨:利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C 点拨:由题意可得,AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B 点拨:因为△ABC 是等腰三角形,AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B 点拨:本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D 点拨:∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎨⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA), ∴BP =BQ .又∵∠DBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 点拨:△OPE ≌△OPF ,△OP A ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322. 17.318.100° 点拨:连结OB ,OC .易得△AOB ≌△AOC (SAS). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°. ∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°. ∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E ,CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF=CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°, ∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC , ∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .点拨:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用(1)中结论证明Rt △ADC ≌R t △ADE ,∴AC =AE ,再将线段AB 进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC , ∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE , 又∵BE =BE ,∴△ABE ≌△CBE (ASA), ∴AE =CE .∴CE =12AC . 由(1)知△FBD ≌△ACD , ∴BF =AC ,∴CE =12BF . (3)解:BG 2=GE 2+CE 2.证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2. 点拨:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( )A .x -3>y -3B.x 3>y 3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )(第3题)A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( ) A .14道 B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423 x <2,则x 的整数值有( ) A .0个B .1个C .2个D .3个二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.(第12题)13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a-1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________.17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题.解不等式:2x +5x -3>0. 解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(第23题)(1)当n=500时,①根据信息填表(用含x的式子表示):②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 点拨:方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 点拨:不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 点拨:两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 点拨:根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 点拨:由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3.三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.[第19(1)题](2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.[第19(2)题](3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.[第19(3)题]所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.[第19(4)题]20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0.不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M5,∴-10≤110-M5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160. 23.解:(1)①500-x ;50x ;80(500-x )②50x +80(500-x )=25 600,解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意,得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.第4章 测试卷一、选择题(每题3分,共30分) 1.下列各点中,在第三象限的是( )A .(1,7)B .(-1,-7)C .(1,-7)D .(-1,7)2.给新同学指路,介绍文具店的位置时,其中表达正确的是( )A .在学校的右边B .距学校900 m 处C .在学校的西边D .在学校的西边距学校900 m 处3.如图,已知棋子“相”的坐标为(-2,3),棋子“兵”的坐标为(1,3),则棋子“炮”的坐标为( ) A .(3,2)B .(3,1)C .(2,2)D .(-2,2)(第3题) (第9题)4.在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于x 轴对称,则a +b的值为( ) A .33B .-33C .-7D .75.若点P (3,-4),Q (x ,-4)之间的距离是5,则x 的值为( )A .-2B .-2或2C .8D .-2或86.在平面直角坐标系xOy 中,若点A 的坐标为(-3,3),点B 的坐标为(2,0),则三角形ABO 的面积是( ) A .15B .7.5C .6D .37.在平面直角坐标系中,点A (1,2)平移后的坐标是A ′(-3,3),按照此平移方式平移其他点,则下列变换符合这种要求的是( ) A .(3,2)→ (4,2) B .(-1,0) → (-5,-4) C.⎝ ⎛⎭⎪⎫2.5,-13 →⎝ ⎛⎭⎪⎫-1.5,23 D .(1.2,5) → (-3.2,6)8.在平面直角坐标系中,下列各点关于y 轴的对称点在第一象限的是( )A .(2,1)B .(2,-1)C .(-2,1)D .(-2,-1)9.如图,A,B两点的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3 C.4D.510.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.下列结论:①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(1,1)在第二象限;⑤点(2,0)在x轴的正半轴上.其中正确的是________.(填序号)12.某市区有3个自行车站点,位置如图所示,若站点1的位置表示为(B,1),站点2的位置表示为(C,3),则站点3的位置可表示为____________.(第12题)(第15题)(第16题)(第17题)13.若点A(3,x-1)在x轴上,点B(2y+2,1)在y轴上,则x2+y2的值为________.14.在平面直角坐标系中,点A(-3,2)关于x轴对称的点B,将点B向右平移3个单位得到点C,则点C的坐标是________.15.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标x的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1≤x≤5)”表示.若射线CD垂直平分AB于点C,那么按照类似这样的规定,射线CD上任意一点的坐标可以表示为____________.16.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位,得到线段O′A′,则点A的对应点A′的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.将正整数按以下规律排列:第一列第二列第三列第四列第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行9 8 7 14 …第四行10 11 12 13…第五行……表中数2在第二行,第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应.根据这一规律,数2 019对应的有序数对为________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.如果规定北偏东30°的方向记做30°,从O点出发沿这个方向走50米记做50,图中点A记做(30°,50);北偏西45°的方向记做-45°,从O点出发沿着该方向的反方向走20米记做-20,图中点B记做(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).(第19题)20.根据下列条件建立适当的直角坐标系,标出学校、少年宫、体育馆、新华书店的位置.从学校向东走300 m,再向北走300 m是少年宫;从学校向西走100 m,再向北走200 m是体育馆;从学校向南走150 m,再向东走250 m,再向南走50 m是新华书店.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.22.如图,已知A(0,4),B(-2,2),C(3,0).(第22题)(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标A1(________),B1(________),C1(________);(3)△A1B1C1的面积为________.23.如图,梯形ABCD是直角梯形.(1)直接写出点A,B,C,D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形;(3)直角梯形ABCD与其关于y轴的对称图形构成一个等腰梯形,将这个等腰梯形向上平移4个单位,画出平移后的图形.(不写画法)(第23题)24.如图,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(2,0),(2,1.5).(1)求△ABC的面积.(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.(第24题)答案一、1.B 2.D 3.A4.B点拨:因为P,Q关于x轴对称,所以a=-13,b=-20,所以a+b=-33.5.D6.D点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,BO边上的高为3,所以三角形ABO的面积=12×2×3=3.7.C8.C9.A点拨:由A点的横坐标的变化可知线段AB向右平移了1个单位,由B 点的纵坐标的变化可知线段AB向上平移了1个单位.10.D点拨:本题利用分类讨论思想.当OA为等腰三角形的腰时,以O为圆心,OA为半径的圆与y轴有两个交点,以A为圆心,AO为半径的圆与y轴除点O外还有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共有4个.故选D.二、11.③⑤点拨:两个点的横纵坐标均不相等,表示的不是同一个点,所以①错误;横坐标为0的点在y轴上,所以②错误;第二象限的点的符号的特征是(-,+),所以④错误.12.(D,2)13.214.(0,-2)15.(3,y)(y≥-1)16.(-1,3)17.(2,1)点拨:由题意知四边形BEB′D是正方形,∴点B′的横坐标与点E 的横坐标相同,点B′的纵坐标与点D的纵坐标相同,∴点B′的坐标为(2,1).18.(45,7)三、19.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)略.20.解:选取学校所在的位置为原点,以正东方向为x轴的正方向,以正北方向为y轴的正方向建立平面直角坐标系,学校、少年宫、体育馆、新华书店的位置如图所示.(第20题)21.解:(1)由题意得2x =3x -1,解得x =1.(2)∵点P (2x ,3x -1)在第三象限,∴⎩⎨⎧2x <0,3x -1<0,∴x <0,∴点P (2x ,3x -1)到坐标轴的距离之和为|2x |+|3x -1|=-2x -3x +1=16,解得x =-3. 22.解:(1)如图.(第22题)(2)0,-4;-2,-2;3,0 (3)723.解:(1)点A ,B ,C ,D 的坐标分别为(-2,-1),(-4,-4),(0,-4),(0,-1).(2)略. (3)略.24.解:(1)由点B (2,0),点C (2,1.5),可知CB ⊥x 轴.过点A 作AD ⊥BC ,垂足为D ,则S △ABC =12BC ·AD =12×1.5×2=1.5.(2)过点P 作PE ⊥y 轴,垂足为E .则S 四边形ABOP =S △AOB +S △AOP =12AO ·OB +12AO ·PE =12×1×2+12×1×(-a )=1-12a .(3)存在点P ,使得四边形ABOP 的面积与△ABC 的面积相等.依题意,得1-12a =1.5,解得a =-1.所以存在点P (-1,2),使得四边形ABOP 的面积与△ABC 的面积相等.第5章测试卷一、选择题(每题3分,共30分)1.函数y=1x-2+x-2的自变量x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.x≤2 2.有一本书,每20页厚1 mm,设从第1页到第x页的厚度为y mm,则y关于x的函数表达式是()A.y=120x B.y=20x C.y=120+x D.y=20x3.已知点(-1,y1),(6,y2)在一次函数y=2x-3的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1 4.已知一次函数y=kx+b(k,b是常数,且k≠0)中x与y的部分对应值如下表,则不等式kx+b<0的解集是()A.x<0 B.x>0 C.x<1 D.x>15.已知一次函数y=kx+b,y随x的增大而减小,且kb>0,则这个函数的大致图象是()6.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的位置如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x <-1B .x >-1C .x >2D .x <2(第6题) (第7题)7.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( ) A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +38.如图,在等腰三角形ABC 中,直线l 垂直于底边BC ,现将直线l 沿线段BC从B 点匀速平移至C 点,直线l 与△ABC 的边相交于E ,F 两点,设线段EF 的长度为y ,平移时间为t ,则能较好地反映y 与t 的函数关系的图象是( )(第8题)9.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0) B.⎝ ⎛⎭⎪⎫22,-22C.⎝ ⎛⎭⎪⎫-12,-12 D.⎝ ⎛⎭⎪⎫-22,-22(第9题) (第10题) (第14题)10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t (h )之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560 km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60 km ;④相遇时,快车距甲地320 km.其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与y轴的交点坐标为________.13.如果直线y=12x+n与直线y=mx-1的交点坐标为(1,-2),那么m=________,n=________.14.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有____________(把你认为说法正确的序号都填上).15.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是__________.16.如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组__________的解.(第16题)(第18题)17.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x 轴交于点B,且S△AOB=4,则k的值是______________.18.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后距离出发点的路程y(m)与时间t(s)之间的函数关系如图,则这次越野跑的全程为________m.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数的图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?。

浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章-测试卷及答案浙教版八年级上册数学第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()。

A。

低碳B。

节水C。

节能D。

绿色食品2.如图,在△ABC 中,AB = AC,∠A = 36°,BD 是 AC 边上的高,则∠DBC 的度数是()。

A。

18°B。

24°C。

30°D。

36°3.在直角三角形 ABC 中,∠C = 90°,AC = 9,BC = 12,则点 C 到 AB 的距离是()。

A。

5B。

25C。

4D。

34.如图,已知∠C = ∠D = 90°,添加一个条件,可使用“HL”判定 Rt △ABC ≌ Rt △ABD,以下给出的条件合适的是()。

A。

AC = ADB。

BC = ADC。

∠ABC = ∠ABDD。

∠BAC = ∠BAD5.已知一个等腰三角形的两个内角度数之比为 1:4,则这个等腰三角形顶角的度数为()。

A。

20°B。

120°C。

20°或 120°D。

36°6.在△ABC 中,AB² = (a + b)²,AC² = (a - b)²,BC² = 4ab,且 a。

b。

0,则下列结论中正确的是()。

A。

∠A = 90°B。

∠B = 90°C。

∠C = 90°D。

△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是 5 和 12,则第三条边上的中线长是()。

A。

5B。

6C。

6.5D。

88.如图,在△ABC 中,AD,CE 分别是△ABC 的中线和角平分线,若 AB = AC,∠CAD = 20°,则∠ACE 的度数是()。

A。

20°B。

35°C。

最新浙教版八年级上册数学期末试检测卷(附解析)

最新浙教版八年级上册数学期末试检测卷(附解析)

最新浙教版八年级上册数学期末试检测卷(附解析)最新浙教版八年级上册数学期末试卷(附解析)一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(1,1)C.(1,5)D.(1,0)2.(3分)不等式x-1>0的解在数轴上表示为()A.(1,∞) B.(-∞,1) C.(1,∞) D.(-∞,1)3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4 B.a=4,b=5,c=6 C.a=2,b=2,c=2√2 D.a=3,b=4,c=54.(3分)对于命题“若a^2=b^2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3 B.a=-3,b=-3 C.a=3,b=-3 D.a=-3,b=35.(3分)若x+aay,则()A.x0 B.x>y,ay,a>06.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx的大致图象为()A. B. C. D.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.148.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.8 C.6 D.49.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44 B.43 C.42 D.4110.(3分)关于函数y=(k-3)x+k,给出下列结论:①此函数是一次函数。

②无论k取什么值,函数图象必经过点(-1,3)。

③若图象经过二、三、四象限,则k的取值范围是k<3。

④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①② B.②③ C.③④ D.①③二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A (-1,-2),则b=-4.12.(4分)若不等式组的解集是-1<x<2,则a=-1.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为72°。

浙教版初中数学八年级上册期末测试卷(困难)(含答案)

浙教版初中数学八年级上册期末测试卷(困难)(含答案)

浙教版初中数学八年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图,称有一条公共边的两个三角形为一对共边三角形,则图中的共边三角形有( )A. 8对B. 16对C. 24对D. 32对2.图 ①是一个四边形纸条ABCD,其中AB//CD,E,F分别为边AB,CD上的点,将纸条ABCD沿直线EF折叠得到图 ②,再将图 ②沿直线DF折叠得到图 ③,若在图 ③中,∠FEM=26∘,则∠EFC的度数为( )A. 52∘B. 64∘C. 102∘D. 128∘3.下列四个命题:①直线外一点到这条直线的垂线段叫做点到直线的距离;②内错角相等;③过一点有且只有一条直线与这条直线平行;④如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等.其中真命题的个数是.( )A. 0个B. 1个C. 2个D. 4个4.图甲是第七届国际数学教育大会(ICME−7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如图乙中的OA1=A1A2=A2A3=⋯=A7A8= 1,按此规律,在线段OA1,OA2,OA3,…,OA20中,长度为整数的线段有条.( )A. 3B. 4C. 5D. 65.若关于x的不等式组{x−3≥a−3xx<4有且只有3个整数解,则满足条件的所有整数a 的和是( )A. −3B. −2C. −5D. −66.已知关于x的分式方程1−mx−1−2=21−x的解是非负数,则m的取值范围是( )A. m≤5且m≠−3B. m≥5且m≠−3C. m≤5且m≠3D. m≥5且m≠37.若不等式组{3x−1>2,8−4x≤0的解集在数轴上表示为( )A. B.C. D.8.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有( )A. 5间B. 6间C. 7间D. 8间9.点A的坐标为(3,−5),现将坐标系向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. (0,−1)B. (1,−2)C. (−7,−1)D. (6,−9)10.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A. (4,44)B. (5,44)C. (44,4)D. (44,5)11. 在平面直角坐标系中,已知直线y =−34x +3与x 轴、y 轴分别交于A ,B 两点,C(0,n)是y 轴正半轴上一点,把坐标平面沿AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是.( )A. (0,34)B. (0,43)C. (0,3)D. (0,4)12. 如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B.图2是点F 运动时,△FBC 的面积y(cm 2)随时间x(s)变化的关系图象,则a 的值为( )A. √5B. 2C. 52 D. 2√5第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,△ABC 与△DEF 均为等边三角形,点E ,F 在边BC 上,BE =CF =2EF ,点D在△ABC 内,且AG =GD =GE =√19,则△ABC 的周长为______.14. 如图,“赵爽弦图”由4个完全一样的直角三角形所围成,在Rt △ABC 中,AC =b ,BC =a ,∠ACB =90°,若图中大正方形的面积为60,小正方形的面积为10,则(a +6)2的值为______.15.如果关于x的不等式ax<3的解集为x>3,写出一个满足条件的a值______.a16.如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(a,2),则关于x的不等式x+1<kx+b的解集为______.三、解答题(本大题共9小题,共72分。

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。

浙教版八年级上册数学期末考试试卷及答案

浙教版八年级上册数学期末考试试卷及答案

浙教版八年级上册数学期末考试试题一、单选题1.下列用乐高积木拼成的英文字母中,不是轴对称图形的是( )A .B .C .D .2.若一个三角形的两边长分别为3cm 、6cm ,则它的第三边的长可能是( ) A .2cmB .3cmC .6cmD .9cm3.对于函数5y x =-,下列结论正确的是( ) A .它的图象经过点()1,5- B .它的图象不经过第三象限 C .y 值随x 的增大而增大D .它的图象与直线y x =平行4.下列不等式一定成立的是( )A .20222021a a >B .20212022a a +<+C .20212022a a ->-D .20222021a a> 5.小明同学利用“描点法”画某个一次函数的图象时,列出的部分数据如下表:经过认真检查,发现其中有一个函数值计算错误,这个错误的函数值是( ) A .2 B .1 C .6- D .8-6.如图,点D 在BC 的延长线上,DE AB ⊥于点E ,交AC 于点F .若35,15A D ∠=︒∠=︒,则ACB ∠的度数为( ).A .65°B .70°C .75°D .85°7.某单位需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有() A .2种B .3种C .4种D .5种8.将等腰△ABC 如图1放置,使得底边BC 与x 轴重合,此时点A 的坐标为(,若将该三角形如图2放置,使得腰长AB 与x 轴重合,则此时C 点的坐标为( )A .810,33⎛⎫ ⎪⎝⎭B .52⎛ ⎝⎭C .52⎛ ⎝⎭D .83⎛ ⎝⎭9.不等式 1-x >0 的解在数轴上表示正确的是( )A .B .C .D .10.如图,直线y=3x+6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C '恰好落在直线AB 上,则点C 的坐标为( )A .(3,3)B .(4,3)C .(1-,3)D .(3,4)二、填空题11.正比例函数y kx =经过点()2,6,则k 的值是______.12.如图,线段CD 可以看成由线段AB 先向下平移______个单位,再向右平移______个单位得到.13.已知不等式1203x a -≤的解集为2x ≤,则a 的值为______.14.如图,等腰△ABC 中,AB AC =,50BAC ∠=︒,AB 的垂直平分线MN 交AC 于点D ,则△DBC 的度是______.15.如图,直线1y mx =,2y kx b =+交于点()2,1P ,则关于x 的不等式2kx b mx +>>-的解集为______.16.如图,在平面直角坐标系中,点P (﹣1,2)关于直线x=1的对称点的坐标为_____.三、解答题17.解不等式组21211223x x x x -≤-+⎧⎪-+⎨<⎪⎩,并写出该不等式组的整数解.18.(1)解不等式5234x x -<+,并把解表示在数轴上.(2)解不等式组()36324x x -≤-⎧⎨-<⎩.19.如图,△ABC 中,AB AC =,BG ,CF 分别是AC ,AB 边上的高线,求证:BG CF =.20.如图,等腰△ABC 周长为10,底边BC 长为y ,腰AB 长为x .(1)求y 关于x 的函数表达式(不需要求自变量的取值范围) (2)当腰长3AB =时,求底边的长.21.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图△中,画一个三角形,使它的三边长都是有理数;图△(2)在图△中,画一个直角三角形,使它们的三边长都是无理数.图△22.将两个等腰直角三角形如图摆放,AB AC =,AE AD =,90BAC DAE ∠=∠=︒,点C 在边AD 上,连结BD ,EC .(1)求证:BD EC =.(2)取BD ,EC 的中点M ,N ,判断点A ,M ,N ,为顶点的三角形形状,并说明相应理由.23.如图,ABC 中,E 是AC 边上一点,BE BC =,D 为三角形外一点,且DEA EBC ∠=∠,AC DE =.(1)求证:ABC △DBE .(2)若50ABD ∠=︒,求C ∠的度数.24.一次函数114y k x =-与正比例函数22y k x =的图像都经过点(2,1). (1)分别求出这两个函数的解析式.(2)求这两个函数图像与x 轴围成的三角形面积.∥25.如图1,已知四边形OABC的顶点O在坐标原点,点A在y轴上,点C在x轴上,AB x→→→→运动一周,顺次连轴,动点P从点O出发,以每秒1单位的速度,沿O A B C O结P,O,C三点所围成图形的面积为S,点P的运动时间为t秒,S与t之间的函数关系如图2中折线ODEFG所示已知4AB=,点D,点F横坐标分别为8和22.(1)求a和b的值.(2)求直线EF的函数解析式.(3)当P在BC上时,用t表示P点的纵坐标.参考答案1.A【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【详解】解:A. 不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够完全重合,即不满足轴对称图形的定义,符合题意;B. 是轴对称图形,不符合题意;C. 是轴对称图形,不符合题意;D. 是轴对称图形,不符合题意.故选A.【点睛】本题考查的是轴对称图形,熟练掌握和理解轴对称图形概念是解题的关键.2.C【分析】根据三角形的三边关系:任意两边之和大于第三边进行判断即可. 【详解】解:由三角形的三边关系可得: 63-<第三边<63+,即: 3<第三边<9, 故选C .【点睛】本题考查三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边. 3.B【分析】根据一次函数的性质进行判断即可得.【详解】解:A 、当=1x -时,5(1)6y =--=,则它的函数图形不经过点(-1,5),选项说法错误,不符题意;B 、5y x =-,10k =-<,50b =>,它的图像经过第一,二,四象限,选项说法正确,符合题意;C 、5y x =-,10k =-<,50b =>,y 随x 的增大而减小,选项说法错误,不符合题意;D 、它的图像不与直线y x =平行,选项说法错误,不符合题意; 故选B .【点睛】本题考查了一次函数,解题的关键是掌握一次函数的性质. 4.B【分析】令a<0,代入各式中判断是否成立,即可得出结果.【详解】解:A 中当a<0时,20222021a a <,原式不成立,故不符合要求; B 中20212022a a +<+,无论a 取何值,都成立,故符合要求; C 中当a<0时,20212022a a -<-,原式不成立,故不符合要求; D 中当a<0时,20222021a a<,原式不成立,故不符合要求; 故选B .【点睛】本题考查了不等式的性质.解题的关键在于举出不等式不成立的反例. 5.C【分析】根据点的坐标(任取两个),利用待定系数法求出一次函数解析式,再逐一验证其它三点坐标即可得出结论.(或描点连线,亦可找出不在直线上那点的纵坐标). 【详解】解:设该一次函数的解析式为y kx b =+(0k ≠),将()2,4-,()1,1-代入y kx b =+,得:241k b k b -+=⎧⎨-+=⎩,解得:32k b =-⎧⎨=-⎩,△一次函数的解析式为32y x =--. 当0x =时,322y x =--=-; 当1x =时,3256y x =--=-≠-; 当2x =时,328y x =--=-. △C 错误. 故选:C .【点睛】本题考查了待定系数法求出一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键. 6.B【分析】根据题意DE AB ⊥于点E ,交AC 于点F ,则55AFE CFD ∠=∠=︒,即155570ACB D CFD ∠=∠+∠=︒+︒=︒ 【详解】解:△,35DE AB A ⊥∠=︒ △55AFE CFD ∠=∠=︒,△155570ACB D CFD ∠=∠+∠=︒+︒=︒. 故选B .【点睛】本题考查垂直的性质,解题关键在于在证明55AFE CFD ∠=∠=︒ 7.B【分析】设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(6-x ),然后根据题意列出不等式组,确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(6-x )个由题意得:500550(6)31006x x x +-≤⎧⎨≤⎩,解得4≤x≤6则x 可取4、5、6,即有三种不同的购买方式. 故答案为B .【点睛】本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.D【分析】如图1所示,过点A 作AD OC ⊥交x 轴于D ,根据点A 的坐标得2BD =,AD =根据勾股定理得3BA =,根据等腰三角形的性质得3AB AC ==,24BC BD ==,如图2所示,过点C 作CE AB ⊥交x 轴于E ,设BE x =,则3AE x =-,在Rt CBE 中,根据勾股定理得2216CE x =-,在Rt CEA 中,根据勾股定理得,222CE AE CA +=,解得83x =,则CE =即可得.【详解】解:如图1所示,过点A 作AD OC ⊥交x 轴于D ,△点A 的坐标为,△2BD =,AD =根据勾股定理得,3BA =, △ABC 是等腰三角形, △3AB AC ==,24BC BD ==,如图2所示,过点C 作CE AB ⊥交x 轴于E ,设BE x =,则3AE x =-, 在Rt CBE 中,222216CE BC BE x =-=-,在Rt CEA 中,根据勾股定理得,222+=,CE AE CA222-+-=,16(3)3x x+--=,169690x8x=,3△CE===△点C的坐标为8(,3故选D.【点睛】本题考查了等腰三角形的性质,勾股定理,解题的关键是掌握这些知识点.9.A【分析】解出不等式,将解集表示在数轴上即可.【详解】解:1-x>0,即x<1.故选:A.【点睛】在数轴上表示不等式的解集注意实心点和空心点的区别.10.B【分析】利用一次函数图象上点的坐标特征可求出点B的坐标,根据等腰三角形的性质可得出点C的纵坐标,代入y=3可求出点C'的坐标,进而可求出点C的坐标.【详解】解:当x=0时,y=3x+6=6,△点B的坐标为(0,6).△△OBC为等腰三角形,△OC=BC,△点C的纵坐标为3.当y=3时,有3x+6=3,解得:x=1-,△点C'的坐标为(1-,3),△点C的坐标为(4,3).故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及平移,利用等腰三角形的性质结合一次函数图象上点的坐标特征求出点的坐标是解题的关键.11.3【分析】把点(2,6)代入正比例函数y =kx ,可以求得k 的值,本题得以解决.【详解】解:△正比例函数y =kx 的图象经过点(2,6),△6=2k ,△k =3.故答案为:3.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.12. 2 2【分析】根据平移的规律求解即可.【详解】解:由由题意得线段AB 先向下平移2个单位,再向右平移2个单位得到线段CD , 故答案为:2,2.【点睛】本题考查了线段平移的规律,属于基础题.13.12 【分析】先解不等式得到6≤a x ,结合2x ≤得到26=a 进而求出a 的值12. 【详解】解:解不等式:1203x a -≤,得到16≤x a , 又不等式的解集为:2x ≤, △26=a ,解得a=12, 故答案为:12.【点睛】本题考查了不等式的解法,属于基础题,计算过程中细心即可.14.15°【分析】根据等腰三角形两底角相等,求出△ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD ,根据等边对等角的性质,可得△ABD=△A ,然后求△DBC 的度数即可.【详解】解:△AB=AC ,△A=50°, △△ABC=12(180°-△A )=12(180°-50°)=65°, △MN 垂直平分线AB ,△AD=BD ,△△ABD=△A=50°,△△DBC=△ABC -△ABD=65°-50°=15°.故答案为:15°.【点睛】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,以及等边对等角的性质的综合应用,熟记性质是解题的关键. 15.42x -<<【分析】根据函数的图象得当2x <时,直线2y kx b =+在直线1y mx =的上方,由图可知,不等式2mx >-的解集为:4x >-,即可得.【详解】解:由图像可知,当2x <时,直线2y kx b =+在直线1y mx =的上方,则不等式kx b mx +>的解集为:2x <,将点()2,1代入直线1y mx =,得:12m =, △不等式2mx >-的解集为:4x >-,△2kx b mx +>>-的解集为:42x -<<,故答案为:42x -<<.【点睛】本题考查了一次函数的图象,不等式的解集,解题的关键是掌握这些知识点.16.(3,2)【详解】对称点的纵坐标与点P 的纵坐标相等,为2,对称点与直线x=1的距离和P 与直线x=1的距离相等,所以对称点的横坐标为3, 所以对称点的坐标为(3,2).点睛:掌握轴对称图形的性质.17.51x -<≤.整数解为4-,3-,2-,1-,0,1.【详解】试题分析:首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解.试题解析:解不等式2x -1≤-x+2得x≤1, 解不等式11223x x -+<得x >-5, △该不等式组的解集为-5<x≤1,△该不等式组的整数解是-4,-3,-2,-1,0,1.18.(1)3x <,图见解析;(2)1023x ≤<.【分析】(1)先解出不等式的解集,再表示在数轴上即可;(2)分别解出各不等式的解集,再找到其公共解集.【详解】(1)5234x x -<+26x <3x <解集表示在数轴上如下:(2)解()36324x x -≤-⎧⎪⎨-<⎪⎩①② 解不等式△得x≥2;解不等式△得103x <; △不等式组的解集为:1023x ≤<. 【点睛】此题主要考查不等式和不等式组的求解,解题的关键是熟知不等式的求解方法.19.证明见解析.【分析】根据条件只要证明△BCF△△CBG ,写出理由即可解决问题.【详解】△BG ,CF 分别是AC ,AB 边上的高线,BG AC CF AB ⊥⊥,,△△BFC=△CGB=90︒.△AB=AC ,△△ABC=△ACB .又△BC=CB ,△△BCF△△CBG ,△BG=CF .【点睛】本题考查了全等三角形的判定和性质、高的定义等知识,解题的关键是正确寻找全等三角形,属于基础题,中考常考题型.20.(1)y=-2x+10(2)底边的长为4.【分析】(1)根据三边之和为周长列出函数关系式即可;(2)代入腰长AB=3求得底边即可.(1)解:由三角形的周长为10,得2x+y=10,△y=-2x+10;(2)解:当AB=3,即x=3时,y=-2×3+10=4.所以腰长AB=3时,底边的长为4.【点睛】本题考查了等腰三角形的性质及函数的知识,解题的关键是正确的求得y与x之间的函数关系,难度不大.21.(1)见解析;(2)见解析【分析】(1)画一个边长为3、4、5的直角三角形即可;(2).【详解】解:(1)三边分别是3、4、5,如下图:(2)、,如下图:故答案:(1)图形见解析;(2)图形见解析.22.(1)证明见解析(2)AMN是等腰直角三角形,理由见解析.【分析】(1)已知条件可证()ACE ABD SAS ≌△△,可得到BD EC =(2)连接,,AM AN MN ,由直角三角形斜边中线等于斜边的一半可得到12AM DM BM BD ===,12AN EN CN CE ===,继而可证得,AN AM NCA NAC =∠=∠,ADM DAM ∠=∠,由(1)ACE ABD ≌△△,所以ADM AEC ∠=∠,再由同角的余角相等可得到90DAM DAN ∠+∠=︒即90MAN ∠=︒,即可知AMN 是等腰直角三角形.(1)解:在ACE △和ABD △中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩()ACE ABD SAS ∴≌△△ BD EC ∴= (2)解:AMN 是等腰直角三角形理由如下:连接,,AM AN MN90CAE BAD ∠=∠=︒ ,ACE ABD ∴△△是直角三角形,M N 分别是,BD EC 的中点12AM DM BM BD ∴=== 12AN EN CN CE === BD CE =,AN AM NCA NAC ∴=∠=∠,ADM DAM ∠=∠ ACE ABD ≌△△ ADM AEC ∴∠=∠ 90AEC ACE ∠+∠=︒ 90ADM ACE ∴∠+∠=︒ 90DAM DAN ∴∠+∠=︒ 90MAN ∴∠=︒ AMN ∴是等腰直角三角形23.(1)证明见解析;(2)65︒【详解】试题分析:(1)由三角形的外角性质得△DEB=△C ,从而易证ABC △DBE ;(2)由(1)可得△ABD=△EBC,由于BE=BC,故易求△C.试题解析:(1)△DEA ∠+△DEB=△EBC+△C ,DEA EBC ∠=∠△△DEB=△C ,又△BE CB =,DE AC =,△PBE △()ABC SAS(2)△ABC △DBE ,△DBE ABC =∠,△DBA EBC ∠=∠,△50EBC ∠=︒, △19050652C ∠=︒-⨯︒=︒. 24.(1)1542y x =-,212y x =;(2)45. 【分析】(1)运用待定系数法分别求出两个函数的表达式;(2)根据函数的解析式求出函数y=52x -4与x 轴的交点,又已知两图象都经过点(2,1),计算三角形的面积.【详解】解:(1)当2x =时,11152412y k k =-=⇒=, △1542y x =-, 当2x =时,2221212y k k ==⇒=, △212y x =. (2)令10y =,则185x =, △1y 与x 轴交点为8,05⎛⎫ ⎪⎝⎭,令21y y =,则2x =, △1y 与2y 交点为()2,1,又△2y 与x 轴交于原点()0,0, △1841255S =⨯⨯=.25.(1)12a =,40b =(2)488s t =-+ (3)48855t -+ 【分析】(1)综合图1 、图2先求出8OA =,由a OA AB =+求出a ,过点B 作BM x ⊥ 轴于点M ,在Rt BMC 中,又勾股定理求解6CM == ,从而求出b ;(2)设直线EF 的函数解析式为(0)s kt b k=+≠,利用待定系数法求出相应系数,从而得出答案;(3)设点P 的纵坐标为P y ,由152POC P P sOC y y =⨯⨯= 及488POC s t =-+联列成方程,从而求出P 点的纵坐标.(1)解:如图3,过点B 作BM x ⊥ 轴于点M ,综合图1 、图2可知,OD 段点P 在线段OA 上运动时,S 与t 之间的函数关系;DE 段是点P 在线段AB 上运动时,S 与t 之间的函数关系;EF 段是点P 在线段BC 上运动时,S 与t 之间的函数关系;4AB =,动点P 以每秒1单位的速度运动,∴ 84a -= ,∴ 12a = ; 又OD 段对应的时间是8s ,EF 段对应的时间为22s -12s=10s∴8OA =,10BC =.在Rt BMC 中,BM x ⊥ 轴,8BM OA ==,10BC =∴6CM = ,4OM AB ==,∴4610OC =+=; ∴1108402b =⨯⨯=; ∴12a =,40b =.(2)设直线EF 的函数解析式为(0)s kt b k =+≠,12a =,40b =,∴E(12,40);设直线EF 的函数解析式为(0)s kt b k =+≠过E (12,40),F(22,0),∴1240220k b k b +=⎧⎨+=⎩解得488k b =-⎧⎨=⎩∴直线EF 的函数解析式488s t =-+(3)设点P 的纵坐标为P y ,如图4,直线EF 的函数解析式488s t =-+,10OC = ∴11052POC P P s y y =⨯⨯= ,488POC s t =-+ ∴4885P t y -+= ∴48855P y t =-+∴P 点的纵坐标为48855t -+.。

浙教版八年级上册期末测试数学卷(较易 含答案)

浙教版八年级上册期末测试数学卷(较易 含答案)

浙教版初中数学八年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.如图,图中∠1,∠2,∠3,∠4的关系为( )A. ∠1+∠2=∠4−∠3B. ∠1+∠2=∠3+∠4C. ∠1−∠2=∠4−∠3D. ∠1−∠2=∠3−∠42.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35∘,∠D=15∘,则∠ACB的度数为( )A. 65∘B. 70∘C. 75∘D. 85∘3.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=( )A. 40°B. 50°C. 60°D. 80°4.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为.( )A. 2cmB. 4cmC. 6cmD. 8cm5.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为( )A. 3×5+3×0.8x≤27B. 3×5+3×0.8x≥27C. 3×5+3×0.8(x−5)≤27D. 3×5+3×0.8(x−5)≥276.下列命题是真命题的是( )A. 若a<b,则a<cB. 若a<b,则ac<bcC. 若a≠b,则ac≠bcD. 若a>b,则a−c>b−c7.若点A(−2,n)在x轴上,则点B(n−1,n+1)在( )A. 第四象限B. 第三象限C. 第二象限D. 第一象限8.如图,在一次“寻宝”游戏中,寻宝人找到了两个标志点A(2,1),C(0,1),则“宝藏”点B 的位置可表示为( )A. (1,1)B. (1,2)C. (2,1)D. (1,0)9.以下几何关系中,y是x的正比例函数的是( )A. 圆的半径为x,面积为yB. 矩形的面积为100,两邻边长分别为x和yC. 正方体的棱长为x,体积为yD. 含30∘角的直角三角形的斜边长为x,30∘角所对的直角边长为y10.一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S(单位:千米)随行驶时间t(单位:小时)变化的函数关系用图象表示正确的是( )A. B.C. D.11.某同学在做电学实验时,记录下电压(V)与电流(A)有如下对应关系:电流⋯246810⋯电压⋯1512963⋯请你估计,若电流是5A,则电压为( )A. 10.5VB. 6VC. 80VD. 18V12.在某次实验中,测得两个变量m与v之间的4组对应数据如下表所示:m1234v0.01 2.98.0315.1则m和v之间的关系最接近于下列关系式中的( )A. v=2m−2B. v=m2−1C. v=3m−1D. v=m+1第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,将分别含有30∘,45∘角的一副三角尺重叠,使直角顶点重合.若两直角重叠形成的角为65∘,则图中∠α的度数为.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=_________°.15.已知y=3x−3,若要使y≥x,则x的取值范围为.16.放学后,小明骑车回家,他经过的路程s(km)与所用时间t(min)的函数关系如图所示,则小明的骑车速度是km/min.三、解答题(本大题共9小题,共72分。

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为  .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是  .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年09月06日好学习的初中数学组卷一.选择题(共12小题)1.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°2.下列命题中,正确的是()A.三条边对应相等的两个三角形全等@B.周长相等的两个三角形全等C.三个角对应相等的两个三角形全等D.面积相等的两个三角形全等3.下列判断两个三角形全等的条件中,正确的是()A.一条边对应相等B.两条边对应相等C.三个角对应相等D.三条边对应相等4.长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A.一个人取6cm的木条,一个人取8cm的木条、B.两人都取6cm的木条C.两人都取8cm的木条D.C两种取法都可以5.如图,把图形沿BC对折,点A和点D重合,那么图中共有全等三角形()A.1对B.2对C.3对D.4对6.到三角形三边的距离相等的点是三角形的()A.三条边上的高的交点B.三个内角平分线的交点:C.三边上的中线的交点D.以上结论都不正确7.如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2 D.无法确定8.(2016春•永登县期末)用直尺和圆规作一个角等于己知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS9.(2015秋•苍溪县期末)工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB 上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是().A.SSS B.SAS C.ASA D.HL10.(2016春•普陀区期末)下列说法正确的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等边三角形都全等11.(2016春•保定期中)已知AB=AC,AD为∠BAC的角平分线,D、E、F…为∠BAC的角平分线上的若干点.如图1,连接BD、CD,图中有1对全等三角形;如图2,连接BD、CD、BE、CE,图中有3对全等三角形;如图3,连接BD、CD、CE、BF、CF,图中有6对全等三角形;依此规律,第8个图形中有全等三角形()#A.24对B.28对C.36对D.72对12.(2015•玉林二模)如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二.填空题(共3小题)13.(2015•娄底)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)!14.如图,AB=AC,BD=CD,若∠B=28°,则∠C= .15.如图,AB∥CD,BC平分∠ABD,点E在CD的延长线上,若∠C=28°,则∠BDE的度数为度.三.解答题(共8小题)16.在△ABD和△ACE中,有下列四个论断:①AB=AC;②∠B=∠C;③∠BAC=∠EAD;④AD=AE.请以其中三个论断作为条件,余下一个论断作为结论(用序号⇒的形式)编拟一个由三个条件能推出一个结论成立的题目,并说明成立的理由.(解:选择的三个条件是:;成立的结论是:.理由如下:17.如图,六边形钢架ABCDEF由6条钢管连接而成.为使这一钢架稳固,请你用3条钢管固定,使它不能活动.你能设计两种不同的方案吗?18.如图,已知:AD=BC,AC=BD.求证:OD=OC.19.如图,已知△ABC≌△ADE,BC的边长线交AD于F,交AE于G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.#20.如图,在四边形ABCD中,∠C+∠D=α°,∠A,∠B的平分线相交于点O,求∠O的度数.21.(2015春•兴平市期末)如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.22.(2016•云南模拟)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.—23.(2015•楚雄州校级模拟)七年级下册时,我们用画图象的方法学习了探索三角形全等的条件,我们经历了下面的过程:要画一个三角形与小明画的三角形全等,需要几个与边或角的大小有关的条件呢?一个条件、两个条件、三个条件…想一想:1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?答:(填“一定”或“不一定”)由此你得出什么结论:.2.给出两个条件画三角形时,有三种可能的情况,如:(1)三角形的一个内角为30°,一条边为3cm.(2)三角形的两个内角分别为30°和50°.(3)三角形的两条边分别为4cm,6cm.请你从上面三种情况中,任选其中一种情况画两个图形进行研究,你所画的两个图形一定全等吗?—由此你得出什么结论:.3.如果给出三个条件画三角形,你能说出有哪几种可能的情况,请填写表格:答:有四种可能:三条边、三个角、两边一角和.(1)已知一个三角形的三个内角分别为40°、60°和80°.那么,你画的三角形和同伴画的一定全等吗?答:(填“一定”或“不一定”)(2)已知一个三角形的三条边分别为4cm、5cm和7cm.那么,你画的三角形和同伴画的一定全等吗?答:(填“一定”或“不一定”)由(1)你得出什么结论:.】由(2)你得出什么结论:.2016年09月06日好学习的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是().A.15° B.20° C.25° D.30°【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣60°)=20°,(在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.2.下列命题中,正确的是()A.三条边对应相等的两个三角形全等B.周长相等的两个三角形全等C.三个角对应相等的两个三角形全等]D.面积相等的两个三角形全等【解答】解:A、根据全等三角形的判定定理SSS知,三条边对应相等的两个三角形全等.故本选项正确;B、全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故本选项错误;C、AAA不能判定这两个三角形全等;故本选项错误;D、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故本选项错误;故选A.3.下列判断两个三角形全等的条件中,正确的是(){A.一条边对应相等B.两条边对应相等C.三个角对应相等D.三条边对应相等【解答】解:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.故只有D符合SSS能判定三角形全等.故选D.4.长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A.一个人取6cm的木条,一个人取8cm的木条、B.两人都取6cm的木条C.两人都取8cm的木条D.C两种取法都可以【解答】解:若两人所拿的三角形全等,那么两人所拿的第三根木条长度相同,故排除A;若取8cm的木条,那么3+4<8,不能构成三角形,所以只能取6cm的木条,故排除C、D;故选B.5.如图,把图形沿BC对折,点A和点D重合,那么图中共有全等三角形()-A.1对B.2对C.3对D.4对【解答】解:有△ABC≌△DBC;△ABE≌△DBE;△AEC≌△DEC.故选C.6.到三角形三边的距离相等的点是三角形的()A.三条边上的高的交点B.三个内角平分线的交点C.三边上的中线的交点D.以上结论都不正确:【解答】解:到三角形三边的距离相等的点是三角形的三个内角平分线的交点.故选B.7.如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2 D.无法确定【解答】解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;在△AMC和△FNE中,)∵AM⊥BC,FN⊥DE,∴∠AMC=∠FNE;∵∠FED=115°,∴∠FEN=65°=∠ACB;∵又AC=FE,∴△AMC≌△FNE;∴AM=FN,∴h1=h2.!故选C.8.(2016春•永登县期末)用直尺和圆规作一个角等于己知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O ′B′=∠AOB,所以利用的条件为SSS.故选:A.:9.(2015秋•苍溪县期末)工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB 上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【解答】解﹕做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PN`OP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选:A.10.(2016春•普陀区期末)下列说法正确的是()A.周长相等的锐角三角形都全等!B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等边三角形都全等【解答】解:周长相等的锐角三角形不一定全等,因为周长相等,三条边不一定对应相等,故选项A错误;周长相等的直角三角形不一定全等,因为周长相等,三条边不一定对应相等,故选项B错误;周长相等的钝角三角形不一定全等,因为周长相等,三条边不一定对应相等,故选项C错误;周长相等的锐等边三角形一定全等,因为周长相等,三条边一定对应相等,利用SSS,可以说明两个三角形全等,故选项D正确;故选D.(11.(2016春•保定期中)已知AB=AC,AD为∠BAC的角平分线,D、E、F…为∠BAC的角平分线上的若干点.如图1,连接BD、CD,图中有1对全等三角形;如图2,连接BD、CD、BE、CE,图中有3对全等三角形;如图3,连接BD、CD、CE、BF、CF,图中有6对全等三角形;依此规律,第8个图形中有全等三角形()A.24对B.28对C.36对D.72对【解答】解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;/…当有n个点时,图中有个全等三角形.则有8个点,即第8个图形中有全等三角形:=36(对).故选:C.12.(2015•玉林二模)如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【【解答】解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.二.填空题(共3小题))13.(2015•娄底)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.(在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.14.如图,AB=AC,BD=CD,若∠B=28°,则∠C=28°.【解答】解:连接线段AD:在△ABD与△ACD中,⇒△ABD≌△ACD⇒∠B=∠C又∵∠B=28°∴∠C=28°故答案为28°15.(2009•石家庄校级模拟)如图,AB∥CD,BC平分∠ABD,点E在CD的延长线上,若∠C=28°,则∠BDE的度数为56度.、【解答】解:∵AB∥CD,∴∠ABC=∠C,∵BC平分∠ABD,∴∠DBC=∠ABC,∴∠C=∠CBD,在△BCD中,∠BDE=2∠C=2×28°=56°.故填空答案:56.,三.解答题(共8小题)16.在△ABD和△ACE中,有下列四个论断:①AB=AC;②∠B=∠C;③∠BAC=∠EAD;④AD=AE.请以其中三个论断作为条件,余下一个论断作为结论(用序号⇒的形式)编拟一个由三个条件能推出一个结论成立的题目,并说明成立的理由.解:选择的三个条件是:①③④;成立的结论是:②.理由如下:【解答】解:∵∠BAC=∠EAD,∴∠BAC+∠CAD=∠EAD+∠DAC.即∠BAD=∠CAE.∵AB=AC,AD=AE,/∴△BAD≌△CAE.∴∠B=∠C.故填:①③④;②.17.如图,六边形钢架ABCDEF由6条钢管连接而成.为使这一钢架稳固,请你用3条钢管固定,使它不能活动.你能设计两种不同的方案吗?【解答】解:答案不唯一,如图:<18.如图,已知:AD=BC,AC=BD.求证:OD=OC.【解答】证明:连接CD,∵AD=BC,AC=BD,CD=CD,∴△ACD≌△BDC(SSS)∴∠ACD=∠BDC,∴OD=OC.(等角对等边)|19.如图,已知△ABC≌△ADE,BC的边长线交AD于F,交AE于G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠AED,∠ABC=∠ADE,∠CAB=∠EAD.∵∠ADE=25°,∴∠ABC=∠ADE=25°.]∵∠ACB=105°,∴∠CAB=180°﹣105°﹣25°=50°.∴∠DFB=∠DAB+∠ABC=50°+10°+25°=85°.∠AGB=∠ACB﹣∠GAC=105°﹣50°﹣10°=45°.20.如图,在四边形ABCD中,∠C+∠D=α°,∠A,∠B的平分线相交于点O,求∠O的度数.【解答】解:∵四边形的内角和为360°,~∴∠A+∠B=360°﹣(∠C+∠D)=360°﹣α°,又∵OA,OB分别是两角的角平分线,∴∠OAB+∠OBA=(∠A+∠B)=(360°﹣α°)=180°﹣,∴∠O=180°﹣(∠OAB+∠OBA)=180°﹣(180°﹣)=.21.(2015春•兴平市期末)如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.【解答】△ABC≌△AED,》证明:∵BD=CE,∴BC=ED,在△ABC和△AED中,,∴△ABC≌△AED.22.(2016•云南模拟)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.《【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵AE=AF,∴AB﹣AE=AC﹣AF即BE=CF,在△EBC和△FCB中,,∴△EBC≌△FCB(SAS).·23.(2015•楚雄州校级模拟)七年级下册时,我们用画图象的方法学习了探索三角形全等的条件,我们经历了下面的过程:要画一个三角形与小明画的三角形全等,需要几个与边或角的大小有关的条件呢?一个条件、两个条件、三个条件…想一想:1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?答:不一定(填“一定”或“不一定”)由此你得出什么结论:如果两个三角形有一个相等的边或角,那么这两三角形不一定全等.2.给出两个条件画三角形时,有三种可能的情况,如:(1)三角形的一个内角为30°,一条边为3cm.(2)三角形的两个内角分别为30°和50°.(3)三角形的两条边分别为4cm,6cm.请你从上面三种情况中,任选其中一种情况画两个图形进行研究,你所画的两个图形一定全等吗?由此你得出什么结论:两个三角形的边或角中,如果有两个相等,那么这两个三角形不一定全等.3.如果给出三个条件画三角形,你能说出有哪几种可能的情况,请填写表格:答:有四种可能:三条边、三个角、两边一角和两角一边.(1)已知一个三角形的三个内角分别为40°、60°和80°.那么,你画的三角形和同伴画的一定全等吗?答:不一定(填“一定”或“不一定”)(2)已知一个三角形的三条边分别为4cm、5cm和7cm.那么,你画的三角形和同伴画的一定全等吗?答:一定(填“一定”或“不一定”)由(1)你得出什么结论:有三角分别相等的两个三角形不一定全等.由(2)你得出什么结论:有三边分别相等的两个三角形全等.【解答】解:1.如图1,△ACD和△ABC的边AC=AC,但是两三角形不全等,故答案为;不一定,如果两个三角形有一个相等的边或角,那么这两个三角形不一定全等;2.(1)如图2,∠A=∠A=30°,BC=BD=3cm,但是△ABC和△ABD补全等,即如果两个三角形有两个相等的边或角,那么这两个三角形不一定全等,故答案为:两个三角形的边或角中,如果有两个相等,那么这两个三角形不一定全等;3.故答案:两角一边;(1)如图3,△ADE和△ABC中,∠A=∠A=40°,∠ADE=∠B=60°,∠AED=∠ACB,但是两三角形不全等,故答案为:不一定;(2)如图4,△ABC和△DEF中,AC=DF=4cm,AB=DE=5cm,BC=FE=7cm,则△ABC≌△DEF,故答案为:一定,有三角分别相等的两个三角形不一定全等,有三边分别相等的两个三角形全等.初中数学试卷。

相关文档
最新文档