常微分方程基本知识

合集下载

常微分方程基本概念

常微分方程基本概念

常微分方程基本概念常微分方程(Ordinary Differential Equations,简称ODE)是数学分析中的一个重要分支,研究的是一元函数的导数与自变量之间的关系。

它在物理学、工程学、生物学等领域具有广泛的应用。

本文将介绍常微分方程的基本概念和相关知识。

一、常微分方程的定义常微分方程是描述未知函数的导数与自变量之间关系的方程。

一般形式可以表示为:dy/dx = f(x, y)其中,y是未知函数,x是自变量,f(x, y)是已知函数。

二、常微分方程的阶数常微分方程根据未知函数的最高阶导数的阶数不同,可以分为一阶、二阶、高阶等不同阶数的微分方程。

1. 一阶微分方程一阶微分方程是指含有一阶导数的方程。

一般形式可以表示为:dy/dx = f(x, y)例如,y' = 2x + 1就是一个一阶微分方程,其中y'表示y对x的一阶导数。

2. 二阶微分方程二阶微分方程是指含有二阶导数的方程。

一般形式可以表示为:d²y/dx² = f(x, y, dy/dx)例如,y'' + y = 0就是一个二阶微分方程,其中y''表示y对x的二阶导数。

三、常微分方程的初值问题和边值问题常微分方程除了描述函数的导数与自变量之间的关系外,还可以给出一些初始条件或边界条件,从而确定唯一的解。

1. 初值问题初值问题是指在微分方程中给出了函数在某一点的初值条件,要求求解出满足该条件的解。

一般形式可以表示为:dy/dx = f(x, y),y(x₀) = y₀其中,y(x₀) = y₀表示在点(x₀, y₀)处给定了函数的初始值条件。

2. 边值问题边值问题是指在微分方程中给出了函数在多个点的边界条件,要求求解出满足这些条件的解。

一般形式可以表示为:dy/dx = f(x, y),y(a) = y_a,y(b) = y_b其中,y(a) = y_a和y(b) = y_b表示在点(a, y_a)和(b, y_b)处给定了函数的边界条件。

常微分方程知识点整理

常微分方程知识点整理

常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。

在物理、工程、经济学等领域具有广泛的应用。

本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。

一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。

一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。

常微分方程可以分为一阶常微分方程和高阶常微分方程。

1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。

常见形式为dy/dx = f(x, y)。

其中f(x, y)是已知的函数,也可以是常数。

2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。

常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。

二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。

1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。

常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。

2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。

常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。

3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。

常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。

常微分方程第三章基本定理

常微分方程第三章基本定理

THANKS
感谢观看
线性化定理
总结词
线性化定理是将非线性常微分方程转化为线性常微分方程的方法,从而可以利用线性方程的解法来求解。
详细描述
线性化定理提供了一种将非线性常微分方程转化为线性常微分方程的方法。通过适当的变换,可以将非线性问题 转化为线性问题,从而可以利用线性方程的解法来求解。这个定理在解决复杂的非线性问题时非常有用,因为它 简化了问题的求解过程。
02
CATALOGUE
常微分方程的稳定性
稳定性定义
稳定性的定义
01
如果一个常微分方程的解在初始条件的小扰动下变化不大,那
么这个解就是稳定的。
稳定性的分类
02
根据稳定性的不同表现,可以分为渐近稳定、指数稳定、一致
稳定等。
稳定性判别方法
03
可以通过观察法、线性化法、比较法等方法来判断常微分方程
的解是否稳定。
龙格-库塔方法
总结词
龙格-库塔方法是常微分方程数值解法中一种更精确的 方法,它通过多步线性近似来逼近微分方程的解。
详细描述
龙格-库塔方法的基本思想是利用已知的初值和微分方 程,通过多步线性插值来逼近微分方程的解。具体来 说,龙格-库塔方法通过递推公式来计算微分方程的近 似解,公式如下:(y_{n+1} = y_n + h f(t_n, y_n) + frac{h^2}{2} f(t_{n-1}, y_{n-1}) - frac{h^2}{2} f(t_{n-2}, y_{n-2})) 其中 (h) 是步长,(t_n) 和 (y_n) 是已知的初值,(f) 是微分方程的右端函数。
存在唯一性定理表明,对于任意给定的初值问题,存在一个唯一的解,该解在某个区间内存在并连续 。这个定理是常微分方程理论的基础,为后续定理的证明提供了重要的依据。

《常微分方程》知识点

《常微分方程》知识点

《常微分方程》知识点常微分方程,又称ODE(Ordinary Differential Equation),是研究未知函数的导数与自变量之间的关系的数学学科。

常微分方程在科学和工程领域中有着广泛的应用,涉及到许多重要的数学原理和方法。

下面将介绍常微分方程的一些重要知识点。

1.基本概念-常微分方程的定义:常微分方程是描述未知函数在其中一区域上的导数与自变量之间的关系的方程。

-方程的阶数:常微分方程中最高阶导数的阶数称为方程的阶数。

-解和解集:满足常微分方程的未知函数称为方程的解,所有满足方程的解的集合称为方程的解集。

2.常微分方程的分类-分离变量法:适用于可以通过变量分离的常微分方程,将所有含有未知函数的项移到方程的一边,其他项移到方程的另一边,然后两边同时积分求解。

-齐次方程:适用于可以化为齐次方程的常微分方程,通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。

-线性齐次方程:适用于可以化为线性齐次方程的常微分方程,通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。

-非齐次方程:适用于非齐次方程的常微分方程,可以通过对应的齐次方程的解和特解的叠加,得到非齐次方程的解。

-可降阶的方程:这类方程具有特殊的形式,通过进行变量的代换,可以将高阶常微分方程转化为一阶或者低阶的方程,然后求解。

3.常微分方程的解法-解析解:指通过直接计算得到的解析表达式,能够准确地求得方程的解。

-数值解:指通过数值计算的方法,例如欧拉法、龙格-库塔法等,近似求解方程的解。

4.常用的一阶常微分方程- 可分离变量的方程:形如dy/dx = f(x)g(y),通过将变量分离,然后积分求解得到解析解。

- 齐次方程:形如dy/dx = f(y/x),通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。

- 线性方程:形如dy/dx + p(x)y = q(x),通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。

常微分方程复习资料

常微分方程复习资料

第二章 一阶微分方程的初等解法
§2.1 变量分离方程与变量变换 §2.2 线性微分方程与常数变易法 §2.3 恰当微分方程与积分因子 §2.4 一阶隐式微分方程与参数表示
变量分离方程的求解
1、形式: dy f ( x )( y ) dx
2、求解方法: 分离变量、 两边积分、 考虑特殊情况
3、方程 dy p( x )y 的解为: dx
D(D 1) pD q y f (et )
机动 目录 上页 下页 返回 结束
c(x)
Q(
x)e
p(
x
)dx
dx
~
c
y e ( p(x)dx
Q(
x)e
p(
x
)
dxdx
~
c)
(3)
二 伯努利(Bernoulli )方程
伯努利方程:形如 dy p(x) y Q(x) yn 的方程, dx
这里P( x), Q( x)为x的连续函数。
解法:
10 引入变量变换 z y1n ,方程变为
dy a1x b1 y c1 dx a2 x b2 y c2
k(a2 x b2 y) c1 a2 x b2 y c2
f (a2x b2 y)
3. a1 b1
a2 b2
0,
且C1、C2不同时为零的情形
aa21
x x
b1 b2
y y
c1 c2
0 0
X x Y y ,
初值条件/Initial Value Conditions/ 对于 n 阶方程 y(n) f (x, y, y,, y(n1) )
初值条件可表示为
y(x0) y0, y(x0) y0 , y(x0) y0,, y(n1) (x0) y0(n1)

常微分方程初步

常微分方程初步

常微分方程初步常微分方程是数学中的一个重要分支,它研究的是单变量函数的导数与自变量的关系。

在实际生活和科学研究中,很多问题都可以用常微分方程来描述和解决。

本文将介绍常微分方程的基本概念、一阶常微分方程和二阶常微分方程的求解方法。

一、基本概念1.1 导数导数是函数在某个点处的变化率,它表示的是函数曲线在这个点的斜率。

如果在某点处的导数存在,则该点为函数的可导点。

设函数f(x)在点x0处可导,则函数f(x)在点x0处的导数定义为:f'(x0) = lim┬(△x→0) (f(x0+△x) - f(x0))/△x如果导数存在,则称函数在该点可导;反之,则称函数在该点不可导。

1.2 常微分方程常微分方程是一个未知函数在其自变量上的导数的关系式,其中该未知函数是自变量的函数。

通俗地讲,就是描述未知函数在自变量上的变化的一种数学方程。

常微分方程通常用y表示未知函数,x表示自变量。

一般形式为:F(x, y, y', y'', …, yⁿ)= 0其中,y'、y''、…、yⁿ分别表示y对于x的一阶、二阶、…、n 阶导数。

1.3 初值问题初值问题是求解常微分方程的一种方法,其本质是通过确定函数在某一个特定点的值,从而确定未知常数的值。

一个初值问题包括一阶常微分方程和一个初始点,形式为:y' = f(x, y), y(x0) = y0其中,f(x, y)为已知函数,通常称为方程的右端,y0和x0分别是给定的初值。

二、一阶常微分方程的求解一阶常微分方程的一般形式为:y' = f(x, y)这是一个仅含未知函数y及其一阶导数y'的方程。

2.1 可分离变量方程如果该一阶常微分方程可以写成下面的形式:dy/dx = g(x)h(y)其中,g(x)和h(y)都是已知函数,那么称其为可分离变量方程。

对上式两边同时积分,得到:∫1/h(y)dy = ∫g(x)dx + C0其中C0为常数。

常微分方程主要内容

常微分方程主要内容

常微分方程主要内容
摘要:
1.常微分方程的概述
2.常微分方程的主要内容
3.常微分方程的应用
4.学习常微分方程的方法和技巧
正文:
一、常微分方程的概述
常微分方程是微分方程的一个分支,主要研究变量随时间变化的规律。

它在数学、物理、化学、生物学等领域有着广泛的应用,是解决许多实际问题的关键工具。

二、常微分方程的主要内容
1.基本概念:常微分方程涉及的基本概念包括导数、微分、积分等,这些概念是理解常微分方程的基础。

2.基本定理:常微分方程的基本定理包括解的存在唯一性定理、解的延展定理等,这些定理是研究常微分方程的关键。

3.解法:常微分方程的解法包括初等基分法、线性微分方程组解法、n 阶线性微分方程解法等,这些解法是求解常微分方程的具体方法。

4.特殊类型:常微分方程中的特殊类型包括线性微分方程、非线性微分方程、隐式微分方程、显式微分方程等,这些特殊类型需要特殊的处理方法。

三、常微分方程的应用
常微分方程在实际应用中具有广泛的应用,包括数值计算、微分方程建模等。

例如,在物理学中,常微分方程可以用来描述物体的运动规律;在生物学中,常微分方程可以用来描述生物种群的演化规律等。

四、学习常微分方程的方法和技巧
学习常微分方程需要掌握一定的数学基础,包括微积分、线性代数等。

此外,学习常微分方程还需要掌握一些基本的数学分析方法,如极限、连续、导数、微分等。

在解决常微分方程问题时,需要灵活运用这些方法和技巧,以求得问题的解决。

总之,常微分方程是数学中的一个重要分支,它在实际应用中具有广泛的应用。

常微分方程的基本概念与常系数线性齐次方程

常微分方程的基本概念与常系数线性齐次方程

常微分方程的基本概念与常系数线性齐次方程常微分方程(Ordinary Differential Equation,ODE)是描述函数未知量及其导数之间关系的方程。

在数学和科学领域中,常微分方程是一种重要的数学工具,用于建立数学模型和解决实际问题。

本文将介绍常微分方程的基本概念,并着重讨论常系数线性齐次方程。

一、常微分方程的基本概念1.1 未知函数的定义在常微分方程中,未知函数是一个关于自变量的函数,我们通常用y表示。

常微分方程的解就是使得方程成立的函数。

1.2 阶数和次数常微分方程的阶数是指方程中最高阶导数的阶数。

次数是指方程中导数的最高幂次数。

1.3 解的定义对于给定的微分方程,如果存在一个函数满足方程的条件,那么这个函数就是方程的解。

1.4 初始条件为了确定微分方程的解,需要给出一些初始条件。

初始条件是指在某一点上给出的函数值及其导数值。

二、常系数线性齐次方程常系数线性齐次方程是一种形式为函数及其导数的线性组合,并且系数都是常数的微分方程。

2.1 常系数在常系数线性齐次方程中,系数都是常数,不随自变量的变化而变化。

2.2 齐次性一个微分方程是齐次的,意味着方程中只存在未知函数及其导数,没有非齐次项。

2.3 线性性一个微分方程是线性的,意味着未知函数及其导数只以一次幂出现,并且可以通过线性叠加来求解。

2.4 解的求解对于常系数线性齐次方程,可以通过特征根的方法来求解。

特征根是方程对应的齐次方程的根。

2.5 解的形式一般来说,常系数线性齐次方程的解可以表示为指数函数的线性组合。

特殊情况下,解还可以表示为三角函数的线性组合。

三、小节三在这一部分,我们将介绍常微分方程的应用领域和意义。

常微分方程广泛用于物理学、工程学、经济学等领域,用于建立数学模型和求解实际问题。

通过求解常微分方程,我们可以得到函数的解析解,更好地理解和预测自然界和社会现象的行为规律。

总结:本文介绍了常微分方程的基本概念和常系数线性齐次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个不亲自检查桥梁每一个部分的坚固性就不过桥的旅行者,是不可能走远的;甚至在数学中,有些事情亦须冒险。

-----Horace Lamb------题记概述:数学家谋求用微积分解决越来越多的问题,他们很快发现不得不对付一类新的问题,他们做的比他们有意识去探求的还多。

比较简单的问题引导到可以用初等函数计算的积分,而某些比较困难的问题则引起不能如此表达的积分,如椭圆积分就是实例。

这两类问题属于微积分范围,然而没解决更为复杂的问题,就需要专门的技术,这样,微分方程这门学科就应时兴起了。

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

下面就对常微分方程加以介绍常微分方程基本的概念方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

一个常微分方程(ODE)是未知函数的微分方程(亦称因变量)是一个唯一独立变量的作用。

以简单形式,未知函数是一个真正或复杂明度函数,但更加一般,它也许传染媒介被重视或矩阵被重视:这对应于考虑常微分方程系统为一个唯一作用。

常微分方程根据因变量的最高的衍生物的命令进一步被分类关于出现于等式的独立变量。

最重要的论点为应用是优先处理和第二级次的微分方程。

在古典文学也被区分在微分方程之间明确地解决关于最高的衍生物和微分方程以含蓄形式。

常微分方程的内容定义1 凡含有未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程.微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.定义式如下:F(x, y, y¢, ...., y(n)) = 0定义2 任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解.一般地说,n 阶微分方程的解含有 n个任意常数。

也就是说,微分方程的解中含有任意常数的个数和方程的解数相同,这种解叫做微分方程的通解。

通解构成一个函数族。

如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。

对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。

常微分方程的特点常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。

下面就方程解的有关几点简述一下,以了解常微分方程的特点。

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。

也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。

当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。

因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。

因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。

当然,这个近似解的精确程度是比较高的。

另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

常微分方程的应用现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。

这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。

应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

常微分方程的发展20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。

70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。

从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解。

常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。

偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。

命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。

在很长一段时间里,人们致力于“求通解”。

但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。

第一,能求得通解的方程显然是很少的。

在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,为数是很小的。

高阶方程中,线性方程仍可以用叠加原理求解,即□阶齐次方程的通解是它的□个独立特解的线性组合,其系数是任意常数。

非齐次方程的通解等于相应齐次方程的通解加上非齐次方程的特解,这个特解并且可以用常数变易法通过求积分求得。

求齐次方程的特解,当系数是常数时可归结为求一代数方程的根,这个代数方程的次数则是原方程的阶数;当系数是变数时,则只有二种极特殊的情况(欧拉方程、拉普拉斯方程)可以求得。

至于非线性高阶方程则除了少数几种可降阶情形(如方程(1)就是这几种情形都有的一个方程)之外,可以求得通解的为数就更小了。

□阶方程也可以化为一阶方程组(未知函数的个数和方程的个数都等于□)早已为人们所知,并且在此后起着一定作用,但对于通解的寻求仍无济于事。

在偏微分方程方面,一阶方程可以归结为一阶常微分方程组,但是如上所述,一阶常微分方程组可以求得通解的还是很少的。

高阶方程中几乎只有少数二阶方程(如□,以及□,当用瀑布法时在一系列不变量中有一个开始为零的情形,和少数极个别的非线性方程如□□-□□□=□0等等)可以求得通解。

在线性情形,推广常数变易法则是杜阿美原理。

下面来介绍偏微分方程偏微分方程的起源微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。

这些著作当时没有引起多大注意。

1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。

这样就由对弦振动的研究开创了偏微分方程这门学科。

和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。

拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。

偏微分方程的内容偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以介绍。

弦振动是一种机械运动,当然机械运动的基本定律是质点力学的F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。

然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。

弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。

演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。

当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。

用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。

偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。

上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。

关于解偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。

因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。

拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同的。

原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。

就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。

边界条件也叫做边值问题。

当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不靠近两端的那段弦,就抽象的成为无边界的弦了。

在数学上,初始条件和边界条件叫做定解条件。

偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。

方程和定解条件合而为一体,就叫做定解问题。

求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。

但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。

偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。

分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。

对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。

应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

相关文档
最新文档