结构力学第六章力法
结构力学(二)_ 力法(七)_

或写出结构受力的方程。 (3) 用积分法或图乘法计算位移。
3.位移计算公式
yluo@
KP
MMP ds EI
AyC EI
§6 超静定结构位移计算
例6.1 求图示结构B支座的转角。
解:(1)建立两种状态。
(2)作出两种状态的弯矩图
(2)选取图示基本结构
(3)建立基本方程
2111XX11
12 22
X2 X2
1c 2c
0 0
基本结构 (基本体系)
(4)求系数与自由项
11 l3 /12EI
22 l / EI
1c l/2 yluo@
12 0 2c
(5)解方程 X1 6EI / l2 X2 EI / l
yluo@
二、支座移动时超静定结构受力分析
1.用力法分析超静定结构受支座移动影响, 其原理、方法与受荷载作用下完全相同。
⑴ 力法基本结构与荷载作用下相同; ⑵ 建立方程的条件:位移协调。即
基本结构的位移=原结构的位移 注意:等式右边不一定为0。 ⑶ 基本结构上的位移为多余未知力X引起的 位移和支座移动引起的位移之和。
yluo@
§6 超静定结构位移计算 一、静定结构位移计算回顾 二、超静定结构位移计算 三、虚拟状态的选取 四、例题
yluo@
§6 超静定结构位移计算
一、静定结构的位移计算
1.位移计算原理 变形体虚功原理。
2.位移计算步骤
⑴建立实际位移状态和虚拟力状态。 ⑵作出两种状态的内力图。
Structural Mechanics
西南交通大学 土木工程学院
yluo@
朱慈勉结构力学力法

6.46 EA
kN
(
)
2 5 m 1 15
2 5 m 1 15
C2E 4.A 23kNm
θD
6.46kN EA
1 m 1 1 m 1 35 35
例6-12 求图示组合结构C点的竖向位移ΔC和AD与BD杆间的相对转角
ΔθD。忽略受弯杆的轴向变形。 已知AD和BD杆:EA EI m2
2次超静定
9
选取基本结构为切断竖杆:
X 1h
t0
1 EA
1 kl
§6-7超静定结构的位移计算
F E N F N d A s k 0 F G Q F Q d A s M E M d I s F R c
1)载作用下的位移计算
F N F Nd P s EA
k 0F G Q F Qd P A s
M M P ds EI
求超静定结构因温度改变、支座移动产生的位移时, 若选原结构建立虚拟力状态,计算将会更简单。
EI, l,t0 ,Δt
①
M、Q、N
EMIht、ENAt0、G kQA
P=1
②
T 2 1 1 R *c W 21
c M * E M I h t d s N * E N A t0 d s Q * G kd Q
2次超静定
9
解:⑴ 确定超静定次数;
⑵ 用力法求解, 并作M图和FN图; ⑶ 选取基本结构为铰结体系求位移;
⑷ 求AD杆与BD间的相对转角:
⑸ 施加单位荷载并求各杆轴力:
D
FN1FN l EA
1 m 1
35m 25m 1 1 .8 9 k N 1 .3 4 k N 3 5
E A 1 5
1 m 1 35
b h
结构力学第六章 力法

四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此
第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11
144 EI
,
1 p
1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向
13X 3 23X 3
1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0
结构力学课后答案-第6章--力法

习题6-1试确定图示结构的超静定次数。
(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定I II 刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M 、F Q 图。
(a)解:上图=l1M pM 01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EI l F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61F PA2l 3l 3B2EIEIC题目有错误,为可变体系。
+pF p lF 32X 1=1M 图p Q X Q Q +=11p F 21⊕p F 21(b)解:基本结构为:l1M 3l l2M l F p 21pM l F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211pQ X Q X Q Q ++=22116-4试用力法计算图示结构,并绘其内力图。
(a)l2l 2l2lABCD EI =常数F Pl 2E FQ 图F PX 1X 2F P解:基本结构为:1M pM 01111=∆+p X δpM X M M +=11(b)解:基本结构为:EI=常数qACEDB4a 2a4a4a20kN/m3m6m6mAEI 1.75EIB CD 20kN/mX 1166810810计算1M ,由对称性知,可考虑半结构。
结构力学——力法

X1 X2
ql 2 / 40 M
∆1 = 0 ∆ 2 = 0 δ11 ⋅ X1 + δ12 ⋅ X2 + ∆1P = 0 δ21 ⋅ X1 +δ22 ⋅ X2 + ∆2P = 0
q
X1 = −3ql / 20, X 2 = −ql 2 / 40
将未知问题转化为 已知问题, 已知问题,通过消除已 知问题和原问题的差别, 知问题和原问题的差别, 使未知问题得以解决。 使未知问题得以解决。 这是科学研究的 基本方法之一。 基本方法之一。
二.力法的基本体系与基本未知量 力法的基本体系与基本未知量 超静定次数: 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. . 几次超静定结构? 几次超静定结构
X
= 3 ql / 8 ( ↑ )
⋅ X
+ M
P
ql
2
/ 2
l
MP
M1
力法步骤: 力法步骤: 1.确定基本体系 4.求出系数和自由项 确定基本体系 求出系数和自由项 2.写出位移条件 力法方程 写出位移条件,力法方程 5.解力法方程 写出位移条件 解力法方程 3.作单位弯矩图 荷载弯矩图 6.叠加法作弯矩图 作单位弯矩图,荷载弯矩图 作单位弯矩图 荷载弯矩图; 叠加法作弯矩图 练习 P EI l EI l 作弯矩图. 作弯矩图
M1
3 Pl 8 5 Pl 8
=0 δ 11 = 4l / 3EI ∆1P = − Pl 3 / 2 EI
X 1 = 3 P / 8(↑)
M = M1 ⋅ X 1 + M P
P
MP
结构力学第六章力法

弯矩图可按悬臂梁画出
M X1 M 1 M P
§6-4 力法计算超静定桁架和组合结构
一 超静定桁架
F Ni l ii EA F N i F N jl ij EA F N i FN P l iP EA
2
桁架各杆只产生轴力,系数
典型方程: 11 X 1 1P 0
9 17 FP , X 2 FP 80 40
叠加原理求弯矩: M X 1 M 1 X 2 M 2 M P
3FPL/40 3FPL/40
FP 9FP/80
23FP/40 FNDC
FQDC 3FPL/80 FQBD
FQCD FNDA
FQBD=-9FP/80
FNBD=-23FP/40
FQDC=3FP/40+FP/2=23FP/40
2 P 3P 0
11 X 1 1P 0 22 X 2 23 X 3 0 X X 0 33 3 32 2
11 X 1 1P 0 X 2 X 3 0
反对称荷载作用下, 沿对称轴截面上正对称内力为0 例: FP FP/2 FP/2 FP/2
1)一般任意荷载作用下
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 33 3 3P 31 1 32 2
11 X 1 1P 0 22 X 2 23 X 3 2 P 0 X X 0 33 3 3P 32 2
M FN
超静定结构的内力分布与梁式杆和二力杆的相对刚度有关。 链杆EA大,M图接近与连续梁,链杆EA小,M图接近与简支梁。 例: 中间支杆的刚度系数为k,求结点B的竖向位移?EI=C
结构力学--力法 ppt课件

1 EI
l2
2
2l 3
3lE3I
3 ql 8
X
1
3 8
ql
14
2. 力法求解的基本步骤 ① 选取基本未知量 ② 建立力法基本方程
③ 求解系数δ11和自由项△1P
④ 解方程,求基本未知量 ⑤ 作内力图
15
3. 思考与练习
q
MA
F xA
A
B
F yA
F yB
选择不同的多余约束力作为基本未知量,
力法的基本体系?
第6章 力 法
1
目录
§6-1 超静定结构和超静定次数 §6-2 力法的基本概念 §6-3 力法解超静定刚架和排架 §6-4 力法解超静定桁架和组合结构 §6-5 力法解对称结构 §6-6 力法解两铰拱 §6-7 力法解无铰拱 §6-8 支座移动和温度改变时的力法分析 §6-9 超静定结构位移的计算 §6-10 超静定结构计算的校核 §6-11 用求解器进行力法计算 §6-12 小结
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑 位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案 称为混合法。
Strucural Analysis
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、 超静定次数的确定
超静定结构中的多余约束数目称为超静定次数
从几何特征来看,从原结构中去掉n个约束,结构就成 为静定的,则原结构即为n次超静定,因此
超静定次数 = 多余约束的个数
(1)
即: 把原结构变成静定结构时所需撤除的约束个数。
从静力特征来看,超静定次数等于根据平衡方程计算未 知力时所缺少的方程的个数,因此
=3×5-5=10
例1:
(b) (a)
框格数k = 2 单铰数h = 2
n = 3×2-2 = 4
框格数k = 4 单铰数h = 6
n = 3×4-6 = 6
框格数k = 7 单铰数h = 0
n = 3×7-0 = 21
框格数k = 5 单铰数h = 7
n = 3×5-7 = 8
七、力法的基本结构
超静定次数 = 多余未知力的个数 = 未知力个数 - 平衡方程的个数 (2)
由(1)式确定结构的超静定次数 ,为“解除多余约束 法”。 即: 在超静定结构上去除多余约束,使它成为几何不 变的静定结构,而所去除的多余约束的数目,就是原结 构的超静定次数。
六、解除多余约束的方法
断一根链杆、去掉一个支杆、将一刚接处改为单铰联 接、将一固定端改为固定铰支座,相当于去掉一个约束。
本章内容
概述 力法的基本结构 力法的基本原理与典型方程 超静定结构在荷载作用下的计算 对称性利用 超静定结构的位移计算 超静定结构在温度变化影响下的计算 超静定结构在支座位移影响下的计算
6.1 概述
一.超静定结构的静力特征和几何特征
几何特征:有多余约束的几何不变体系。 静力特征:仅由静力平衡方程不能求出
1)梁
2)拱 3)桁架
4)刚架
5)组合结构
四.超静定结构的计算方法 1.力法----以多余约束力作为基本未知量。
2.位移法----以结点位移作为基本未知量. 3.混合法----以结点位移和多余约束力作为
基本未知量.
4.力矩分配法----近似计算方法. 5.矩阵位移法----结构矩阵分析法之一.
所有内力和反力.
内力是超静定的,约束有多余的,这就是超静定 结构区别于静定结构的基本特征。
二.超静定结构的性质 1.内力与材料的物理性质、截面的几何形状和尺寸有关。
2.温度变化、支座移动一般会产生内力。
与静定结构相比, 超静定结构的优点为: 1.内力分布均匀 2.抵抗破坏的能力强
三.超静定结构的类型
M 1M 1 dx EI
X1=1
l求矩X图=1,方E1与I向上位l22图移23相l的同虚= 3,拟lE3略单I 去位P=。弯1
〓
δ11
+
×X1 X1=1
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
ql2/2 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MP
D1P =
M 1M P dx EI
Δ1P
Δ1=δ11X1 + Δ1P=求:
熟练掌握力法基本结构的确定、力法
方程的建立及其物理意义、力法方程中的 系数和自由项的物理意义及其计算。
掌握力法解刚架、排架和桁架,了解 用力法计算其它结构的计算特点,会利用
对称性,掌握半结构的取法
了解超静定结构的位移计算及力法计
算结果的校核,其它因素下的超静定结构 计算。
力法的基本结构:解除超静定结构中的全部多余约束, 得到的静定的几何不变体系。
几点注意:
• 一结构的超静定次数是确定不变的,但去掉多余 约束的方式是多种多样的。
• 在确定超静定次数时,要将内外多余约束全部去 掉。
• 在支座解除一个约束,用一个相应的约束反力来 代替,在结构内部解除约束,用作用力和反作用 力一对力来代替。
X1
X2
X1
X2
X3
X1
X2
撤一个单铰、去掉一个固定铰支座、去掉一个定向支座,
相当于去掉两个约束。
X3
X4
X2
X1
X1
X2
断一根弯杆、去掉一个固定端,去掉三个约束。X1 X3 X1
X2 X3
每个无铰封闭框都有三次超静定 X1 X2
超静定次数=3 × 封闭框数 超静定次数=3×封闭框数-单铰数目
=3×5=15
= X1=-Δ1P / δ11 3ql/8
ql2/8
=或 - E1I M 13按 q= 2l 2M l X 3: 1 4l =M - 8P qEl 4I叠加M图↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
3ql/8
d d 二、iq= i 力法↓M ↓E ↓↓的i ↓2 ↓↓d ↓典 I 型0 s , 方i程= k M ↓↓E ↓i↓M ↓↓↓k ↓ d I B = 0 0 0 s ,D i P = M δE i 1M 1 P d I = δ210 0 0 系数主与系外数因恒无B为关正,,与付基=系本数体Δ基Δ、系BB本VH自的体==ΔΔ系由选21=项取=00X可有2 正关δ1X2=可,1 负自可由为项×零与X1。外+主因系有X数关1=、。1 付
• 只能去掉多余约束,不能去掉必要的约束,不能 将原结构变成瞬变体系或可变体系。
6.2 力法的基本概念
一.力法的基本原理
力法的基本概念 1、超静定结构计算的总原则:
欲求超静定结构先取一个基 本体系,然后让基本体系在受 力方面和变形方面与原结构完 全一样。
力法的特点: 基本未知量——多余未知力; 基本体系——静定结构; 基本方程——位移条件
付系数δik表示基本体系由Xk=1产生的Xi方向上的位移 自由项ΔiP表示基本体系由荷载产生的Xi方向上的位移
n
n
M= MiXi MP FQ= FQiXi FQP
i=1
i=1
n
FN= FNiXi FNP i=1
A
δ22
↓↓↓↓↓↓↓↓
Δ1=Δ11+Δ12+Δ1P=0
Δ2P
δ11X1+ δ12X2+Δ1P=0
+ X2=1
δ21X1+ δ22X2 +Δ2P=0
×X2
Δ1P
含义:基本体系在多余未知力和荷载共同作用下,产生的多余未知
力方向上的位移应等于原结构相应的位移,实质上是位移条件。
主系数δii表示基本体系由Xi=1产生的Xi方向上的位移
(变形协调条件)。
Δ1=δ11X1 + Δ1P=0
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
〓
RB
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B 当ΔB=Δ1=0
X1 =><RB
〓
δ11
+
×X1 X1=1
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
Δ1P
l,EI
ql2/8
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
M1
l d = 11