常微分方程基本知识点
常微分方程知识点整理

常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。
在物理、工程、经济学等领域具有广泛的应用。
本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。
一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。
一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程。
1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。
常见形式为dy/dx = f(x, y)。
其中f(x, y)是已知的函数,也可以是常数。
2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。
常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。
二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。
1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。
2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。
常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。
3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。
高中数学中的常微分方程知识点

高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。
高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。
二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。
2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。
(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。
(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。
3. 例子求解方程dy/dx + 2y = e^x。
(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。
(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。
2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。
(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。
高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。
方程的定义:含有未知数的的等式。
它表达了未知量所必须满足的某种条件。
根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。
引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。
例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。
一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。
二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。
类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。
其中F 是n +2个变量的函数。
这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。
例如()()n y f x =也是n 阶微分方程。
例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。
高中数学常微分方程知识点总结

高中数学常微分方程知识点总结微分方程是数学中的一个重要分支,它描述了变量之间的关系以及它们的变化率。
在高中数学课程中,学生们需要学习常微分方程的知识,并且利用这些知识解决实际问题。
本文将对高中数学中常微分方程的主要知识点进行总结。
一、常微分方程的基本概念常微分方程是包含未知函数的泛函方程,其一般形式为:dy/dx = f(x, y)。
其中,y是未知函数,f(x, y) 是已知的函数。
常微分方程的解是能够满足该方程的函数。
二、常微分方程的分类常微分方程可分为一阶常微分方程和高阶常微分方程。
1.一阶常微分方程一阶常微分方程是指未知函数的导数最高次数为一的微分方程,其一般形式为:dy/dx = f(x, y)。
一阶常微分方程的解可以通过分离变量、齐次方程、一阶线性方程等方法求解。
2.高阶常微分方程高阶常微分方程是指未知函数的导数最高次数大于一的微分方程。
高阶常微分方程的求解可以通过转换为一阶方程组、特解叠加法、特征方程等方法求解。
三、常微分方程的解法1.分离变量法对于一阶常微分方程,若可以将未知函数y和自变量x分离,则可以将方程化简为两个变量的乘积形式,从而可以通过分离变量的方式求解出y的表达式。
2.齐次方程法对于一阶常微分方程,若可以将未知函数y和自变量x在方程中通过同一个变量替换成比值的形式,则可以将方程化简为一个纯含有未知函数y的方程,从而可以通过变量代换解出y的表达式。
3.线性方程法对于一阶常微分方程,若可以将方程化简为形如dy/dx + P(x)y =Q(x)的线性方程,则可以通过积分因子或待定系数法等方法求解出未知函数y的表达式。
4.特解叠加法对于高阶常微分方程,可以通过叠加一般解和特解的方式求解出方程的解。
一般解是该方程的任意解,特解是方程的一个特殊解。
5.特征方程法对于高阶常微分方程,可以通过求解该方程的特征方程得到方程的特解形式。
特征方程是该方程对应的齐次方程的根的特征方程,通过求解特征方程的根可以得到方程的特解形式。
《常微分方程》知识点

《常微分方程》知识点常微分方程,又称ODE(Ordinary Differential Equation),是研究未知函数的导数与自变量之间的关系的数学学科。
常微分方程在科学和工程领域中有着广泛的应用,涉及到许多重要的数学原理和方法。
下面将介绍常微分方程的一些重要知识点。
1.基本概念-常微分方程的定义:常微分方程是描述未知函数在其中一区域上的导数与自变量之间的关系的方程。
-方程的阶数:常微分方程中最高阶导数的阶数称为方程的阶数。
-解和解集:满足常微分方程的未知函数称为方程的解,所有满足方程的解的集合称为方程的解集。
2.常微分方程的分类-分离变量法:适用于可以通过变量分离的常微分方程,将所有含有未知函数的项移到方程的一边,其他项移到方程的另一边,然后两边同时积分求解。
-齐次方程:适用于可以化为齐次方程的常微分方程,通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。
-线性齐次方程:适用于可以化为线性齐次方程的常微分方程,通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。
-非齐次方程:适用于非齐次方程的常微分方程,可以通过对应的齐次方程的解和特解的叠加,得到非齐次方程的解。
-可降阶的方程:这类方程具有特殊的形式,通过进行变量的代换,可以将高阶常微分方程转化为一阶或者低阶的方程,然后求解。
3.常微分方程的解法-解析解:指通过直接计算得到的解析表达式,能够准确地求得方程的解。
-数值解:指通过数值计算的方法,例如欧拉法、龙格-库塔法等,近似求解方程的解。
4.常用的一阶常微分方程- 可分离变量的方程:形如dy/dx = f(x)g(y),通过将变量分离,然后积分求解得到解析解。
- 齐次方程:形如dy/dx = f(y/x),通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。
- 线性方程:形如dy/dx + p(x)y = q(x),通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。
大二常微分方程知识点

大二常微分方程知识点常微分方程是数学中非常重要的一个分支,它研究的是指导自然界中各种现象变化规律的方程。
在大二学习阶段,我们需要掌握一些常微分方程的基本知识点,接下来将逐一介绍。
1. 常微分方程的定义及基本概念常微分方程是指包含一个未知函数及其导数的方程,并且仅涉及一个自变量。
常微分方程的解是未知函数的函数表达式,它满足方程本身以及初值条件。
常微分方程一般可以分为初值问题和边值问题。
初值问题是指在给定某一时刻的初值条件下,求解方程的解;而边值问题是在给定一定边界条件下,求解方程的解。
2. 一阶常微分方程一阶常微分方程是指方程中最高导数的阶数为一的常微分方程。
它可以分为可分离变量的一阶常微分方程、线性一阶常微分方程和齐次线性一阶常微分方程等。
可分离变量的一阶常微分方程可以通过对方程两边进行变量分离,然后进行积分求解。
线性一阶常微分方程可以通过求解其特征方程,得到通解。
如果已知特解,可以通过通解加上特解得到特定解。
齐次线性一阶常微分方程则可以转化为线性一阶常微分方程,并且其特征方程只有一个解。
3. 高阶常微分方程高阶常微分方程是指方程中最高导数的阶数大于一的常微分方程。
它可以分为常系数线性高阶常微分方程和非齐次线性高阶常微分方程等。
常系数线性高阶常微分方程可以通过求解其特征方程,得到通解。
如果已知特解,可以通过通解加上特解得到特定解。
非齐次线性高阶常微分方程则可以转化为常系数线性高阶常微分方程,并且其特征方程有多个解。
4. 常微分方程的解法技巧在解常微分方程时,我们可以借助一些常见的解法技巧,如变量分离法、齐次方程法、常数变易法、欧拉方程等。
变量分离法是指通过将方程中的变量分离,然后进行积分求解。
齐次方程法适用于齐次的高阶常微分方程,在此方法中,我们需要进行代换,将齐次方程转化为一阶常微分方程。
常数变易法适用于非齐次的高阶常微分方程,我们通过猜测特解的形式,并代入方程,再确定常数的值。
欧拉方程是针对常系数线性高阶常微分方程的解法,其中特解形式为 e^rx。
高数大一知识点常微分方程

高数大一知识点常微分方程高数大一知识点:常微分方程常微分方程(Ordinary Differential Equation,简称ODE)是数学中的一个重要分支,研究函数的导数与自变量之间的关系。
在高数大一的学习中,常微分方程是一个重要的知识点。
本文将简要介绍常微分方程的定义、分类和解法,并给出一些常见的示例。
一、常微分方程的定义常微分方程是用函数与其导数构成的等式来描述未知函数的性质的数学方程。
一般形式为:f(x, y, y', y'', ..., y⁽ⁿ⁾) = 0其中,x为自变量,y为未知函数,y⁽ⁿ⁾表示y的n阶导数。
二、常微分方程的分类常微分方程可以分为一阶常微分方程和高阶常微分方程两类。
1. 一阶常微分方程一阶常微分方程的一般形式为:dy/dx = f(x, y)其中,f(x, y)为已知函数。
一阶常微分方程的解可以表示为y = Φ(x, C),其中Φ(x, C)是一族包含常数C的函数。
2. 高阶常微分方程高阶常微分方程是指方程中包含未知函数的高阶导数的方程。
高阶常微分方程可以通过一系列变换化为一阶常微分方程。
三、常微分方程的解法常微分方程的解法有很多种方法,这里介绍两种常用的方法:分离变量法和常数变易法。
1. 分离变量法对于一阶常微分方程dy/dx = f(x, y),可以通过分离变量将y的项移到一边,x的项移到另一边,然后两边同时积分得到通解。
2. 常数变易法对于一阶常微分方程dy/dx = f(x, y),可以通过引入一个未知函数u(x),将方程转化为关于u和x的一阶常微分方程,再通过求导和代换等操作,求得y关于x的通解。
四、常微分方程的示例1. 一阶常微分方程示例:dy/dx = x^2 - y先整理方程,得到dy + y = x^2通过分离变量法可得∫1/y dy = ∫x^2 dx解得ln|y| = x^3/3 + C1最终的通解为y = Ce^(x^3/3),其中C为常数。
常微分方程的大致知识点

常微分方程的大致知识点Company number:【0089WT-8898YT-W8CCB-BUUT-202108】常微分方程的大致知识点(一)初等积分法1、线素场与等倾线2、可分离变量方程3、齐次方程(一般含有xy y x 或的项) 4、一阶线性非齐次方程常数变易法,或])([)()(⎰+⎰⎰=-C dx e x b e y dx x a dx x a5、伯努力方程令n y z -=1,则dxdy y n dx dz n--=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若xN y M ∂∂=∂∂,则C y x u =),(,(留意书上公式) 若x N y M ∂∂≠∂∂,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程),(22dx dy x f dx y d =,令dx dy dxy d p dx dy ==22,则 ),(22dx dy y f dxy d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族(二)毕卡序列⎰+=xx dx y x f y y 0),(001,⎰+=x x dx y x f y y 0),(102,⎰+=xx dx y x f y y 0),(203,其余类推 (三)常系数方程1、常系数齐次0)(=y D L方法:特征方程单的实根21,λλ,x x e C e C y 2121λλ+=单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+=重的实根λλλ==21,x e x C C y λ)(21+=重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=2、常系数非齐次)()(x f y D L =方法:三部曲。
第一步求0)(=y D L 的通解Y第二步求)()(x f y D L =的特解*y第三步求)()(x f y D L =的通解*y Y y +=如何求*y当x m e x P x f α)()(=时,=*y x m k e x Q x α)(当vx e x Q vx e x P x f ux m ux m sin )(cos )()(+=时,=*y )sin )(cos )((vx x S vx x R e x m m ux k + 当)(x f 是一般形式时,=*y ξξξξd f W x W xx )()(),(0⎰,其中W(.)是郎斯基行列式 (四)常系数方程组方法:三部曲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程基本知识点
第一章 绪论
1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要)
例:03)(22=-+y dx
dy x dx dy (1阶非线性); x e dx y d y =+22sin 。
2.运用导数的几何意义建立简单的微分方程。
(以书后练习题为主) (习题1,2,9题)
例:曲线簇cx x y -=3满足的微分方程是:__________.
第二章 一阶方程的初等解法
1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要)
2.齐次方程的解法(变量代换);(重要)
3.线性非齐次方程的常数变易法;
4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要);
例题:(1).经变换_____y c u os =___________后,
方程1cos sin '+=+x y y y 可化为___线性_____方程;
(2).经变换_____y x u 32-=____________后, 方程1
)32(1'2+-=y x y 可化为____变量分离__方程; (3).方程0)1(22
2=+-dy e dx ye x x x 为:线性方程。
(4).方程2
21'y x y -=为:线性方程。
5.积分因子的概念,会判断某个函数是不是方程的积分因子;
6.恰当方程的解法(分项组合方法)。
(重要)
第三章 一阶方程的存在唯一性定理
1.存在唯一性定理的内容要熟记,并能准确确定其中的h ;
2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题
3.1的1,2,3题)
第四章 高阶微分方程
1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质;
2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系;
3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要)
4.n 阶线性非齐次微分方程的常数变易法(了解);
5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型?
(习题4.2相关题目)
6.2阶线性方程已知一个特解的解法(作线性齐次变换)。
(重要)
7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。
第五章线性微分方程组
1.n阶线性微分方程的初值问题与一阶线性微分方程组的等价关系(重要);
例题:习题5.1第2题a)、b)题。
2.线性微分方程组的解的存在唯一性定理,解的结构理论(熟悉,了
解);
3.解矩阵,基解矩阵的概念和性质(重要);
4.非齐次线性微分方程组的常数变易公式(熟悉、不要求算);
5.常系数线性微分方程组基解矩阵(e At)的求法(至少掌握一种方法)。
(重要)
6.习题5.2后练习题。