5-8-用常微分方程求解实际问题

合集下载

常微分方程初值问题的解法及应用

常微分方程初值问题的解法及应用

常微分方程初值问题的解法及应用常微分方程是数学中非常重要的一部分,它涉及了许多领域的模型建立和问题求解。

本文将介绍常微分方程初值问题的解法及其应用。

一、常微分方程初值问题的定义常微分方程初值问题是指给定一个常微分方程,以及它在某一点上的初始条件,求解该方程的解曲线。

通常,一个常微分方程初值问题可以表示为:y'(x) = f(x,y), y(x0) = y0,其中,y(x)是未知函数,f(x,y)是已知函数,y(x0) = y0是初始条件。

二、常微分方程初值问题的解法常微分方程初值问题的解法有多种,下面我们将介绍几种常用的方法。

1.欧拉法欧拉法是最简单的一种求解常微分方程初值问题的方法。

该方法基于初始条件,通过不断迭代计算得到近似解曲线。

具体步骤如下:步骤1:设定步长h,确定求解区间[x0, xn],计算步数n。

步骤2:初始化,即确定初始点(x0, y0)。

步骤3:根据方程dy/dx = f(x,y)和初始点(x0, y0),计算斜率k = f(x0, y0)。

步骤4:根据已知的斜率和步长h,计算下一个点的坐标(xi+1,yi+1)。

步骤5:重复步骤3和步骤4,直到达到步数n。

步骤6:得到近似解曲线。

2.改进的欧拉法(改进欧拉法)改进的欧拉法是对欧拉法的改进,其求解精度比欧拉法更高。

具体步骤如下:步骤1:设定步长h,确定求解区间[x0, xn],计算步数n。

步骤2:初始化,即确定初始点(x0, y0)。

步骤3:根据方程dy/dx = f(x,y)和初始点(x0, y0),计算斜率k1 =f(x0, y0)。

步骤4:根据已知的斜率k1和步长h/2,计算中间点的坐标(x0+h/2, y0+k1*h/2)。

步骤5:根据方程dy/dx = f(x,y)和中间点的坐标(x0+h/2, y0+k1*h/2),计算斜率k2= f(x0+h/2, y0+k1*h/2)。

步骤6:根据已知的斜率k2和步长h,计算下一个点的坐标(xi+1,yi+1)。

微分方程在日常实际中的应用

微分方程在日常实际中的应用

微分方程在实际中的应用——以学习物理化学为例函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻找出所需要的函数关系,在实践中具有重要意义。

在许多问题中,往往不能直接找出所需要的函数关系,但是根据问题所提供的情况,有时可以列出含有未知函数及其导数的关系式,如dy/dx=2x、ds/dt=0.4 ,这样的关系就是所谓微分方程,。

一般的、凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程。

如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。

70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。

从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解。

常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。

偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。

总之,力学、天文学、几何学等领域的许多问题都导致微分方程。

在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。

因而微分方程的研究是与人类社会密切相关的。

牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。

后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。

这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。

常微分方程的求解及其应用

常微分方程的求解及其应用

常微分方程的求解及其应用常微分方程是微积分中十分重要的一个分支。

通过解决微分方程,我们可以得到模型在不同情况下的变化,进而为实际问题的解决提供了关键性所在。

本文将介绍常微分方程的求解及其应用。

一、常微分方程的基础知识在介绍常微分方程的求解之前,我们先来了解一些常微分方程的基础知识。

常微分方程是指只有一个自变量的微分方程,即形如:$$\frac{dy}{dx}=f(x,y)$$其中y是自变量,x是因变量,f(x,y)是一个已知函数。

上述方程也可以写成以下形式:$$y'=f(x,y)$$其中y'表示y对x的导数。

二、常微分方程的求解方法1.可分离变量法可分离变量法是常微分方程最常用的求解方法。

该方法的主要思想是将变量y和x分离,即将f(x,y)拆分为g(x)h(y),使得原方程可写成以下形式:$$\frac{dy}{dx}=g(x)h(y)$$然后将上式两边分别积分即可。

以求解一阶线性微分方程为例,其形式为:$$y'+p(x)y=q(x)$$首先,将右式中的q(x)移到左边,得到:$$y'+p(x)y-q(x)=0$$然后,应用一个分离变量法的思想,令p(x)=P'(x),即可将该方程写成:$$\frac{dy}{dx}+P(x)y=Q(x)$$然后,我们使用降阶的方法将该一阶方程转换为首阶方程。

具体来说,将y分离出来,得到:$$\frac{dy}{dx}=-P(x)y+Q(x)$$我们令u(x)=e^{\int P(x)dx},则上式可以写成:$$u(x)\frac{dy}{dx}-u(x)P(x)y=u(x)Q(x)$$将上式两边同时积分,得到:$$u(x)y=\int u(x)Q(x)dx+C$$其中C为常数,e^{\int P(x)dx}也可以写成常数K。

这样,我们就求解出了一阶线性微分方程。

2.参数化方法参数化方法是常微分方程的另一种常见求解方法。

该方法的核心是寻找一条曲线,使得函数y(x)可以表示为该曲线上某点的函数。

常微分方程的求解

常微分方程的求解

18—1 常微分方程数值解法2§1 引言§2 Euler 方法§3 Runge -Kutta 方法§4 单步法的收敛性与稳定性§5 线性多步法§6 方程组与高阶方程的情况§7 边值问题的数值解法3§1 引言微分方程:关于一个未知函数的方程,方程中含有未知函数的(偏)导数,以及自变量等,其中关于未知函数导数的最高次数称为微分方程的阶数.例如:0)()(')()(''=++−x c y x b y x a x y4实际中,很多问题的数学模型都是微分方程. 常微分方程作为微分方程的基本类型之一,在理论研究与工程实际上应用很广泛. 很多问题的数学模型都可以归结为常微分方程. 很多偏微分方程问题,也可以化为常微分方程问题来近似求解.微分方程的应用情况5对于一个常微分方程:'(,) ,[,]dy y f x y x a b dx==∈为了使解存在,一般要对函数f 施加限制条件,例如要求f 对y 满足Lipschitz 条件:1212(,)(,)f x y f x y L y y −≤−6同时,一个有解的微分方程通常会有无穷多个解例如cos() sin(),dyx y x a a R dx=⇒=+∀∈为了使解唯一,需要加入一个限定条件. 通常会在端点出给出,如下面的初值问题:(,),[,]()dyf x y x a b dx y a y ⎧=∈⎪⎨⎪=⎩7常微分方程的解是一个函数,但是,只有极少数特殊的方程才能求解出来,绝大多数是不可解的.并且计算机没有办法对函数进行运算. 一般考虑其近似解法,一种是近似解析法,如逼近法、级数解法等,另一种是本章介绍的数值解法.8§2 Euler 方法92-1 Euler 公式对常微分方程初值问题:⎩⎨⎧==00')(),(y x y y x f y 数值求解的关键在于消除其中的导数项——称为离散化. 利用差商近似逼近微分是离散化的一个基本途径.10现在假设求解节点为),,1,0(m i ih a x i "=+=,其中ma b h −=为步长,这些节点相应的函数值为)(,),(1m x y x y ". 在点n x 处,已知))(,()('n n n x y x f x y =用n x 的向前差商nn n n x x x y x y −−++11)()(近似代替)('n x y ,如§1,则得到所谓的Euler 公式1(,)n n n n y y hf x y +=+——单步、显式格式11Euler 公式的局部截断误差:假设)(n n x y y =情况下,11)(++−n n y x y 称为局部截断误差.'''2311''23()()()()()2()(,()(()))2n n n n n n n n n y x y x y y x hy x h O h y x h y x f x y x h O h ++−=+++−−=+故有)(2)(''211n n n x y h y x y ≈−++. 122-2 后退的Euler 公式同样对常微分方程初值问题,在1+n x 点,已知))(,()(111'+++=n n n x y x f x y ,如果用向后差商hx y x y n n )()(1−+代替)(1'+n x y ,则得到后退的Euler 公式:111(,)n n n n y y hf x y +++=+——单步、隐式格式13相对于以上可以直接计算1+n y 的Euler 公式(显式),上式是隐式公式. 一般来讲,显式容易计算,而隐式具有更好的稳定性.求解上述公式,通常使用迭代法:对于给定的初值)0(1+n y,计算(1)()111(,)(0,1,)k k n n n n y y f x y k ++++=+=", 如果)(1lim k n k y +∞→收敛,则其极限必满足上述后退Euler 公式.14局部截断误差:假设)(n n x y y =,则),()(111++++=n n n n y x hf x y y .由于)]()[,())(,(),(1111111+++++++−+=n n n y n n n n x y y x f x y x f y x f η且''''2111(,())()()()()n n n n n f x y x y x y x hy x O h +++==++15则有'2''31111(,)[()]()()()()n y n n n n n n y hf x y y x y x hy x h y x O h η++++=−++++将此式减去式2'''31()()()()()2n n n n h y x y x hy x y x O h +=+++ 可得,2''311111()(,)[()]()()2n n y n n n n h y x y hf x y x y y x O h η+++++−=−−+16考虑到21111(,)()1(,)y n y n hf x O h hf x ηη++=++−,则有22''3''11()()()()22n n n n h h y x y y x O h y x ++−=−+≈−172-3 梯形公式由于上述两个公式的局部截断误差绝对值相等,符号相反,故求其算术平均得到梯形公式:111[(,)(,)]2n n n n n n hy y f x y f x y +++=++——单步、隐式格式18梯形法同样是隐式公式,可用下列迭代公式求解:(0)1(1)()111(,)[(,)(,)]2n n n n k k n n n n n n y y hf x y h y y f x y f x y +++++⎧=+⎪⎨=++⎪⎩局部截断误差:类似于后退Euler ,可计算出)(12)('''311n n n x y h y x y −≈−++192-4 改进的Euler 公式上述用迭代法求解梯形公式虽然提高了精度,但计算量也很大. 实际上常采用的方法是,用Euler 公式求得初始值(预测),然后迭代法仅施行一次(校正)——改进的Euler 公式:1111(,)[(,)(,)]2n n n n n n n n n n y y f x y hy y f x y f x y ++++⎧=+⎪⎨=++⎪⎩20估计上式中第二式当1+n y 为准确值时的局部截断误差:''11113(3)()()(()[()()])2()12n n n n n n n hy x y y x y x y x y x hy x ++++−=−++≈−212-5 Euler 两步公式如果用中心差商hx y x y n n 2)()(11−+−代替)('n x y ,则得Euler 两步公式112(,)n n n n y y hf x y +−=+——两步、显式格式22假设1−n y 及n y 均为准确值,利用Taylor 展式容易计算Euler 两步公式的局部截断误差为:11113(3)()()(()2(,()))()3n n n n n n n y x y y x y x hf x y x h y x +++−−=−+≈23此式与梯形公式相结合,得到如下的预测-校正公式:111112(,)[(,)(,)]2n n n n n n n n n n y y hf x y hy y f x y f x y −++++⎧=+⎪⎨=++⎪⎩假设第一式中的1−n y 及n y ,以及第二式中的n y 及1+n y 均是准确值,则有,2441)()(1111−≈−−++++n n n n y x y y x y 从而可得以下的事后估计式,111111114()()51()()5n n n n n n n n y x y y y y x y y y ++++++++⎧−≈−−⎪⎪⎨⎪−≈−⎪⎩25可以期望,以上式估计的误差作为计算结果的补偿,可以提高计算精度.以n p 及n c 分别表示第n 步的预测值和校正值,则有以下的“预测-改进-校正-改进”方案(其中在1+n p 与1+n c 尚未计算出来的前提下,以n n c p −代替11++−n n c p :26预测:'112n n n hy y p +=−+预测的改进:)(5411n n n n c p p m −−=++计算:),(11'1+++=n n n m x f m校正:)(2'1'1++++=n n n n m y hy c校正的改进:)(511111++++−+=n n n n c p c y计算:),(11'1+++=n n n y x f y27例 用Euler 方法求解初值问题2'[0,0.6](0)1y y xy x y ⎧=−−∈⎨=⎩取0.2h =,要求保留六位小数. 解:Euler 迭代格式为2210.2()0.80.2k k k k k k k k y y y x y y x y +=+−−=−因此2821000(0.2)0.80.20.8y y y x y ≈=−= 22111(0.4)0.80.20.6144y y y x y ≈=−=23222(0.6)0.80.20.461321y y y x y ≈=−=29例 用改进的Euler 方法求解初值问题2'sin 0[0,0.6](0)1y y y x x y ⎧++=∈⎨=⎩取0.2h =,求(0.2),(0.4)y y 的近似值,要求保留六位小数.解:改进的Euler 格式为212211110.2(sin )0.2(sin sin )2k k k k k k k k k k k k k y y y y x y y y y x y y x +++++⎧=+−−⎪⎨=+−−−−⎪⎩30即,222110.820.08sin 0.1(0.80.2sin )sin k k k k k k k k y y y x y y x x ++=−−−则有1(0.2)0.807285y y ≈=,2(0.4)0.636650y y ≈=31§3 Runge -Kutta 方法Def.1如果一种方法的局部截断误差为)(1+p h O ,则称该方法具有p 阶精度. 323-2 Runge —Kutta 方法的基本思想上述的Taylor 级数法虽然可得到较高精度的近似公式,但计算导数比较麻烦. 这里介绍不用计算导数的方法.))(,()()()('1h x y h x f h x y hx y x y n n n n n θθθ++=+=−+——平均斜率.33如果粗略地以),(n n y x f 作为平均斜率,则得Euler 公式;如果以221K K +作为平均斜率,其中),(1n n y x f K =,),(112hK y x f K n n +=+,则得改进的Euler 公式.343-3 二阶的Runge -Kutta 方法对点n x 和)10(≤<+=+p ph x x n p n ,用这两点斜率的线性组合近似代替平均斜率,则得计算公式:11122121()(,)(,)n n n n n p n y y h K K K f x y K f x y phK λλ++⎧=++⎪=⎨⎪=+⎩35现确定系数p ,,21λλ,使得公式具有二阶精度. 因为,取n y 为()n y x ,则'1(,)(,())'()n n n n n nK f x y f x y x y x y === 再把2K 在),(n n y x 处展开,有36'21(,)(,)n p n n n n K f x y phK f x ph y phy +=+=++代入可得,'2''31122()()n n n n y y hy ph y O h λλλ+=++++'2(,)(,)(,)()n n x n n y n n n f x y f x y ph f x y phy O h =+⋅+⋅+'2(')(,)()n x y n n y ph f f y x y O h =+⋅+⋅+'''2()n n y ph y O h =+⋅+37相比较二阶Taylor 展开''2'12n n n n y h hy y y ++=+,有,⎪⎩⎪⎨⎧==+211221p λλλ满足此条件的公式称为二阶Runge -Kutta 公式.38可以验证改进的Euler 公式属于二阶Runge -Kutta 公式. 下列变形的Euler 公式也是二阶Runge -Kutta 公式:12121(,)(,)22n n n n n n y y hK K f x y h h K f x y K +⎧⎪=+⎪=⎨⎪⎪=++⎩393-4 三阶Runge -Kutta 公式同二阶Runge -Kutta 公式,考虑三点,,(01)n n p n q x x x p q ++≤≤≤试图用它们的斜率321,,K K K 的线性组合近似代替平均斜率,即有如下形式的公式:1112233121312()(,)(,)(,())n n n n n n n n y y h K K K K f x y K f x ph y phK K f x qh y qh rK sK λλλ+=+++⎧⎪=⎪⎨=++⎪⎪=+++⎩40把32,K K 在),(n n y x 处展开,通过与)(1+n x y 在n x 的直接Taylor 展式比较,可确定系数s r q p ,,,,,,321λλλ,满足下式,从而使得上述公式具有三阶精度,41特别地,2,1,1,21,32,61231=−======s r q p λλλ是其一特例.123232223311213161p q p q pqs r s λλλλλλλλ++=⎧⎪⎪+=⎪⎪⎪+=⎨⎪⎪=⎪⎪+=⎪⎩423-5 四阶Runge -Kutta 公式相同的方法,可以导出下列经典的四阶Runge -Kutta 公式:112341213243(22)6(,)(,)22(,)22(,)n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩43例 用经典四阶Runge —Kutta 方法求解初值问题'83[0,0.4](0)1y y x y =−⎧∈⎨=⎩,取0.2h =,求(0.4)y 的近似值,要求保留六位小数.解:四阶Runge —Kutta 格式为44112341211123122241330.2(22)6(,)830.2(,)83(0.1) 5.6 2.120.2(,)83(0.1) 6.32 2.372(,0.2)83(0.2) 4.208 1.578k k k k k k k k k k k kk k k k ky y K K K K K f x y y K f x y K y K yK f x y K y K y K f x y K y K y ++++⎧=++++⎪⎪==−⎪⎪⎪=+=−+=−⎨⎪⎪=+=−+=−⎪⎪⎪=+=−+=−⎩则10.5494 1.2016k k y y +=+,45故12(0.2) 2.3004,(0.4) 2.4654y y y y ≈=≈=.注:由准确解382()33xy x e −=−可得(0.2) 2.300792,(0.4) 2.465871y y ==46§5 线性多步法基本思想:在计算1+i y 之前,已计算出一系列的近似值i y y ,,1",如果充分利用这些已知信息,可以期望会获得更高精度的)(1+i x y 的近似值1+i y .基本方法:基于数值积分与基于Taylor 展开的构造方法.475-1 基于数值积分的构造方法对方程),('y x f y =两边从i x 到1+i x 积分,则得∫++=+1),()()(1i ix x i i dxy x f x y x y 设)(x P r 是f (x , y )的插值多项式,由此可得以下的一般形式的计算公式:∫++=+1)(1i ix x r i i dxx P y y 48例 取线性插值))(,())(,()(11111+++++−−+−−=i i i i ii i i i i r x y x f x x x x x y x f x x x x x P ,则得到梯形法:)],(),([2111+++++=i i i i i i y x f y x f hy y495-2 Adams 显式公式在区间],[1+i i x x 上利用r +1个数据点),(,),,(),,(11r i r i i i i i f x f x f x −−−−"构造插值多项式)(x P r ,由牛顿后插公式(注意到:j i j i j f f −Δ=∇)j i jrj j i r f j t th x P −=Δ⎟⎟⎠⎞⎜⎜⎝⎛−−=+∑0)1()(其中!)1()1(j j s s s j s +−−=⎟⎟⎠⎞⎜⎜⎝⎛". 50可得10rj i i rj i jj y y h f αΔ+−==+∑——Adams 显式公式其中1(1)j j t dt j α−⎛⎞=−⎜⎟⎝⎠∫,它可写成:∑=−++=rj ji rj i i f h y y 01β515-3 Adams 隐式公式在区间],[1+i i x x 上利用r +1个数据点),(,),,(),,(1111+−+−++r i r i i i i i f x f x f x "构造插值多项式)(x P r ,由牛顿后插公式101)1()(+−=+Δ⎟⎟⎠⎞⎜⎜⎝⎛−−=+∑j i jrj ji r f j t th x P 可得*11rj i i rj i j j y y h f α+−+==+Δ∑——Adams 隐式公式52其中01(1)jj t dt j −−⎛⎞α=−⎜⎟⎝⎠∫,它又可写成: *11ri i rj i j j y y h f β+−+==+∑535-4 Adams 预测-校正公式以r =3时的Adams 显式与隐式公式为例. 此时,显式公式为)9375955(243211−−−+−+−+=i i i i i i f f f f hy y 利用Taylor 展式,容易计算局部截断误差为)(720251)5(5i x y h . 54)5199(242111−−+++−++=i i i i i i f f f f hy y 同样利用Taylor 展开可得,其局部截断误差为5(5)19()720i h y x −. 隐式公式为55⎪⎩⎪⎨⎧+−++=−+−+=−−+++−−−+)519),(9(24)9375955(24211113211i i i i i i i i i i i i i f f f y x f hy y f f f f h y y 注 利用2-5节的相同作法同样可以构造更精确的计算过程.可构造利用显式预测,隐式校正的计算公式:56§6 方程组与高阶方程的情形6-1 一阶方程组常微分方程初值问题为⎩⎨⎧==00)(),('y x y y x f y 此时T m y y y ),,(1"=,Tm f f f ),,(1"=. 此时上述的一切方法均可使用,只是注意y 与f 此时为向量.576-2 化高阶方程为一阶方程组解下列的m 阶方程()(1)'(1)(1)000000(,,',,)(),'(),,()m m m m y f x y y y y x y y x y yx y −−−⎧=⎨===⎩""令)1(21,,',−===m m y y y y y y ",则有58'12'23'1'12(,,,,)m m m m y y y y y yy f x y y y −⎧=⎪=⎪⎪⎨⎪=⎪⎪=⎩#"初始条件为:)1(00'002001)(,,)(,)(−===m m y x y y x y y x y "。

微分方程的求解方法与应用案例分享

微分方程的求解方法与应用案例分享

微分方程的求解方法与应用案例分享微分方程是数学中重要的一门分支,它描述了自然界和社会现象中的变化规律。

微分方程的求解方法多种多样,本文将介绍常见的几种求解方法,并结合实际应用案例进行分享。

一、常微分方程的求解方法1. 可分离变量法可分离变量法是求解一阶常微分方程的常用方法。

首先将方程中的变量分离,然后进行积分得到结果。

例如,对于形如dy/dx=f(x)g(y)的方程,可以将其化简为dy/g(y)=f(x)dx,再对两边同时进行积分即可得到解析解。

2. 齐次方程法齐次方程法适用于形如dy/dx=F(y/x)的方程。

通过令v=y/x,将方程转化为dv/dx=F(v)-v/x,再进行变量分离和积分即可求解。

3. 线性方程法线性方程法适用于形如dy/dx+p(x)y=q(x)的一阶线性微分方程。

通过乘以一个积分因子,可以将方程化为d(μy)/dx=μq(x),再对两边同时积分得到解析解。

4. 变量替换法变量替换法是一种常用的求解微分方程的方法。

通过引入新的变量替换原方程中的变量,可以将方程化为更简单的形式。

例如,对于形如dy/dx=f(ax+by+c)的方程,可以通过引入新的变量u=ax+by+c来进行变量替换,从而简化求解过程。

二、微分方程的应用案例分享1. 放射性衰变问题放射性衰变是微分方程在物理学中的一个重要应用。

以放射性核素的衰变为例,其衰变速率与核素的数量成正比,可以用微分方程dy/dt=-ky来描述,其中y表示核素的数量,t表示时间,k为比例常数。

通过求解这个微分方程,可以得到核素的衰变规律,进而预测未来的衰变情况。

2. 振动问题微分方程在工程学中的应用也非常广泛,例如振动问题。

以简谐振动为例,可以通过微分方程m(d²x/dt²)+kx=0来描述,其中m为质量,k为弹性系数。

通过求解这个微分方程,可以得到振动的解析解,进而研究振动的频率、幅度等特性。

3. 生物种群模型微分方程在生态学中的应用也非常重要,例如生物种群模型。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法1. 可分离变量形式:dy/dx=f(x)g(y),可以通过分离变量的方法将变量分开,然后积分求解。

具体步骤如下:1)将方程改写为g(y)dy=f(x)dx;2)同时对两边积分,即∫g(y)dy=∫f(x)dx;3)求积分,得到方程的通解;4)如果已知初始条件,将初始条件代入通解中,求解常数,得到特解。

2. 齐次方程形式:dy/dx=f(y/x),可以通过变量代换的方法将方程转化为可分离变量的形式,然后采用可分离变量的方法求解。

具体步骤如下:1)将方程中的变量代换为u=y/x,即令y=ux;2)将方程转化为关于u和x的方程,即dy/dx=u+xdu/dx;3)将转化后的方程改写为u+xdu/dx=f(u),得到可分离变量的形式;4)采用可分离变量的方法求解,得到方程的通解;5)根据已知初始条件求解常数,得到特解。

3. 线性一阶方程形式:dy/dx+p(x)y=q(x),可以采用积分因子法求解,具体步骤如下:1)将方程改写为dy/dx+p(x)y=q(x);2)确定积分因子μ(x),计算公式为μ(x)=exp(∫p(x)dx);3)将方程乘以积分因子μ(x)得到μ(x)dy/dx+μ(x)p(x)y=μ(x)q(x),左边可化为d(μ(x)y)/dx;4)对方程进行积分,得到(μ(x)y=∫μ(x)q(x)dx;5)根据已知初始条件求解常数,得到特解。

1. 齐次线性方程形式:d²y/dx²+p(x)dy/dx+q(x)y=0,可以通过特征方程的解法求解,具体步骤如下:1)将方程改写为特征方程m²+pm+q=0;2)根据特征方程的不同情况(实根、复根、重根),求解特征方程得到特征根;3)根据特征根的不同情况,构造方程的通解。

2. 非齐次线性方程形式:d²y/dx²+p(x)dy/dx+q(x)y=f(x),可以采用常数变易法求解,具体步骤如下:1)先求齐次线性方程的通解;2)根据题目给出的非齐次项f(x),选取常数变易法的形式y=c(x)y1(x),其中y1(x)为齐次方程的一个解;3)将常数变易法的形式代入原方程,消去常数项,得到关于c(x)的方程;4)求解c(x)的方程,得到特解;5)齐次方程的通解加上特解,得到非齐次方程的通解。

数学常微分方程的定解问题求解

数学常微分方程的定解问题求解数学常微分方程是数学中非常重要的一个分支,它涉及到许多实际问题的建模与求解。

在解常微分方程的过程中,我们常常遇到定解问题,即在给定初始条件和边界条件下,求解出满足条件的函数解。

本文将探讨常微分方程的定解问题求解方法及其应用。

一、常微分方程的定义和分类常微分方程是指未知函数的导数与它本身之间的关系式。

一般形式为:其中 x 是自变量, y 是未知函数, f 是已知函数。

常微分方程可以分为一阶常微分方程和高阶常微分方程两类。

一阶常微分方程涉及到未知函数 y 的一阶导数,高阶常微分方程涉及到多阶导数。

二、常微分方程的定解问题常微分方程的定解问题是指在给定初始条件和边界条件下,求解出函数 y 满足方程,并满足给定条件。

常微分方程的初值问题是其中一种常见的定解问题,给定初始条件 y(x0) = y0 和导数条件 y'(x0) = y'0,求解出满足条件的函数 y。

三、常微分方程的求解方法常微分方程的求解方法有很多种,常见的方法有分离变量法、齐次方程法、一阶线性方程法、常数变易法等。

1. 分离变量法对于可分离变量的一阶常微分方程,变量可以通过代数方法分离,然后分别求解。

例如对于方程 dy/dx = f(x)g(y),我们可以将 f(x) 和 g(y) 分别移到方程的两边,然后对两边分别积分得到解。

2. 齐次方程法对于一阶齐次方程 dy/dx = f(y/x),我们可以通过变量替换得到一个新的常微分方程 u' = f(u)-1/u,并且可以通过变量分离法等方法进一步求解。

3. 一阶线性方程法对于一阶线性方程 dy/dx + P(x)y = Q(x),我们可以通过积分因子的方法将其转化为可解的形式。

通过选择适当的积分因子,可以将原方程变换为(e^∫P(x)dx)y' + (e^∫P(x)dx)P(x)y = (e^∫P(x)dx)Q(x),然后可以通过变量分离法等方法求解。

常微分方程的数值解法与实际应用研究

常微分方程的数值解法与实际应用研究引言:常微分方程是数学中一种重要的数学工具,广泛应用于物理、经济、生物等领域的实际问题的数学建模。

在解析求解常微分方程存在困难或不可行的情况下,数值解法提供了一种有效的求解方法,并被广泛应用于实际问题的研究中。

本文将介绍常微分方程的数值解法以及一些实际应用的研究案例。

一、常微分方程的数值解法:1. 欧拉法:欧拉法是一种基础的数值解法,通过将微分方程离散化,近似得到方程的数值解。

欧拉法的基本思想是根据微分方程的导数信息进行近似计算,通过逐步迭代来逼近真实解。

但是欧拉法存在截断误差较大、收敛性较慢等问题。

2. 改进的欧拉法(改进欧拉法推导过程略):为了解决欧拉法的问题,改进的欧拉法引入了更多的导数信息,改善了截断误差,并提高了算法的收敛速度。

改进欧拉法是一种相对简单而可靠的数值解法。

3. 四阶龙格-库塔法:四阶龙格-库塔法是常微分方程数值解法中最常用和最经典的一种方法。

通过多次迭代,四阶龙格-库塔法可以获得非常精确的数值解,具有较高的精度和稳定性。

二、常微分方程数值解法的实际应用研究:1. 建筑物的结构动力学分析:建筑物的结构动力学分析需要求解一些动力学常微分方程,例如考虑结构的振动和应力响应。

利用数值解法可以更好地模拟建筑物的振动情况,并对其结构进行安全性评估。

2. 生态系统模型分析:生态系统模型通常包含一系列描述物种数量和相互作用的微分方程。

数值解法可以提供对生态系统不同时间点上物种数量和相互作用的变化情况的模拟和预测。

这对于环境保护、物种保护以及生态系统可持续发展方面具有重要意义。

3. 电路模拟与分析:电路模拟与分析通常涉及电路中的电容、电感和电阻等元件,这些元件可以通过常微分方程进行建模。

数值解法可以提供电路中电压、电流等关键参数的模拟和分析,对电路设计和故障诊断具有重要帮助。

4. 化学反应动力学研究:化学反应动力学研究需要求解涉及反应速率、物质浓度等的微分方程。

常微分方程如何通过常微分方程求解各种微积分问题

常微分方程如何通过常微分方程求解各种微积分问题常微分方程(ODE)是数学中一种广泛应用于各种实际问题的工具。

事实上,微积分和ODE之间有着非常紧密的联系。

本文将讨论ODE如何通过求解各种微积分问题。

首先,我们可以考虑ODE如何求解导数。

一个一阶ODE的一般形式可以写成:y' = f(x, y)其中f是一个给定的函数,y是未知函数。

这个ODE的求解策略是用变量分离法:dy/dx = f(x, y)dy/f(x,y) = dx然后对方程两边积分,得到:∫dy/f(x,y) = ∫dx这是一个基本的积分方程,我们可以通过使用适当的积分技巧来求取y(x)函数,从而求取y'(x)。

其次,我们可以考虑ODE如何求解定积分。

使用Leibniz定理,将定积分视为函数f(x)的反导数,我们可以将其转化为一个ODE:f'(x) = g(x)其中g(x)是一个已知函数。

然后使用与上面一样的变量分离法:df/f'(x) = dx/g(x)然后两边积分得到:∫df/f'(x) = ∫dx/g(x)这将导致原始定积分f(x)的求解。

最后,我们可以考虑ODE如何求解不定积分。

这是很容易的——只需对两边积分即可:∫dy/dx dx = ∫f(x) dxy(x) = ∫f(x) dx + C其中C是常数,可以通过使用初始条件来解决。

因此,我们可以利用ODE来求解各种微积分问题,包括导数、定积分和不定积分。

总之,ODE是微积分非常重要的工具之一。

它可以用于解决各种微积分问题,包括导数、定积分和不定积分。

虽然ODE的求解通常需要特殊技巧和工具,但它的应用已经远远超出了数学本身,成为了物理、化学、生物以及工程领域中非常有用的工具。

常微分方程课程设计

常微分方程 课程设计一、课程目标知识目标:1. 让学生掌握常微分方程的基本概念、分类和性质,理解微分方程在数学建模和科学研究中的重要性。

2. 使学生掌握一阶微分方程的解法,包括可分离变量方程、齐次方程、一阶线性方程以及伯努利方程等。

3. 帮助学生理解高阶微分方程的求解方法,包括常数变易法和待定系数法。

技能目标:1. 培养学生运用数学软件(如MATLAB、Mathematica等)解决常微分方程问题的能力。

2. 培养学生分析实际问题时,能够建立数学模型,转化为微分方程,并求解的能力。

3. 提高学生通过合作学习、讨论交流等方式,解决复杂微分方程问题的能力。

情感态度价值观目标:1. 培养学生对常微分方程的兴趣和热情,激发学生探索数学奥秘的精神。

2. 培养学生严谨的科学态度,养成独立思考、分析问题和解决问题的习惯。

3. 增强学生的团队协作意识,学会尊重他人,提高沟通表达能力。

本课程针对高年级学生,课程性质为专业基础课。

在分析课程性质、学生特点和教学要求的基础上,将课程目标分解为具体的学习成果,以便后续的教学设计和评估。

通过本课程的学习,使学生不仅掌握常微分方程的基本知识,还能将其应用于实际问题中,提高学生的综合素质和能力。

二、教学内容本章节教学内容主要包括以下几部分:1. 常微分方程的基本概念与性质:介绍微分方程的定义、阶数、线性与非线性微分方程,分析微分方程的解及其存在唯一性定理。

2. 一阶微分方程的解法:涵盖可分离变量方程、齐次方程、一阶线性方程、伯努利方程等,通过实例解析各类方程的求解方法。

3. 高阶微分方程的求解:介绍常数变易法、待定系数法等求解方法,并对具体方程进行分析。

4. 微分方程组:讲解微分方程组的求解方法,包括解的存在唯一性定理、线性微分方程组的解法等。

5. 微分方程应用:结合实际案例,教授如何将微分方程应用于物理、生物、经济等领域。

教学内容安排如下:第1周:常微分方程基本概念与性质;第2周:一阶微分方程解法(可分离变量、齐次方程);第3周:一阶微分方程解法(一阶线性方程、伯努利方程);第4周:高阶微分方程求解方法(常数变易法、待定系数法);第5周:微分方程组及其解法;第6周:微分方程在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解此初值问题得 故 令
Q = 3(1 − e
)
− 1 C (t ) = (1 − e 20
10 − 4 t 3
)
C ( t ) = 0.1% ,代入上式得 t = −30000 ln 0.08 = 606(min) = 10h6 min
即从开始抽烟,经过 10 小时 6 分钟后,房间内空气中的一氧化碳含量达到 0.1% 的浓度.
《微积分 A》习题解答
习题 5.8(P338)
1. 一圆柱形水桶内有 40 L 盐溶液,每升溶液中含盐 1kg . 现有质量浓度为 1.5kg / L 的盐溶 液以 4 L / min 的流速注入桶内,搅拌均匀后以 4 L / min 的速度流出. 求任意时刻桶内溶液 所含盐的质量. 解:设 m = m ( t ) 为时刻 t 的含盐量,则时刻 t 流出的溶液的浓度为
积分得

2 b2
当 t = 0 时, y = H , u = a − b H 代入 ( 3) 得
C=
2 b2
[a − b H − a ln( a − b H )]
代入 ( 3) 得
t=
2R 2 ⎡ a−b H ⎤ u − a + b H + a ln ⎢ ⎥ u b2 ⎣ ⎦ 2R 2 ( H− b R2 cr22 y)+ 2R 2 b
《微积分 A》习题解答
因而得初值问题
⎧ dW = 0.05W − 2 ⎪ ⎨ dt ⎪ ⎩W t = 0 = W 0
W ( t ) = 40 + (W 0 − 40)e 0.05 t
0.05 t
解此初值问题得
当 W 0 = 30 时, W = 40 − 10e 即此时净资产为 0 ;
, W 是 t 的单调减函数, 当 t = t 0 = 2.77 (年)时, W = 0,
π
4
dh
由于桶内液体的减少量 dQ 2 与流出量 dQ1 相等,即 从而得初值问题
πc
4
2 gh ⋅ 10 − 4 dt = −
π
4
dh
第 5 章 常微分方程 第 8 节 用常微分方程求解实际问题 1/16
《微积分 A》习题解答
⎧ 10 − 4 dh ⎪dt = c 2g h ⎨ ⎪h ⎩ t =0 = 2
设 T 时桶内液体流净,则对方程两端积分得
∫0 dt = ∫2
T
0
10 − 4 dh c 2g h
得T =
10 4 0.6 2 g
2
⋅2 h
0
=
2 × 10 4 0.6 9.8
≈ 10648( s ) ≈ 3h
3. 某容器是由曲线 y = f ( x ) 绕 y 轴旋转而成的立体. 今按 2tcm / s 的流量注水. 为使水
2
[t , t + dt ] 内液体的变化量等于桶内液体的流出量,当 dt > 0 时,流出量 dQ1 > 0 ,
πc ⎛ 0.01 ⎞ dQ1 = π ⎜ 2 gh ⋅ 10 − 4 dt ⎟ ⋅ vdt = 4 ⎝ 2 ⎠
桶内液体的减少量
2
dQ 2 = π (0.5) 2 ( − dh) = −
m = 60 − Ce

t 10
,由初始条件 m t = 0 = 40 得 C = 20
− t 10
故时刻 t 桶内溶液所含盐的质量 m = 60 − 20e
充满液体, 液体从其底部直径 d = 1cm 的 2. 有直径 D = 1m , 高 H = 2m 的直立圆柱形桶, 圆孔流出. 问需要多长时间桶内的液体全部流出(流速为 v = c 2 gh ,其中 c = 0.6 , h 为 液面高, g = 9.8m / s ). 解:取微元 [t , t + dt ] ,则相应的液面高度的微元为 [h, h + dh] ,且 dt 与 dh 反号,在
=
( 2)
( 3)
y + dy y
y = f ( x)
o x

由(1)、(2)得
( 4)
由(3)、(4)得
2
πx
y=
2
π

即t = x
2
( 5)
解方程(3)得
2
π
t+C 2
当 t = 0 时, y = 0 ,由此得 C = 0 ,从而 y =
π
t,
(5) 代入上式得 解法 2:
即y=
2
π
x2
当水面高度为 y 时容量为 V =
m , 40
在时间微元 [t , t + dt ] 上,盐量的变化量等于流入的盐量减去流出的盐量,即
dm = 1.5 × 4dt −
m m⎞ ⎛ × 4dt = ⎜ 6 − ⎟dt 40 10 ⎠ ⎝
m ⎧ dm = 6− ⎪ 因而所求初值问题为 ⎨ dt 10 , ⎪ m = 40 ⎩ t =0
解方程得
3
面上升速率恒为 解:解法 1:
2
π
cm / s , f ( x ) 应是怎样的函数?(设 f (0) = 0 ).
取微元 [t , t + dt ] ,则相应的水面高度的微元为 [ y , y + dy ] ,容器中水量的增加量
dQ = π x 2 dy
注入水量
(1)
y
dQ = 2tdt
dy 2 = dt π 2t dy = dt π x 2 2t
dV = 2t ,从而得 2 x 2 = 2t dt
又由题设

t = x2
y= 2 t+C 2
(7)
解方程(6)得
π
当 t = 0 时, y = 0 ,由此得 C = 0 ,从而 y =
π
t,
(7) 代入上式得
即4. 在半径(单位为 m )为 R 的圆柱形储水槽中,开始加水至 H (单位为 m ). 由半径(单 位为 m )为 r1 的给水管以 v 1 的流速(单位为 m / s )给水,同时由位于槽底部的半径为 r2 的 排水管以 v 2 的流速(单位为 m / s )排水,其中 v 2 =
dV = π R 2 dy , 由 dV = dV1 − dV 2 得 ⎧ 2 dy = r12 v 1 − cr22 2 gy ⎪R dt ⎨ ⎪ y ⎩ t =0 = H
(1)

a = r12 v 1 , b = cr22 2 g
第 5 章 常微分方程 第 8 节 用常微分方程求解实际问题 3/16
2
3dt ,由于腐烂而失去的质量为 75% ⋅ mdt ,因此总量的变化量为 dm = 3dt − 0.75mdt
因而得初值问题
⎧ dm = 3 − 0.75m ⎪ ⎨ dt ⎪ ⎩m t =0 = 0
解此初值问题得
m ( t ) = 4(1 − e − 0.75 t )
7. 假设某公司的净资产因资产本身产生利息而以每年 5% 的利率(连续复利)增长,该公 司每年需支付职工工资 2 亿元. 设初始净资产为 W 0 ,求净资产与时间的函数关系 W ( t ) ; 并讨论当 W 0 为 30 亿元、 40 亿元、 50 亿元时, W ( t ) 的变化趋势. 解: W ( t ) 的变化率由两部分组成,支付工资为减少率 2,资本增长率为 5% ⋅ W , 第 5 章 常微分方程 第 8 节 用常微分方程求解实际问题 5/16
2
6. 枯死的落叶在森林中以每年 3 g / cm 的速率聚集在地面上,同时这些落叶中每年又有
75% 会腐烂掉. 试求枯叶每平方厘米上的质量与时间的函数关系 m ( t ) , 并讨论其变化趋势.
解:假设树叶的下落和腐烂是连续地进行的,开始时 t = 0 ,质量 m = 0 法 1: 落叶总质量 m ( t ) 的变化率与树叶下落和腐烂有关. 下落的速率是质量变化率的一部 分,另一部分是腐烂引起的质量减少. 因而得初值问题
的旋转曲面,如图所示,容器底面圆 的半径为 2m ,根据设计要求,当以
3m 3 / min 的速率向容器内注入液体
时,液面的面积将以 π m / min 的速
2
x
率均匀扩大(假设注入液体前,容器 内无液体). (1)根据 t 时刻液面的面积,写出 t 与 ϕ ( y ) 之间的关系式. (2)求曲线 x = ϕ ( y ) 的方程. 解:设时刻 t 液面的面积为 A( t ) ,注入的液体体积为 V ( t ) ,则 A( t ) = π x ,
第 5 章 常微分方程 第 8 节 用常微分方程求解实际问题 6/16
《微积分 A》习题解答 由初始条件 x t = 0 = 2 得 C = 4 , x = t + 4 ,即 t = x − 4 故 t 与 ϕ ( y ) 之间的关系式为
2 2
t = ϕ 2 ( y) − 4
(2) 取微元 [t , t + dt ] ,则相应的液面高度的微元为 [ y , y + dy ] ,相应的体积微元为
《微积分 A》习题解答

dy a−b y
= 1 b
2
dt R2 (a − u) 2 , dy = − 2 b2 (a − u)du
( 2)
令 u = a − b y ,则 y =
代入 ( 2) 得

2 a−u 1 du = 2 dt 2 u b R (a ln u − u) = 1 R2 t+C ( 3)
⎧ dm = 3 − 0.75m ⎪ ⎨ dt ⎪ ⎩m t =0 = 0
解此初值问题得
m ( t ) = 4(1 − e − 0.75 t )
随着时间增加,落叶质量也增加,当 t → ∞ 时, m ( t ) → 4 ,即落叶总质量 m ( t ) 的极限值 为 4 g / cm . 法 2(微元法) :取微元 [t , t + dt ] ,计算 dt 内落叶质量的变化. 由于下落而累积的质量为
相关文档
最新文档