结构力学 力法
结构力学第六章 力法

四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此
结构力学——力法

超静定梁
超静定刚架
超静定桁架
超静定拱 超静定组合结构 超静定铰接排架
对超静定结构的内力进行分析的方法主要有两 种,即力法和位移法。本章主要介绍如何用力法求 解超静定结构的内力。
超静定结构具有多余约束,用力法计算超静定 结构的内力时,首先应该确定超静定结构中多余约 束的个数。这个数目表示:除去静力平衡方程外, 尚需补充多少个反应位移条件的方程才能求解全部 的反力和内力。
超静定结构用力法计算绘出最后内力图后,也可用这种方法 计算超静定结构任一已知位移,以进行位移条件的校核。我们可 以计算超静定结构解除约束处的位移,若所求位移与原结构相同 即为正确的,否则是错的。例如,原结构中支座A是固定支座,其 角位移应该为零,利用这一条件即可校核所求得的最后内力图。 图(a)所示刚架支座A的角位移等于图(b)所示基本系中截面A 的角位移,计算该位移时,只需将虚拟力FPk=1作用于基本系的截 面A处,得到下图所示虚拟状态。再将该虚力状态的弯矩图与原超 静定结构的弯矩图图乘,如果原超静定结构弯矩图正确,则必有
12PP 3P
0 0 0
ΔxxX ΔP 0
--- 力法的典型方程
ΔxxX ΔP 0
Δxx :柔度矩阵,即力法方程中的系数矩阵。 X :基本未知量列阵。 ΔP:自由项列阵。
ii 主系数,恒为正。 ik 副系数,可正、负、零。互等关系ik ki(i k)
3 31 32 33 3P 31X1 32 X 2 33 X3 3P 0
矩阵形式:
11 21 31
12 22 32
13 23 33
X X X
1 2 3
结构力学:第七章 力法

A
B
两铰拱,一次超静定结构。
A
B
一次超静定桁架
A
B
曲梁,静定结构。
A
B
静定桁架
§7-2 超静定次数的确定
去掉几个约束后成为静 定结构,则为几次超静定
X1 X2 X3 X1 X2 X3
X1 X2 X3
去掉一个链杆或切断一个链杆相 当于去掉一个约束
§7-2 超静定次数的确定
(2)去掉一个铰支座或一个单铰,等于拆掉两个约束。
以位移作为基本未知量,在自动满足变形协调条件 的基础上来分析,当然这时主要需解决平衡问题,这 种分析方法称为位移法(displacement method)。
3. 混合法----以结点位移和多余约束力作为 基本未知量
如果一个问题中既有力的未知量,也有位移的未 知量,力的部分考虑位移协调,位移的部分考虑力 的平衡,这样一种分析方案称为混合法(mixture method)。
思考:多余约束是多余的吗?
从几何角度与结构的受力特性和使用要求两方面讨论。
q
q
A
B
A
B
C
l
A
B
q l2 8
超静定结构的优点为:
0.5l
A
ql 2 64
0.5l
q l2
32
B
C ql 2
64
1. 内力分布均匀 2. 抵抗破坏的能力强
§7-1 超静定结构概述
二、超静定结构的类型
超静定梁 超静定刚架 超静定拱
A
C
D
B
A
CD
B
F E
以五个支座链杆为多余约束
其它形式的静定刚架:
AA
CC KK DD
结构力学(力法、虚功原理)

或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
作单位和荷载弯矩图
FP
FPa
求系数、建立力法方程并求解
X2 5 FP X1 4 F P 0 X 仅与刚 1 6 4 96 11 度相对 X 5 X F 3 F 2 P 1 P 0 X 值有关 2 4 6 16 88
假如:
FP
原 结 构
FP
基 本 体 系
FP
δ11 X 1 12 X 2 1 P 0 由 δ 21 X 1 22 X 2 2 P 0
求得:X1 0 , X 2 0 (×)
可证:平衡条件均能满足。 但:
M 图
FPa
Bx 1 P 0 , By 2 P 0
问题:若用拆除上 弦杆的静定结构作 为基本结构,本题 应如何考虑?
FP
FP
基 本 体 系
解:力法方程的实质为:“ 3、4两结点的 相对位移 34 等于所拆除杆的拉(压 )变形 l 34” 互乘求Δ 1P
FP FP FP
FP=P
自乘求δ
FNP 图
11
FN1
或互乘求δ
11X1
1 2 2 34 11 X 1 1P [( 2a 4 EA 2 2 1 1 1 FP 2a 2 ) X 1 2a 2] 2 2 2 2
4 FP X 1 11 X 2 3 FP 88
结构力学——力法

X1 X2
ql 2 / 40 M
∆1 = 0 ∆ 2 = 0 δ11 ⋅ X1 + δ12 ⋅ X2 + ∆1P = 0 δ21 ⋅ X1 +δ22 ⋅ X2 + ∆2P = 0
q
X1 = −3ql / 20, X 2 = −ql 2 / 40
将未知问题转化为 已知问题, 已知问题,通过消除已 知问题和原问题的差别, 知问题和原问题的差别, 使未知问题得以解决。 使未知问题得以解决。 这是科学研究的 基本方法之一。 基本方法之一。
二.力法的基本体系与基本未知量 力法的基本体系与基本未知量 超静定次数: 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. . 几次超静定结构? 几次超静定结构
X
= 3 ql / 8 ( ↑ )
⋅ X
+ M
P
ql
2
/ 2
l
MP
M1
力法步骤: 力法步骤: 1.确定基本体系 4.求出系数和自由项 确定基本体系 求出系数和自由项 2.写出位移条件 力法方程 写出位移条件,力法方程 5.解力法方程 写出位移条件 解力法方程 3.作单位弯矩图 荷载弯矩图 6.叠加法作弯矩图 作单位弯矩图,荷载弯矩图 作单位弯矩图 荷载弯矩图; 叠加法作弯矩图 练习 P EI l EI l 作弯矩图. 作弯矩图
M1
3 Pl 8 5 Pl 8
=0 δ 11 = 4l / 3EI ∆1P = − Pl 3 / 2 EI
X 1 = 3 P / 8(↑)
M = M1 ⋅ X 1 + M P
P
MP
结构力学第六章力法

弯矩图可按悬臂梁画出
M X1 M 1 M P
§6-4 力法计算超静定桁架和组合结构
一 超静定桁架
F Ni l ii EA F N i F N jl ij EA F N i FN P l iP EA
2
桁架各杆只产生轴力,系数
典型方程: 11 X 1 1P 0
9 17 FP , X 2 FP 80 40
叠加原理求弯矩: M X 1 M 1 X 2 M 2 M P
3FPL/40 3FPL/40
FP 9FP/80
23FP/40 FNDC
FQDC 3FPL/80 FQBD
FQCD FNDA
FQBD=-9FP/80
FNBD=-23FP/40
FQDC=3FP/40+FP/2=23FP/40
2 P 3P 0
11 X 1 1P 0 22 X 2 23 X 3 0 X X 0 33 3 32 2
11 X 1 1P 0 X 2 X 3 0
反对称荷载作用下, 沿对称轴截面上正对称内力为0 例: FP FP/2 FP/2 FP/2
1)一般任意荷载作用下
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 33 3 3P 31 1 32 2
11 X 1 1P 0 22 X 2 23 X 3 2 P 0 X X 0 33 3 3P 32 2
M FN
超静定结构的内力分布与梁式杆和二力杆的相对刚度有关。 链杆EA大,M图接近与连续梁,链杆EA小,M图接近与简支梁。 例: 中间支杆的刚度系数为k,求结点B的竖向位移?EI=C
结构力学第7章力法

结构力学第7章力法力法是结构力学中的一种分析方法,通过力法可以计算结构系统中各个构件的受力情况。
力法分为两种,即静力法和动力法。
静力法是力法的一种基本形式,它假设结构系统处于静止状态,通过平衡条件来计算结构中构件的受力。
在应用静力法时,我们根据不同的受力情况选择适当的计算方法。
常见的静力法有三种,即图解法、解析法和力平衡方程法。
图解法是最直观、易于理解和应用的方法之一、在图解法中,我们首先绘制结构的荷载图和支座反力图。
然后,根据等效荷载和支座反力,我们可以通过直观的力平衡图来计算结构中各个构件的受力情况。
解析法是一种较为精确的力法方法。
在解析法中,我们可以通过力平衡方程来计算结构中各个构件的受力。
通过将力平衡方程应用于不同的构件,我们可以得到方程组,并解得未知力的数值。
常见的解析法有支反推移法、拆解法和替换法。
支反推移法是一种常见的解析法,它通过将处于平衡状态的内力反向传递来计算结构中各个构件的受力。
该方法适用于简单、对称的结构系统。
拆解法是一种适用于复杂结构的方法,它将结构系统拆解为多个简单结构,在每个简单结构中应用平衡条件计算受力。
替换法是一种常用于桁架结构的方法,它通过将构件按照等效的支座反力进行替换,然后计算受力。
力平衡方程法是一种广泛应用于结构力学中的方法。
在力平衡方程法中,我们通过应用力平衡方程来计算结构中各个构件的受力。
在计算过程中,我们需要考虑结构的平衡条件、力的合成和分解等因素。
常见的力平衡方程法有梁静力法、杆件静力法和平面结构静力法等。
动力法是力法的另一种形式,它适用于分析结构在动力作用下的响应。
动力法通过求解结构的动力方程,计算结构的振动、位移和应力等。
常见的动力法有等效荷载法、阻尼振动法和模态分析法等。
等效荷载法是一种常用的动力法,它将随机振动转化为与之等效的静力荷载,然后用静力法来计算结构的受力情况。
阻尼振动法是一种考虑结构阻尼特性的动力法,它在动力方程中引入阻尼项,计算结构的振动衰减情况。
8第八章-结构力学力法

x1 = −15pa 88 x2 = −3pa 88
例2 解: 、取基本结构: 1 取基本结构: 2、δ11x1 + ∆1P = 0 求系数。 3、求系数。
δ11 = ∑ ∫
1 ×a = 4a (1+ 2) Ni l 2(− 2)2 2a + 4× = EA EA 3EA EA
2
2
∆1P = ∑ ∫ N N l= 1× pa ×2 + (−
△ 1 △ 11
x1
δ 11
x1=1
4、解方程: 解方程:
x1 = −∆1P
q
5 、 作 M图 :
3 δ11 = 8 ql(↑)
x= 1 1
M = x1 M1 + MP
method) 第八章 力 法(Force method) §8-3 力法的基本概念 取另外一种基本结构: 取另外一种基本结构:
∆1P =
δ31x1 +δ32x2 +δ33x3 + ∆3P = 0 δ11x1 +δ12x2 +⋯ +δ1n xn + ∆1P = 0 ⋯ ⋯ 可写出其一般形式: 可写出其一般形式:δ21x1 +δ22x2 +⋯ +δ2n xn + ∆2P = 0
δ δij
δn1x1 +δn2 x2 +⋯ +δnn xn + ∆nP = 0 ⋯
、 、 令 δ11、δ12、δ13分别是 x1 =1的位移。
δ21、δ22、δ23,δ31、δ32、δ33 同理。 同理。
method) 第八章 力 法(Force method) §8-4 力法的典型方程 于是得: δ11x1 +δ12x2 +δ13x3 + ∆1P = 0 于是得: δ21x1 +δ22x2 +δ23x3 + ∆2P = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)求未知力X1
X1
1C
/
11
l
3EI l3
3EI l2
(
)
X1
/ 11
3EI l
3EI ( )
l
21
5) 作内力图
A 3EI
l
BA
M图
3EI
l2
FQ图
B
3EI l2
在基本体系II中,若X1为逆时针方向,如下图 示,则力法方程成为:
A
X1=1
B
11X1
22
小结:
1)当超静定结构有支座位移时,所取的基本体 系上可能保留有支座移动,也可能没有支座移 动。应当尽量取无支座移动的基本体系。
一、一次超静定结构的力法计算
1. 力法的基本体系和基本未知量
如下图示超静定梁,去掉支座B的链杆,用相
应的未知力X1代替,X1称为力法基本未知量。去 掉B支座的多余约束后得到的静定结构称为力法
基本结构。
FP
A
EI
B
l/2
l/2
9
FP
A
EI
BA
FP B
l/2 l/2 原结构(ΔBV=0)
基本体系 X1
若只满足平衡条件,超静定结构的内力和支座反 力可以有无穷多组解答。
2
如下图超静定梁,若只满足平衡条件,支 座B的竖向反力可以是任意值。
q
A
B
EI , l
3 ql
8
3
二、超静定次数
超静定次数 n = 结构多余约束数目。 为了确定超静定次数,通常使用的方法是拆除 多余约束,使原结构变成静定结构,则n等于拆 除的多余约束数。
M M1X1 M2X2 M3X3 M P
FQ FQ1X1 FQ2 X2 FQ3 X3 FQP
FN FN1 X1 FN 2 X 2 FN 3 X 3 FNP
18
三、超静定结构支座移动时的力法计算
超静定结构产生支座移动时的力法计算对理解 力法的解题思路很有帮助。与静定结构不同,超 静定结构产生支座移动时,结构不仅产生变形, 而且有内力。下面讨论超静定结构产生支座移动 时力法的解题思路。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束;
4
3)去掉一个固定支座或切断一根梁式杆,相当 于去掉三个约束;
4)在梁式杆上加一个简单铰,相当于去掉一个 约束。
例:
a)
原结构
X1
X2
X1
n=2
n=2 X2
5
b)
X2
原结构
X2 X1 n=2
n=2
X1 X2
A
B
基本结构
A
B Δ11+ A
X1
FP B Δ1P
(A
B
δ11 )·X1
X1 1
10
2. 力法方程
力法方程为
11 1P BV 0 BV——原结构B截面竖向位移
基本体系的位移=原结构的位移
因为 方程可写为
11 11X1 11 X1 1P 0
11
讨论:
1)力法方程是位移方程; 2)方程的物理意义:基本结构在荷载FP和未知 量X1共同作用下沿X1方向的位移等于原结构B支 座竖向位移; 3)系数的物理意义:
q
q
C
D
C
D
FP ΔBH=0
ΔBV=0
A θB=0
B
原结构
FP
A
X3
B X1
基本体系 X2
15
q
C
D
FP
A
Δ3P B
Δ1P
Δ2P
C A
D δ32 B δ22 X2=1 δ12
C
D
A
δ31 B
δ21
X1=1
δ11
C
D
A
δ33 δ23
X3=1
B
δ13
16
力法方程为
11 X1 12 X 2 13 X 3 1P BH 0 21X1 22 X 2 23 X 3 2P BV 0 31 X1 32 X 2 33 X 3 3P B 0
11 ——基本结构在X1=1作用下沿X1方向的位移;
1P ——基本结构在FP作用下沿X1方向的位移。
12
3. 力法计算 1) 求系数及自由项
FPl 2
A
FP
A l/2
MP图
B l
M图
11
1 EI
1 2
l
l
2l 3
l3 3EI
B X1 1
1 p
1 EI
1 2
FPl 2
l 2(2 3l1 3l) 2
1 FPl 2 5 l 5FPl3 EI 8 6 48EI
13
2) 求未知力X1
X1
1P
/
11
5FP l 3 48EI
3EI l3
5 16
FP
()
3) 作内力图
3 16 FPl
A
11 16 FP
M MX1 M P
5 32
FPl
B
5 16 FP
M图 FQ图
14
二、多次超静定结构的力法计算
下面给出多次超静定结构的基本结构在荷载和 未知力X分别作用下的位移图。
(只有X1作用,支座转角θ 对杆端A无影响)
2)力法基本方程 位移条件 BV 0 力法方程 11X1 1C 0
A 11X1
20
3)求系数和自由项
A FR1 l
B
A X1=1
B
l
M 图 X1=1
11
1 EI
1 2
l
l
2l 3
l3 3EI
1
M图
11
1 EI
1 2
l
1
2 3
l 3EI
1C FRKCK l
根据前面给出的位移图讨论力法方程和系数的 物理意义。
主系数:δ11、δ22、δ33恒大于零。 副系数:δij (i≠j)可能大于、等于或小于零。 i 表示位移的方位;j 表示产生位移的原因。
17
由位移互等定理:δij= δji,即δ12= δ21, δ23= δ32, δ31= δ13。作 M 图及MP图,求出力法方程的系数和 自由项,解方程求出力法未知量,然后根据下式求 内力:
第七章 力 法
§7-1 超静定结构的组成和超静定次数 §7-2 力法基本原理 §7-3 力法举例 §7-4 力法简化计算 §7-5 温度变化及有弹簧支座结构的计算 §7-6 超静定结构的位移计算及力法计算校核
1
§7-1 超静定结构的组成 和超静定次数
一、超静定结构的组成
超静定结构有如下特征: 1) 从几何构造分析的观点来看,超静定结构是 有多余约束的几何不变体系。 2) 若只考虑静力平衡条件,超静定结构的内力 和支座反力不能够由平衡方程唯一确定,还要 补充位移条件。
n=2 X1
6
c)
原结构
d)
原结构
X3
X1
X2
n=3
X2
X1
X1
X2
n=2
7
e)
原结构
X1 X2 n=1
f)
原结构
不要把原结构拆成几何 可变体系。此外,要把超 静定结构的多余约束全部 X1 拆除。
n=3
X3 X2
8
§7-2 力法基本原理
解超静定结构,除应满足平衡条件外,还必 须满足位移协调条件。
A θ EI l
B 原结构
A θ EI l
B
基本体系I X1
θ A
EI l
B
X1 基本体系II
(受X1及支座转角θ共同 作用)
(只有X1作用,支座转角θ 对杆端A无影响)
19
解:
1)选两种基本体系如下图示
A θ EI l
B
基本体系I X1
θ A
EI l
B
X1 基本体系II
(受X1及支座转角θ共
同作用)