常微分方程的实际应用

合集下载

常微分方程的应用

常微分方程的应用

常微分方程的应用
常微分方程(ODE)是描述自然现象和工程问题的基础数学模型之一。

以下是一些常见的应用:
1. 建模运动:ODE可以用来描述物体的运动,如自由落体、弹性碰撞、摆动和滑动等。

这对于建立机械系统的动力学模型和探索弹性和阻尼的影响非常重要。

2. 人口动态:ODE可以用来描述人口数量的变化和年龄分布的变化,以便探索人口增长和衰退的原因和影响。

3. 经济学:ODE可以用来描述通货膨胀、经济增长和利率变化等经济现象,以便制定政策和预测未来趋势。

4. 电路工程:ODE可以用来描述电路中电压、电流和电感等基本变量的变化,以便设计和优化电路系统。

5. 生物学:ODE可以用来描述生物体内的代谢过程、免疫系统和神经传递等基本现象,以便了解生物过程的本质和预测疾病的发生。

总之,ODE是描述自然和工程系统中时间变化的标准工具,它们被广泛应用于各个学科领域。

常微分方程在高数学科中的重要作用与应用

常微分方程在高数学科中的重要作用与应用

常微分方程在高数学科中的重要作用与应用常微分方程(Ordinary Differential Equations,ODE)是一类数学方程,描述了未知函数的导数与自变量之间的关系。

在高等数学中,常微分方程是一个重要的数学分支,具有广泛的应用领域。

在高数学科中,常微分方程的重要作用体现在以下几个方面:1. 物理学中的应用常微分方程广泛应用于物理学领域,以描述自然界中的各种动力学过程。

例如,牛顿第二定律可以用常微分方程来描述,通过求解运动方程,我们可以精确地预测物体在各种条件下的运动。

另外,光学、热力学、电动力学等领域也利用常微分方程建立物理模型,从而推导出系统的行为规律。

2. 生物学中的应用常微分方程在生物学领域中有着广泛的应用。

生物学家可以利用常微分方程来描述生物体内各种生命周期的变化和生物群体的动态行为。

例如,人口动态模型、免疫系统模型等都可以通过常微分方程加以描述,进而理解生物系统中的行为和相互作用。

3. 工程学中的应用工程学中的很多问题可以通过常微分方程进行建模和求解。

例如,电路中的电流和电压变化可以通过常微分方程来描述,并进而分析电路中的稳定性和响应特性。

此外,工程学中的动力学问题、机械振动问题和控制系统的建模等也离不开常微分方程的应用。

4. 经济学中的应用常微分方程在经济学中也有重要的应用。

例如,经济增长模型、消费行为模型等都可以通过常微分方程来建立。

这些模型可以揭示经济体制中的供求关系、市场波动以及经济增长的趋势,为经济政策的制定提供重要依据。

除了以上几个领域,常微分方程还可以在人口学、地理学、环境科学等学科中找到广泛的应用。

例如,人口增长模型可以通过常微分方程描述,地球温度变化模型也可以用常微分方程建立。

在实际应用中,常微分方程的求解往往是比较困难的,需要借助数值方法或近似方法来求解。

数值解法如欧拉法、龙格-库塔法等可以在计算机上进行求解,而近似解法如级数解、变量分离法等则可以对一些特殊的常微分方程进行求解。

解析常微分方程的解法和应用

解析常微分方程的解法和应用

解析常微分方程的解法和应用引言:常微分方程(Ordinary Differential Equations,ODE)是研究函数和其导数之间关系的方程。

在科学和工程领域中,常微分方程广泛应用于物理、化学、经济学等领域的建模与分析。

本文将深入探讨常微分方程的解法以及它们在实际应用中的重要性。

一、解析解法解析解法是指能够用解析表达式表示的常微分方程解。

下面介绍常见的解析解法:1. 变量可分离的方程变量可分离的方程是指可以将方程分解成两个独立变量的形式,一般表示为dy/dx = f(x)g(y)。

对于这类方程,可以通过对两边同时积分的方式求得解析解。

2. 齐次方程齐次方程是指可以通过变换将方程化为形如dy/dx = f(y/x)的方程。

通过引入新的变量u = y/x,可以将齐次方程转化为变量可分离的方程,从而应用变量可分离的方程的解法来求解。

3. 一阶线性方程一阶线性方程具有形如dy/dx + p(x)y = q(x)的形式,其中p(x)和q(x)为已知函数。

通过引入积分因子,可以将一阶线性方程化为变量可分离的方程,再应用变量可分离的方程的解法求解。

二、数值解法除了解析解法外,常微分方程的求解还可以通过数值方法来实现。

数值解法通过将微分方程转化为对应的差分方程,通过逐步近似的方式求解微分方程的数值解。

常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等。

这些数值解法基于离散化的思想,通过将函数值在一系列离散的点上进行逼近,从而得到微分方程的数值解。

三、常微分方程的应用常微分方程在实际应用中具有广泛的重要性,以下列举几个常见的应用领域:1. 物理学中的应用常微分方程在物理学中的应用非常广泛。

例如,经典力学中的牛顿第二定律可以通过微分方程形式表示,从而可以研究物体的运动轨迹、速度和加速度等特性。

2. 经济学中的应用经济学中很多经济模型可以通过常微分方程描述。

比如经济增长模型、投资模型和消费模型等。

通过求解这些微分方程可以预测和分析经济系统的发展趋势和稳定性。

常微分方程的应用

常微分方程的应用

知识创造未来
常微分方程的应用
常微分方程在日常生活中存在广泛的应用,比如用于描述物理或
化学系统的运动规律,用于解决经济学中的动态问题,也经常被用于
探索生物学和生态学领域。

物理学家使用常微分方程来推导和解决经典物理问题,比如描述
地球的运动轨迹、计算天体的移动以及描述电路中的电流和电压变化。

化学家也可以使用常微分方程来帮助探索和理解化学反应的动力
学行为,以及处理多种化学工程和制造工艺中的变化。

在经济学领域,常微分方程在处理动态规划和探索经济模型方面
具有重要作用,例如,使用常微分方程描述市场供需平衡的变化,预
测投资回报率等。

生物学家和生态学家也经常使用常微分方程来描述和分析生态系
统和生物学过程,例如,研究病毒或者癌细胞在人体内的扩散,或者
预测种群的生长和变化。

总之,常微分方程在各个领域中扮演着重要角色。

这种方程在实
践中的应用是巨大且多样的,许多实际问题可以转化为求解微分方程
来解决。

对于学习数学和物理的学生来说,掌握常微分方程是非常有
指导意义的。

1 / 1。

常微分方程的求解及其应用

常微分方程的求解及其应用

常微分方程的求解及其应用常微分方程是微积分中十分重要的一个分支。

通过解决微分方程,我们可以得到模型在不同情况下的变化,进而为实际问题的解决提供了关键性所在。

本文将介绍常微分方程的求解及其应用。

一、常微分方程的基础知识在介绍常微分方程的求解之前,我们先来了解一些常微分方程的基础知识。

常微分方程是指只有一个自变量的微分方程,即形如:$$\frac{dy}{dx}=f(x,y)$$其中y是自变量,x是因变量,f(x,y)是一个已知函数。

上述方程也可以写成以下形式:$$y'=f(x,y)$$其中y'表示y对x的导数。

二、常微分方程的求解方法1.可分离变量法可分离变量法是常微分方程最常用的求解方法。

该方法的主要思想是将变量y和x分离,即将f(x,y)拆分为g(x)h(y),使得原方程可写成以下形式:$$\frac{dy}{dx}=g(x)h(y)$$然后将上式两边分别积分即可。

以求解一阶线性微分方程为例,其形式为:$$y'+p(x)y=q(x)$$首先,将右式中的q(x)移到左边,得到:$$y'+p(x)y-q(x)=0$$然后,应用一个分离变量法的思想,令p(x)=P'(x),即可将该方程写成:$$\frac{dy}{dx}+P(x)y=Q(x)$$然后,我们使用降阶的方法将该一阶方程转换为首阶方程。

具体来说,将y分离出来,得到:$$\frac{dy}{dx}=-P(x)y+Q(x)$$我们令u(x)=e^{\int P(x)dx},则上式可以写成:$$u(x)\frac{dy}{dx}-u(x)P(x)y=u(x)Q(x)$$将上式两边同时积分,得到:$$u(x)y=\int u(x)Q(x)dx+C$$其中C为常数,e^{\int P(x)dx}也可以写成常数K。

这样,我们就求解出了一阶线性微分方程。

2.参数化方法参数化方法是常微分方程的另一种常见求解方法。

该方法的核心是寻找一条曲线,使得函数y(x)可以表示为该曲线上某点的函数。

常微分方程及其应用

常微分方程及其应用

常微分方程及其应用常微分方程是数学中的一个重要概念,它描述了变量的变化率与变量本身的关系。

常微分方程广泛应用于物理学、生物学、经济学等众多领域,为解决实际问题提供了有效的数学工具。

在物理学中,常微分方程被广泛应用于描述自然界中的各种现象。

例如,牛顿第二定律可以用常微分方程来描述物体的运动。

考虑一个质点在力的作用下运动的情况,我们可以通过将质点的质量、受力和加速度之间的关系表示为一个常微分方程。

这个方程可以描述质点在不同时间点上的位置和速度的变化。

在生物学中,常微分方程被用来描述生物体内的各种生理过程。

例如,人体的代谢过程可以用常微分方程来描述。

我们可以建立一个关于时间的常微分方程来描述人体内各种物质的转化和消耗。

这些方程可以帮助我们理解人体的代谢过程,从而指导健康管理和疾病治疗。

在经济学中,常微分方程被用来描述市场供求关系和价格变化。

例如,一种商品的价格会随着供求关系的变化而发生变化。

我们可以建立一个关于时间的常微分方程来描述市场供求关系的变化,从而预测价格的走势。

这些方程可以帮助我们理解市场的运行机制,从而指导经济政策和投资决策。

除了物理学、生物学和经济学,常微分方程还被广泛应用于其他领域,如工程学、环境科学和计算机科学等。

在工程学中,常微分方程被用来描述控制系统的动态行为。

在环境科学中,常微分方程被用来描述气候变化和生态系统的演化。

在计算机科学中,常微分方程被用来描述算法的复杂性和性能。

常微分方程及其应用是数学中的重要内容。

它不仅在物理学、生物学和经济学等自然科学领域发挥着重要作用,也在工程学、环境科学和计算机科学等应用科学领域发挥着重要作用。

通过建立和求解常微分方程,我们可以更好地理解和预测自然和社会现象的变化,为解决实际问题提供了有力的数学工具。

因此,对常微分方程的研究和应用具有重要的理论和实践意义。

常微分方程方法在微积分中的应用

常微分方程方法在微积分中的应用常微分方程是微积分中的一门重要课程,它研究的是含有未知函数及其导数的方程。

常微分方程包括了一阶常微分方程和高阶常微分方程,具有广泛的应用领域。

在微积分的学习中,我们通过学习常微分方程的方法,可以解决很多实际问题,下面将从生活中的应用和工程领域中的应用两个方面展开讨论。

首先,常微分方程在生活中有着广泛的应用。

我们身处的环境中充满了各种各样的变化,这些变化可以通过常微分方程来描述。

一个常见的例子是衰减问题。

生活中有很多现象如放射性物质的衰变、热量的散失以及人口的增长等都是衰减问题。

这些问题可以用一阶常微分方程来描述,通过解方程我们可以得到关于物质衰减的规律。

此外,常微分方程也可以应用在工程领域。

工程问题中常常需要求解由物理定律描述的方程来研究系统的动态行为。

例如,机械振动方程、电路方程和控制系统等都可以用常微分方程来描述。

通过对这些方程进行求解,可以了解到系统的稳定性、响应以及其它相关特性。

这对于工程师们来说是非常重要的,可以帮助他们设计和改进各种工程系统。

常微分方程的求解方法有很多种,其中一些方法也在微积分中被广泛应用。

最直接的方法是分离变量法。

对于一阶常微分方程,我们可以将变量分离到方程两边,然后对两边分别积分得到解。

这个方法在微积分中的积分技巧和技术是非常重要的。

当然,常微分方程的求解远不仅限于分离变量法。

还有很多方法,包括微分方程的分类解、常微分方程的线性化以及常微分方程的变换等。

对于高阶常微分方程,我们也可以通过线性代数的方法来求解。

这些方法在微积分中被严格证明,并且在实际应用中发挥了重要的作用。

总结一下,常微分方程是微积分中的一门重要课程,它在生活中和工程领域中有广泛的应用。

通过学习常微分方程的方法,我们可以解决很多实际问题,帮助我们了解和改进各种系统的行为。

常微分方程的求解方法也在微积分中得到了广泛的应用。

希望本篇文章对你理解常微分方程在微积分中的应用有所帮助。

常微分方程应用

常微分方程应用常微分方程是数学中的一个重要分支,它描述了物理、工程、经济等各个领域中的变化规律。

在实际应用中,常微分方程被广泛用于模拟和预测系统的行为,以及解决各种问题。

本文将介绍常微分方程在几个实际应用中的案例,并探讨其重要性和局限性。

一、人口增长模型人口增长是一个重要的社会经济问题,而常微分方程可以用来描述和预测人口变化的规律。

以Malthus模型为例,它假设人口增长的速度与当前人口数量成正比,即dP/dt = kP,其中P是人口数量,t是时间,k是增长率。

通过解这个方程,我们可以得到人口数量随时间的变化规律。

这种模型可以应用于城市规划、资源分配等问题中,帮助政府制定合理的政策。

二、物理系统建模常微分方程在物理学中有广泛的应用,可以用来描述各种运动和变化的规律。

以简谐振动为例,它可以由二阶常微分方程描述:d^2x/dt^2 + ω^2x = 0,其中x是物体的位移,t是时间,ω是角频率。

这个方程可以应用于机械振动、电路振荡等问题中,帮助我们理解和分析物理系统的行为。

三、化学反应动力学常微分方程在化学反应动力学中也有重要作用。

以一阶反应为例,它可以由一阶常微分方程描述:d[A]/dt = -k[A],其中[A]是反应物的浓度,t是时间,k是反应速率常数。

通过解这个方程,我们可以得到反应物浓度随时间的变化规律。

这种模型可以应用于酶催化、药物代谢等领域,帮助我们理解和控制化学反应的过程。

尽管常微分方程在各个领域中都有广泛的应用,但它也存在一些局限性。

首先,常微分方程通常是基于一些简化假设得到的,这些假设可能无法完全满足实际情况。

其次,常微分方程的求解通常需要数值方法,这在某些情况下可能会带来精度和计算效率的问题。

此外,常微分方程模型的建立和参数的选择也需要一定的经验和专业知识。

总之,常微分方程作为一种数学工具,可以应用于各个领域中的问题求解和模拟预测。

通过合理选择模型和求解方法,我们可以更好地理解和控制自然和社会系统的行为。

解常微分方程的方法及应用

解常微分方程的方法及应用常微分方程是数学中的一个重要分支,它研究的是含有未知函数的导数的关系式。

在物理、化学、工程等领域中,常微分方程被广泛应用于建模和解决实际问题。

本文将介绍解常微分方程的几种常见方法,并探讨其在实际应用中的重要性。

一、分离变量法分离变量法是解常微分方程中最基本的方法之一。

对于形如dy/dx= f(x)g(y)的方程,我们可以将方程两边同时乘以dy和1/f(y),然后两边同时积分,从而将原方程分离为两个变量的方程。

最后再对方程进行求解,得到的解即为原方程的解。

这种方法适用于许多一阶和高阶常微分方程的求解。

二、常系数齐次线性微分方程的求解常系数齐次线性微分方程是指形如dy/dx + ay = 0的方程,其中a为常数。

这类方程的解可以通过特征方程的求解得到。

我们可以首先假设解为y = e^(rx),其中r为常数,代入方程中得到特征方程ar^2 + r = 0。

解特征方程后,可以得到两个不同的解r1和r2。

最后,将通解表示为y = C1e^(r1x) + C2e^(r2x),其中C1和C2为任意常数,即为原方程的解。

三、变量可分离的高阶微分方程的解法对于一些高阶微分方程,可以通过变量代换和变量分离的方法将其转化为一系列一阶变量可分离的方程。

首先,通过变量代换将高阶方程转化为一阶方程组,然后再利用分离变量法逐个求解一阶方程。

最后,将解代入原方程组,得到原方程的通解。

这种方法可以简化高阶微分方程的求解过程。

四、常微分方程在物理和工程中的应用常微分方程在物理和工程学中有着广泛的应用。

举例来说,经典力学中的牛顿第二定律可以用微分方程来描述:F = ma,其中F是物体所受的外力,m是物体的质量,a是物体的加速度。

这个方程可以通过求解微分方程来得到物体的位移函数。

另外,电路中的RC和RLC电路也可以通过微分方程来描述响应和稳定性。

此外,生物学中也常常使用微分方程模型来描述生物体的生长和变化过程。

常微分方程在不同领域的应用

常微分方程在不同领域的应用
1 常微分方程的概念
常微分方程(也被称为偏微分方程)是一类针对二阶以上的连续
微分方程的通用定义。

它是有关某个函数的变化,以及它的某几个极
限当其极限趋近某个数值时的表达式。

常微分方程在描述物理现象时
很有效,它是解决许多科学技术问题的基础。

2 常微分方程在不同领域的应用
常微分方程应用广泛,主要用于物理、力学、航空、气象、医学
等领域。

(1)物理领域:常微分方程在物理领域被广泛应用。

例如,太
阳系的运动解释,描述电荷在电场中的运动等。

(2)力学领域:常微分方程也在力学领域中得到了广泛的应用。

比如,它可以用来描述运动物体的位移、速度、加速度和力在时间上
的变化,以及物体受到外力时,其俯仰和滚动运动过程中物体姿态变
化的问题。

(3)航空领域:常微分方程在航空领域也有广泛的应用。

航空
工程与导航密切相关,常微分方程可以用来描述飞机姿态变化、轨迹
规划等问题。

(4)气象领域:常微分方程在气象领域的应用较为广泛,比如,可用于描述空气的流动特性,以及大气中水汽内液、外液的运动。

(5)医学领域:常微分方程在医学领域也有实践应用,用于分析和研究脑的动态行为,以及人体在受到外界条件变化时的反应。

3 结论
由此可见,常微分方程在不同的科技领域中都有广泛的应用,充分发挥着指导和推动实际发展的重要作用。

它不仅解释了许多自然现象,而且为改善社会和人类实践活动中复杂问题的解决提供了有力的武器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程的实际应用于萍摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。

关键字:常微分方程,几何,机械运动,电磁振荡,应用Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process.Key: Normal differetial equation geometry mechanics electrothermal use引言数学分析中所研究的函数,是反映客观现实世界运动过程中量与量之间的一种关系,但在大量的实际问题中遇到稍为复杂的一些运动过程时,反映运动规律的量与量之间的关系(即函数)往往不能直接写出来,却比较容易地建立这些变量和它们的导数(或微分)间的关系式,不同的物理现象可以具有相同的数学模型,这一事实正是现代许多应用数学工作者和工程人员应用模拟方法解决物理或工程问题的理论依据。

例如,利用电路来模拟某些力学系统或机械等等在现时已相当普遍。

在自然科学和技术科学的其他领域中,例如化学、生物学、自动控制、电力技术等等,都提出了大量的微分方程问题,因此,社会的生产实践是常微分方程理论取之不尽的基本源泉。

此外,常微分方程与数学的其他分支的关系也是非常密切的。

它们往往互相联系、互相促进。

例如,几何学、机械运动、电磁振荡就是常微分方程理论的丰富的源泉之一,常微分方程也是解决实际问题不可或缺的武器。

一、常微分方程在几何学的应用在几何应用问题中,列的方程常常是含有变限定积分的方程。

在求解时要化为相应的微分方程或微分方程初值问题。

凡是能用定积分计算的量,一定分布在某个区间(比如[]b a ,)上,并且对于该区间具有可加性,曲边梯形的面积A 与区间[]b a ,有关,当把[]b a ,分成n 个部分区间时,则所求量A 也相应地分成n 个部分量),,2,1(n i A i =∆,而A 就等于所有这些部分之和,即∑=∆=ni i A A 1,这时我们就称面积A 对区间[]b a ,具有可加性,几何中的面积、弧长,曲线方程等都具有这种特性。

在求解微分方程的应用问题时,列出方程是关键性的一步,一定要逐字逐句地仔细阅读题目,根据题目的要求确定未知函数和自变量,然后利用题设中指出的(或包含的)相等关系列出方程,应用问题常常是初值问题。

因而,要从题设中确定未知函数满足的初始条件。

常微分方程在解决几何问题的过程中通常采用数形结合,达到简易直观的效果。

利用y '表示曲线)(x f y =上()y x ,点处的切线斜率或dydx-表示曲线)(x f y =上()y x ,点的法线斜率以及⎰xa dtt f )(表示由曲线)(x f y =)0)((≥x f ,直线a x x x ==,,x 轴所围图形的面积等方面的意义,列方程。

解方程,在求解过程中一定要对常微分方程的解法熟悉于心,才能得心应手。

首先要审视方程,判断方程类型,属于一阶微分方程还是可降阶微分方程或高阶微分方程等等。

根据不同类型,确定解题方案。

下面就让我们结合具体例题来体会常微分方程在解决几何问题的应用。

例1[2]、设)(x f y =是第一象限内连接点)0,1(),1,0(B A 的一段连续曲线,),(y x M 为该曲线上任意一点,点C 为M 在x 轴上的投影。

O 为坐标原点,若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求)(x f 的表达式。

解:根据题意有:0)1(,1)0(==f f且[]316)()(1231+=++⎰x dt t f x f x x , 将上式两边对x 求导数,得[]2)()(2)(1212x x f x f x x f =-'++ 当10≤<x 时,可化为一阶线性微分方程:xx x f x x f 1)(1)(-=-' 方程两边同除x ,即得211)(x x x f -='⎪⎭⎫⎝⎛ 积分可得c xx x x f ++=1)(于是,方程通解为cx x x f ++=1)(2 把0)1(=f 代入通解,可确定常数2-=c 故所求函数)(x f 的表达式为:.xy10,)1(21)(22≤≤-=-+=x x x x x f例2[2]、在上半平面求一条向上凹的曲线,其任一点),(y x p 处的曲率等于此曲线在该点的法线段PQ 长度的倒数,(Q 是法线与x 轴的交点),且曲线在点)1,1(处切线与x 轴平行。

解:见图,所求曲线为)(x f y =,于是其在),(y x p 点处的曲率为:232232)1()1(y y y y k '+''='+''=(∵曲线为凹的,∴0>''y )曲线)(x f y =在),(y x p 点处的法线方程:)0)((1≠'-'-=-y x X y y Y它与x 轴的交点Q 的坐标)0,(y y x Q '+,于是21222)1()(y y y y y PQ '+=+'=, 由题设PQk 1=, 即212232)1(1)1(y y y y '+='+''21y y y '+='⇒——这是不显含x 的方程 初始条件为,1|1==x y ,0|1='x y 令dydppy p y =''=',,于是方程变为 y dy dp pp p dy dp yp=+⇒+=2211xy12ln )1ln(21c y p +=+⇒, 代入0|1='=x y ,得01=c11222-±=⇒-=⇒y p y p ,积分得22)1()1ln(c x y y +-±=-+ 代入1|1==x y ,得02=c 故所求曲线为:)1(21-±=-+x e y y ,即)(21)1(1---+=x x e e y例3[3]、已知曲线过)1,1(点,如果把曲线上任一点P 处的切线与y 轴的交点记作Q ,则以PQ 为直径所做的圆都经过点)0,1(F ,求此曲线方程。

解:见图所求曲线设为)(x f y =于是切线方程为)(x X y y Y -'=- 切线PQ 与y 轴的交点Q 的坐标为),0(y x y Q '-设M 点为切线段PQ 的中点,坐标为⎪⎭⎫ ⎝⎛'-2,2y x y x∵圆经过点)0,1(F ∴MF MQ =于是得方程⎪⎩⎪⎨⎧=+-='=1|11112x y x y x y y ①令z y =2,则方程①xx z x z x y x y 222111)(2122+-='⇒+-='⇒ ② (1)c x z dx xz dz z x z ln ln 2ln 22+=⇒=⇒=' 2cx z =(2)令2)(x x c z =为②的解,代入并整理,得32222)(22)(xx x c x x x c +-='⇒+-=' c xx x c ~12)(2+-=⇒ 故②的通解为:222~12~12x c x x c x x z +-=⎪⎭⎫ ⎝⎛+-= 即方程的通解为22~12x c x y +-=, 代入初值1|1==x y ,得0~=c故所求曲线为122-=x y例4[1]、在制造探照灯的反射镜面时,总是要求将点光源射出的光线平行地反射出去,以保证探照灯有良好的方向性,试求反射镜面的几何形状。

解:取光源所在处为坐标原点,而x 轴平行于光的反射方向,(见图)。

设所求曲面由曲线⎩⎨⎧==0)(z x f y ① 绕x 轴旋转而成,则求反射镜面问题归结为求xy 平面上的曲线)(x f y =的问题。

x过曲线)(x f y =上任一点),(y x M 作切线NT则由反射定律:入射角等于反射角,容易推知21αα= 从而ON OM = 注意到NPMPtg dx dy ==2α 及22,,y x OM y MP x OP +=== 就得到函数)(x f y =所满足的微分方程式22yx x y dx dy ++=这是齐次方程。

设xy=μ,将它化为变量分离方程求解 得)2(2x c c y += c 为任意常数故反射镜面的形状为旋转抛物面)2(22x c c z y +=+二、常微分方程在机械振动中的应用常微分方程与物理联系甚为广泛,下面我们就一起来看一下常微分方程在机械振动中的应用,常微分方程解决力学问题需要:建立坐标系,对所研究物体进行受力分析; 根据牛顿第二定律ma F =,列方程; 解方程。

下面,让我们从实例中体会常微分方程在力学中的作用。

例1[2]:一个质量为m 的船以速度0v 行驶,在0=t 时,动力关闭,假设水的阻力正比于n v ,其中n 为一常数,v 为瞬时速度,求速度与滑行距离的函数关系。

解:船所受的净力=向前推力-水的阻力=n kv -0, 加速度=速度对时间的导数,即dtdv a =, 于是,由题设有⎪⎩⎪⎨⎧=-==00|v v kv dtdv m t n 现在要求的不是速度与时间的关系,而是速度与距离的关系,设距离为x ,于是,上述方程可化为:n kv dxdvmv dt dx dx dv m dt dv m -==⋅= kdx dv mv n -=⇒-1 (※)当2≠n 时,两边积分,得c kx nmv n +-=--22把0|,|000====t t x v v 代入上式,得nmv c n -=-220故nn v x mn k v --+--=202)2( 当2=n 时,(※)kdx dv mv -=⇒-1, 积分得x mk cev -=,将初值代入,得0v c = 故x mk ev v -=0例2[2]、两个质量相同的重物挂于弹簧下端,其中一个坠落,求另一个重物的运动规律,已知弹簧挂一个重物伸长为a 。

相关文档
最新文档