待定系数法求直线与圆的方程

合集下载

圆的一般方程jiang

圆的一般方程jiang
2
练习
求圆x2 y 2 -2x 2 y 1 0的圆心和半径
圆心(1,1)半径为1
例2 求过三点O(0,0),A(1,1),B(4,2) 的圆的方程,并求出这个圆的半径长和圆心坐标.
方法一:
待定系数法
解:设所求圆的一般方程为:
2 2 2 2
x y Dx Ey F 0(D E 4F 0)
1 2 2 D E 4 F 为半径的圆; 圆心、以 2
(2)当 D E 4F 0 时, 方程①表示一个
2 2

D E ; , 2 2
2 2
(3)当 D E 4F 0 时, 方程①不表示任 何曲线.
x y Dx Ey F 0 D E 4 F 0
利用配方法,得:
D E D E 4F ① x y 4 2 2
2 2
2
2
对于x y Dx Ey F 0 ①
2 2
(1 ) 当 D 2 E 2 4F 0
D E ① 表示以为 , 时, 2 2
2 2 2 2
称为圆的一般方程.
1 D E 表示以 , 为圆心、以 2 2 2 D 2 E 2 4F 为
半径的圆;
例1 求圆
解:
x y 6x 4 y 5 0 的圆心和半径
2 2
D 6, E 4, F 5
D E 圆心 C ( , )即(-3, 2) 2 2 你能用配方法求 1 半径 D 2 E 2 4 F =2 2 圆心和半径吗?
(x 3 2 3 ) ( y )2 1 2 2
3 3 , 2 2

圆的一般方程

圆的一般方程
是指点M的坐标(x,y)满足的关系式
练习 P124—B组 3 例2 已知线段AB的端点B的坐标是(4,3)
端点A在圆 x 12 y2 4 上运动,
求线段AB的中点M的轨迹方程
练习 P124—B组 1
小结 1、 x2 y2 Dx Ey F 0
x
D 2
2
y
E 2
2
D2
E2 4
4F
(4) x2 y2 Dx Ey F 0
x
D 2
2
y
E 2
2
D2
E2 4
4F
(1)当 D2 E2 4F 0 时,表示圆,
圆心
-
D 2
,
E 2
(2)当 D2 E2 4F
r D2 E2 4F 2
0 时,表示点
-
D 2
,
E 2
(3)当 D2 E2 4F 0 时,不表示任何图形
圆的一般方程
(x 3)2 ( y 4)2 6
展开得
x2 y2 6x 8y 19 0 x2 y2 Dx Ey F 0
任何一个圆的方程都是二元二次方程
反之是否成立?
圆的一般方程
方程 (1)x2 y2 2x 4 y 1 0 表示什么图形?
配方得
(x 1)2 ( y 2)2 4
4.1.2圆的一般方程
圆心 半径
定位条件 定形条件
圆的标准方程
圆心C(a,b),半径r
y
M(x,y)
(x a)2 (y b)2 r2
标准方程
OC
x
若圆心为O(0,0),则圆的方程为:
x2 y2 r2
பைடு நூலகம்
课堂快练
1.圆心在原点,半径是3的圆的方程. 2.圆心在(3,4),半径是 的7 圆的方程. 3.经过点P(5,1),圆心在点C(4,1)的圆的方程.

圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的关系题型归纳一、学法指导与考点梳理1.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r . ②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内. 2.直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.3.圆与圆的位置关系二、重难点题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. (2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.例1.(1)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(2)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【变式训练1】.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5【变式训练2】.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.(3)直线系法:若动直线过定点P ,则点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例2.(1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]【变式训练1】.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【变式训练2】.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3】.在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I )求圆心的轨迹方程;(II )若点到直线,求圆的方程. 重难点3 直线、圆方程的综合应用(1)判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代xOy P x y P P y x P数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.(2)若,()P x y 是定圆222()()C x a y b r -+-=:上的一动点,则mx ny +和yx这两种形式的最值,一般都有两种求法,分别是几何法和代数法.①几何法.mx ny +的最值:设mx ny t +=,圆心(,)C a b 到直线mx ny t +=的距离为22d m n=+,由d r =即可解得两个t 值,一个为最大值,一个为最小值.y x 的最值:yx即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值. ②代数法.mx ny +的最值:设mx ny t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.y x 的最值:设yt x=,则y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.例3.(1)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2(2)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【变式训练1】.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S .【变式训练2】.在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.三、课堂定时训练(45分钟)1.(2020黑龙江黑河一中高二期中)已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=1002.(2020山东潍坊三中高二期中)已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=4.(2020邢台市第八中学高二期末)方程220x y Dx Ey F ++++=表示以(2,3)-为圆心,4为半径的圆,则D,E,F 的值分别为( ) A .4,6,3-B .4,6,3-C .4,6,3--D .4,6,3--5.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离6.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-7.(2020全国高二课时练)与圆()22:136C x y -+=同圆心,且面积等于圆C 面积的一半的圆的方程为_________.8.(2020·上海高二课时练习)若圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为2,则a 的值为_________.9.(2020湖南师大附中高二期中)已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程; (2)过点A,B 且圆心在直线240x y --=上的圆的方程.10.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.。

高考数学备考复习 易错题十:直线与圆的方程

高考数学备考复习 易错题十:直线与圆的方程

高考数学备考复习易错题十:直线与圆的方程一.单选题(共13题;共26分)1.直线mx+ny=4与圆x2+y2=4没有公共点,则过点(m,n)的直线与椭圆的交点的个数是()A. 至多一个B. 2个C. 1个D. 0个2.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by-4=0对称,则a2+b2的最小值是()A. 2B.C.D. 13.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是()A. B. k<0或 C. D. 或4.已知圆C:(x+1)2+(y-1)2=1与x轴切于A点,与y轴切于B点,设劣弧AB的中点为M,则过点M的圆C 的切线方程是()A. y=x+2-B. y=x+1-C. y=x-2+D. y=x+1-5.(2015·湖南)已知点,,在圆上运动,且,若点的坐标为,则的最大值为()A. 6B. 7C. 8D. 96.(2015·安徽)直线3x+4y=b与圆相切,则b=()A. -2或12B. 2或-12C. -2或-12D. 2或127.(2015全国统考II)已知三点,则外接圆的圆心到原点的距离为()A. B. C. D.8.若原点到直线3ax+5by+15=0的距离为1,则的取值范围为()A. [ 3,4]B. [3,5]C. [1,8]D. (3,5]9.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A. ﹣或﹣B. ﹣或﹣C. ﹣或﹣D. ﹣或﹣10.(2016•全国)圆的圆心到直线的距离为1,则a=( )A. B. C. D. 211.已知点P(1,2)和圆C:x2+y2+kx+2y+k2=0,过P作C的切线有两条,则k的取值范围是()A. k∈RB. k<C. ﹣<k<0D. ﹣<k<12.直线L圆x2+(y﹣2)2=2相切,且直线L在两坐标轴上的截距相等,则这样的直线L的条数为()A. 1B. 2C. 3D. 413.平行于直线2x﹣y+1=0且与圆x2+y2=5相切的直线的方程是()A. 2x﹣y+5=0B. x2﹣y﹣5=0C. 2x+y+5=0或2x+y﹣5=0D. 2x﹣y+5=0或2x﹣y﹣5=0二.填空题(共4题;共4分)14.已知方程x2+y2+4x﹣2y﹣4=0,则x2+y2的最大值是________15.(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.16.(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为________.17.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是________.三.综合题(共2题;共20分)18.在平面直角坐标系xOy中,已知点A(2,4),直线l:x﹣2y+1=0.(1)求过点A且平行于l的直线的方程;(2)若点M在直线l上,且AM⊥l,求点M的坐标.19.如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.答案解析部分一.单选题1.【答案】B【考点】直线与圆的位置关系,直线与圆锥曲线的关系【解析】【解答】直线与圆没有公共点,,在圆内部,在椭圆内部,所以过的直线与椭圆有两个交点【分析】判断直线与椭圆的交点个数,需判断直线过的定点与椭圆的位置关系,求解本题利用到了数形结合法,此法在一些选择填空题目中经常用到,可使计算简化,难度适中2.【答案】A【考点】二次函数的图象,二次函数的性质,圆的一般方程,直线与圆的位置关系【解析】【解答】因为圆:关于直线对称,所以直线过圆心(-1,2),所以-2a+2b-4=0,a=b-2,=2,的最小值是2,故选A。

2.待定系数法

2.待定系数法

2.待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

待定系数法是中学数学中的一种重要方法,它在平面解析几何中有广泛的应用.(一)求直线和曲线的方程例1 过直线x-2y-3=0与直线2x-3y-2=0的交点,使它与两坐标轴相交所成的三角形的面积为5,求此直线的方程.【解】设所求的直线方程为(x-2y-3)+λ(2x-3y-2)=0,整理,得依题意,列方程得于是所求的直线方程为8x-5y+20=0或2x-5y-10=0.【解说】(1)本解法用到过两直线交点的直线系方程,λ是待定系数.(2)待定系数法是求直线、圆和圆锥曲线方程的一种基本方法.例2 如图2-9,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上的任一点到l2的距离与到点N的距离相等.若系,求曲线C的方程.(1998年全国高考理科试题)【解】如图2-9,以l1为x轴,MN的垂直平分线为y轴,建立直角坐标系.由已知,得曲线C是以点N为焦点、l2为准线的抛物线的一段,其中点A、B为曲线C的端点.设曲线C的方程为y2=2px,p>0(x1≤x≤x2,y>0).其中,x1、x2分别是A、B的横坐标,p=|MN|.从而M、N解之,得p=4,x1=1.故曲线C的方程为y2=8x (1≤x≤4,y>0).(二)探讨二元二次方程(或高次方程)表示的直线的性质例3 已知方程ax2+bxy+cy2=0表示两条不重合的直线L1、L2.求:(1)直线L1与L2交角的两条角平分线方程;(2)直线L1与L2的夹角的大小.【解】设L1、L2的方程分别为mx+ny=0、qx+py=0,则ax2+bxy+cy2=(mx+ny)(qx+py).从而由待定系数法,得a=mq,b=mp+nq,c=np.(1)由点到直线的距离公式,得所求的角平分线方程为即(m2+n2)(qx+py)2=(q2+p2)(mx+ny)2,化简、整理,得(nq-mp)[(nq+mp)x2+2(np-mq)xy-(nq+mp)y2]=0.∵ L1、L2是两条不重合的直线∴b2-4ac=(mp+nq)2-4mnpq=(mp-nq)2>0.即 mp-nq≠0.从而(nq+mp)x2+2(np-mq)xy-(nq+mp)y2=0.把 mq=a,mp+nq=b,np=c代入上式,得bx2+2(c-a)xy-by2=0.即为所求的两条角平分线方程.(2)显然当mq+np=0,即a+c=0时,直线L1与L2垂直,即夹角为90°.当mq+np≠0即a+c≠0时,设L1与L2的夹角为α,则【解说】一般地说,研究二元二次(或高次)方程表示的直线的性质,用待定系数法较为简便.(三)探讨二次曲线的性质1.证明曲线系过定点例4 求证:不论参数t取什么实数值,曲线系(4t2+t+1)x2+(t+1)y2+4t(t+1)y-(109t2+21t+31)=0都过两个定点,并求这两个定点的坐标.【证明】把原方程整理成参数t的方程,得(4x2+4y-109)t2+(x2+y2+4y-21)t+x2+y2-31=0.∵ t是任意实数上式都成立,【解说】由本例可总结出,证明含有一个参数t的曲线系F(x,y,t)=0过定点的步骤是:(1)把F(x,y,t)=0整理成t的方程;(2)因t是任意实数,所以t的各项系数(包括常数项)都等于零,得x、y的方程组;(3)解这个方程组,即得定点坐标.2.求圆系的公切线或公切圆例5 求圆系x2+y2-2(2m+1)x-2my+4m2+4m+1=0(m≠0)的公切线方程.【解】将圆系方程整理为[x-(2m+1)]2+(y-m)2=m2(m≠0)显然,平行于y轴的直线都不是圆系的公切线.设它的公切线方程为 y=kx+b,则由圆心(2m+1,m)到切线的距离等于半径|m|,得从而[(1-2k)m-(k+b)]2=m2(1+k2),整理成m的方程,得(3k2-4k)m2-2(1-2k)(k+b)m+(k+b)2=0.∵ m取零以外的任意实数上式都成立,【解说】由本例可总结出求圆系F(x,y,m)=0的公切线方程的步骤是:(1)把圆系方程化为标准方程,求出圆心和半径;(2)当公切线的斜率存在时,设其方程为y=kx+b,利用圆心到切线的距离等于半径,求出k、b、m的关系式f(k,b,m)=0;(3)把f(k,b,m)=0整理成参数m的方程G(m)=0.由于m∈R,从而可得m的各项系数(包括常数项)都等于零,得k、b的方程组;(4)解这个方程组,求出k、b的值;(5)用同样的方法,可求出x=a型的公切线方程.3.化简二元二次方程例6 求曲线9x2+4y2+18x-16y-11=0的焦点和准线.【分析】把平移公式x=x′+h,y=y′+k,代入原方程化简.【解】(略).例7.已知函数y=mx x nx22431+++的最大值为7,最小值为-1,求此函数式。

9.4.2圆的一般方程

9.4.2圆的一般方程

课堂基础巩固
1.圆(x+1)2+(y-2)2=2化为一般方程是( A.x2+y2=2 B.x2+y2+3=0 C.x2+y2-2x+4y+3=0 D.x2+y2+2x-4y+3=0
[答案] D
)
2.圆x2+y2-2x+6y+8=0的周长等于( A. 2π B.2π
)
C.2 2π D.4π
[答案] C
a 2 3 (3)对方程x +y +ax- 3 ay=0配方,得(x+ ) +(y- 2 2
2 2
a)2=a2. 当a=0时,该方程表示的图形为一个点(0,0). a 3 当a≠0时,该方程表示的图形为圆,圆心为(-2, 2 a), 半径长为|a|.
[点评]
对形如x2+y2+Dx+Ey+F=0的二元二次方程,
2 2
5 5 示以(4,0)为圆心,4为半径的圆.
规律总结:(1)判断一个二元二次方程是否表示圆的步 骤是:先看这个方程是否具备圆的一般方程的特征,即①x2与 y2的系数相等;②不含xy项;当它具有圆的一般方程的特征 时,再看它能否表示圆,此时有两种途径,一是看D2+E2- 4F是否大于零,二是直接配方变形,看右端是否为大于零的 常数即可. (2)圆的标准方程指出了圆心坐标与半径的大小,几何特 征明显;圆的一般方程表明圆的方程是一种特殊的二元二次 方程,代数特征明显.
故所求圆的方程为x2+y2-2x+2y-3=0
解法2:线段AB的中垂线方程为x=1,线段AC的中垂线 方程为x+y=0
x=1 由 x+y=0
得圆心坐标为M(1,-1),
半径r=|MA|= 5, ∴圆的方程为(x-1)2+(y+1)2=5.
总结评述:1.第(1)题中,容易发现,利用圆的性质的解 法3比用待定系数法的解法1和解法2计算量小,充分利用圆的 性质可简化解题过程. 2.用待定系数法求圆的方程时,①如果由已知条件容易 求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问 题,一般采用圆的标准方程,求出a、b、r即可.②如果给出 圆上三个点坐标或已知条件与圆心或半径都无直接关系,一 般采用一般方程,求出D、E、F即可.

第13课:圆的方程(2)


填一填· 知识要点、记下疑难点
2.2.1(二)
1. 对于二元二次方程 x2+y2+Dx+Ey+F=0.当 D2+E2-4F
本 课 时 栏 目 开 关
D E =0 时,方程表示 一个点 ,该点的坐标为(- 2 ,- 2 );当 D2+E2-4F<0 时, 不表示任何 图形; D2+E2-4F>0 方程 当 D E 时, 方程表示的曲线为圆, 它的圆心坐标为 (- 2 ,- 2 ) ,
研一研· 问题探究、课堂更高效
2.2.1(二)
跟踪训练 1 求过三点 O(0,0),M1(1,1),M2(4,2)的圆的方程, 并求这个圆的半径长和圆心坐标. 解 设圆的方程为 x2+y2+Dx+Ey+F=0, ∵O,M1,M2 三点都在圆上,
本 课 时 栏 目 开 关
∴O,M1,M2 三点坐标都满足所设方程, 把 O(0,0),M1(1,1),M2(4,2)代入所设方程, F=0 D=-8 得:D+E+F+2=0 ,解得:E=6 4D+2E+F+20=0 F=0
D=-6, ⇒E=-2, F=5.
△ABC 外接圆的方程.
本 课 时 栏 目 开 关
在所求的圆上, 4D+3E+F+25=0, 故有5D+2E+F+29=0, D+F+1=0
故所求圆的方程是 x2+y2-6x-2y+5=0.
研一研· 问题探究、课堂更高效
2.2.1(二)
2.2.1(二)
182+18D+F=0 2 18 -18D+F=0, 62+6E+F=0
本 课 时 栏 目 开 关
D=0 解之得E=48 F=-324

∴圆拱所在的圆的方程为:x2+y2+48y-324=0; 将点 P2 的横坐标 x=6 代入圆方程,

高中数学第2章直线和圆的方程章末核心素养整合新人教版选择性必修第一册

x2+y2等式子的最值,一般运用几何法求解.
【典型例题6】已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点.


= ,
= ,
联立③④,解得

= -
= .

= ,
= ,
经检验此时的 l1 与 l2 不重合.故

= -
= .
【跟踪训练2】已知直线l1:ax+2y+6=0,直线l2:x+(a-1)y+a21=0,当l1∥l2时,a=
;当l1⊥l2时,a=
.
答案:-1
解:(1)因为AC⊥BH,所以设边AC所在的直线的方程为
2x+y+t=0.把点A(5,1)代入直线方程2x+y+t=0中,解得t=-11.
所以边AC所在的直线的方程为2x+y-11=0.
(2)设点 B(x0,y0),则边 AB 的中点为
联立得方程组
+ +

,

.
- - = ,
为(A1x+B1y+C1)+λ(A2x+B2y+C2)=0.
【典型例题1】 已知△ABC的顶点A(5,1),AB边上的中线
CM所在的直线方程为2x-y-5=0,AC边上的高BH所在的直线
方程为x-2y-5=0.求:
(1)AC所在的直线的方程;
(2)点B的坐标;
(3)AC边上的中位线所在直线的方程.
(1)求k的取值范围;
(2)若 ·=12,其中 O 为坐标原点,求|MN|.
解:(1)由题设,可知直线l的方程为y=kx+1.

4.1.2圆的一般方程(使用)

3. D2+E2-4F>0

二元二次方程表
示圆的一般方程
练习
判断下列方程能否表示圆的方程,若能写 出圆心与半径 (1) x2+y2-2x+4y-4=0 是
圆心(1,-2)半径3
(2) 2x2+2y2-12x+4y=0
(3) x2+2y2-6x+4y-1=0
是 圆心(3,-1)半径 10
不是
(4) x2+y2-12x+6y+50=0 不是
(1)
当D2+E2-4F>0时,表示以( 为圆心,以(
1 D 2 + E 2 - 4F 2
D E ,- ) 2 2
) 为半径的圆.
(2) 当D2+E2-4F=0时,方程只有一组解x=-D/2
D E y=-E/2,表示一个点( - 2 ,- 2
).
D 2 E 2 D 2 + E 2 - 4F (x + ) + ( y + ) = 2 2 4
x + y 2 - 2ax - 2by + a 2 + b2 - r 2 = 0
2
由于a, b, r均为常数
令 - 2a = D,-2b = E , a + b - r = F
2 2 2
结论:任何一个圆方程可以写成下面形式
x2 +y 2+Dx+Ey+F=0
思考
1.是不是任何一个形如 x2 +y 2+Dx+Ey+F=0 方程表示 的曲线是圆呢?
1 (2)分 AP 的比为 的点Q的轨迹方程. 2
3 2 1 2 1 ( x - ) + y = 2 4 1 2 2 2 ( x - 2) + y = 9

解析几何-直线与圆的方程(二)

高二数学授课教案学生姓名授课教师班主任上课时间9 月 23 日时—时科目数学课题第1课时平面解析几何——直线与圆的方程学习目标1.回顾、加强空间坐标系、直线与圆的方程基础知识.2.巩固直线、圆的方程的主要求解方法.(重点)3.能够解决综合性解析几何问题.(难点)教学过程教学设计一、主干知识梳理1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),斜率为k,不包括y轴和平行于y轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).(3)两点式:y-y1y2-y1=x-x1x2-x1(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:xa+yb=1(a、b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax+By+C=0(其中A,B不同时为0).设直线方程的一些常用技巧:1.知直线纵截距b,常设其方程为y kx b=+;2.知直线横截距x,常设其方程为x my x=+(它不适用于斜率为0的直线);3.知直线过点00(,)x y,当斜率k存在时,常设其方程为00()y k x x y=-+,当斜率k不存在时,则其方程为x x=;4.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 5.与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

2.直线的两种位置关系当不重合的两条直线l1和l2的斜率存在时: (1)两直线平行l1∥l2⇔k1=k2. (2)两直线垂直l1⊥l2⇔k1•k2=-1.提醒:当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离:|AB |= x 2-x 1 2+ y 2-y 1 2. (2)点到直线的距离:d =|Ax 0+By 0+C |A 2+B2(其中点P (x 0,y 0),直线方程:Ax +By +C =0).(3)两平行线间的距离:d =|C 2-C 1|A 2+B 2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0).提醒:应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等.4.圆的方程的三种形式(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

待定系数法求直线与圆的方程
待定系数法是一种常用的数学方法.对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件,得到以待定系数为元的方程或方程组,解之即得待定的系数.其广泛应用于多项式的因式分解,求函数的解析式和曲线的方程等.
使用待定系数法解题的一般步骤是:
(1) 确定所求问题含待定系数的解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决.
其中,如何列出一组含待定系数的方程,主要从以下几方面着手分析:
① 利用对应系数相等列方程;
由恒等的概念用数值代入法列方程;
③ 利用定义本身的属性列方程;
④ 利用几何条件列方程.
本文举例说明待定系数法在直线和圆中的应用.
例1 过点(2,-1)做一直线,使到点(1,2)的距离为 1,求此直线方程.
评注: 本题是一道常规题,通过方程的形式引入待定系数,再通过距离公式得到关于k 的方程,解出k 值,得直线方程。

此外要注意斜率不存在的情况.
例2 求圆心在直线 2x —Y 一3— 0上,且过点 (5,2)和点(3,一2)的圆的方程.
分析: 求圆的方程基本方法第一步是设出圆的方程,而圆的方程有一般式和标准式,下面我们从这两个角度用待定系数法求解,看看解题过程的区别.
(1)直接设圆的标准方程为222)(r b y a x =-+-)(由已知 的三个条件可得
关于a ,b ,r 的三个方程,解之可得所求圆的方程。

(2)因为条件中圆心在直线2x-y-3=0上,因此可设圆心为(a ,2a-3),半
径为r ,从而得圆的标准方程为,)32(222r a y a x =+-+-)(再把已知的两点坐标
代入可得解.
.
10)1(2,
10,2,
)322()3(,)322(-52-32,5,
)32(,,32.
10)1(2,
10,1,2,)2()3(,
)2()5(,032,)(22222222222222222222222=-+-⎩⎨⎧==⎪⎩⎪⎨⎧=+--+-=+-+=+-+--=-+-⎪⎩⎪⎨⎧===⎪⎩
⎪⎨⎧=--+-=-+-=--=-+-y x r a r a a r a a B A r a y a x r a a y x r b a r b a r b a b a r b y a x )(所以所求圆的方程为:解之得)()两点所以有,(),(又圆过)为(从而得到圆的标准方程半径为),法二,设圆心为():(所以,所求圆的方程为解之得则
)为(法一,设圆的标准方程解答:
评注:
确定圆的方程需要三个独立的条件,“选标准,定参数”是解题的基本方
法.其中,“选标准”是根据已知条件选恰当的圆的方程的形式,进而确定其中的三个参数.本例给了二种解法,其中解法一是最基本的直接利用条件,而解法二对条件进行了一定的变形,从而使要待定的参数由三个变成了两个,减少了解题的运算量.
此外本题也可这样考虑:因为圆过A(5,2),B(3,一 2)两点,所以圆心一
定在线段 AB 的垂直平分线上,由 AB 的垂直平分线方程和已知的直线方程联立,可解得圆心的坐标,再由两点间距离公式可求得半径,从而原问题可解,这说明结合平面几何的知识可使问题的求解得到优化.
例3 试判断A(1,2),B(O ,1),C(7,6),D(4,3)四点是否在同一圆上。

分析:可以由其中三点确定一个圆的一 般式方程,再对余下的一点进行验
证。

解答:因为线段 AB ,BC 的斜率分别为,1,1-==BC AB k k ,所 以 A ,B ,C
三 点不共线,设过 A ,B ,C 三点 的圆的方程为022=++++F Ey Dx y x ,因为A ,B ,C 三点在圆上,所以它们的坐标满足此圆的方程,即
四点在同一个圆上。

在此圆上,故即点,:点坐标代入方程左端得将为所以过三点的圆的方程,,
,解之得,D C B A D D y x y x F E D F E D F E F E D ,,,05-3448-34.
0548548,08567,
010522222=⨯+⨯+=-+-+⎪⎩
⎪⎨⎧-==-=⎪⎩
⎪⎨⎧=++-=++=+++
评注:
本题由于不能确定出圆心和圆的半径,所以不适宜用圆的标准方程,故采用圆的一般方程求解.
其实本例还有一种特殊的解法:由,,1BC AB k k BC AB ⊥-=⋅得出即 AC 为过 A ,B ,C 三点的圆的直径,由AC=10,AC 中点 M 的坐标为(4,一2),从而可以得 DM= 5,所以点 D 在 圆M 上,即A ,B ,C ,D 四点共圆,这说明挖掘题中所隐含的信息很重要.
巩固练习
1.求过两直线 x+3y-10=0和 y=3x 的交点并且和原点距离为 1的直线方程.
2.三条直线 y = 0, x = 1,y = x 围成的一个三角形,其外接圆的方程是 .
3.求圆心在直线 x =2上,与 y 轴交于A(O ,一4),B(O ,一2)的圆的方程.
4.一圆经过 A(4,一2),B(一1,3)两点,且在两坐标轴上的四个截距之和为 2,求此圆的方程.。

相关文档
最新文档