常微分方程习题
常微分方程练习题

常微分方程练习题§1 一阶常微分方程1.求下列微分方程的通解:(1))(22y y y x y '+='-;(2)0)4(2=-+dy x x ydx ;(3)0)2()2(2222=-++-+dy x xy y dx y xy x ;(4)xy x y y x tan =-'; (5)2122⎪⎪⎭⎫ ⎝⎛-++='y x y y ; (6)0)2(=-+dy y xe dx e y y ;(7)0)cos sin 3()1cos (222=-+-dy y y x y dx y x ;(8)0)(4223=+++dy y x y ydy xdx ;(9)0)()(2=++-dy x y dx xy x ;(10)22x xe xy y -=+';(11)x x e x y y x 122-=-';(12)02)6(2=+'-y y x y ;(13)xy y y y y -+='ln 2; (14)0)(24=-+dy x y xydx ;(15)x y x x y y =-+'1412; (16)0]1)[ln(=--'xy y y x ;(17)0cos 232=+-'x x y y xy ;(18)21222sin 22sin 1x e y x y y x ++='+; (19)02)1(322=+'-xy y y x ;(20)y y x y x ++='22)(。
2.求下列微分方程的特解:(1)ydy x xdx y ln ln =,11==x y ;(2)x y x y y tan +=',61π==x y ; (3)022=---'x y y y x ,11==x y ;(4)0)()2(2=+++y x ydy dx y x ,10==x y ; (5)0)1(2=---dx x ydx xdy ,01==x y ;(6)x x y x y 2cos sin cos =+',10==x y ;(7)0tan )sin (=+-ydx dy y x ,61π==x y ;(8)0)cos 1(cos sin ln =-+'y x y y x y x ,π==1x y 。
常微分方程习题集

《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
常微分复习题

1. 如果微分方程 0),,,,()(='n y y y x F Λ左端为未知函数及其各阶导数的( 一 )次有理整式,则它称为线性微分方程。
2. 形如()()(y x f dxdyϕ= )的方程,称为变量可分离方程,其中)(x f 和)(y ϕ分别是y x , 的连续函数。
3. 方程()dy P x y dx=的通解为( ()P x dxy ce ⎰= )这里c 是任意的常数。
4. 方程0),(),(=+dy y x N dx y x M 是恰当方程的充要条件是(M Ny x∂∂=∂∂ ),其中(,),(,)M x y N x y 在区域G 内连续可微。
5. 函数),(y x f 称为在闭矩形区域 b y y a x x D ≤-≤-00,:上关于y 满足利普希兹条件,如果存在常数0>L 使得不等式( 2121),(),(y y L y x f y x f -≤- )对所有D y x y x ∈),(),,(21都成立。
其中L 称为利普希兹常数。
6. 初值问题(3.1),若),(y x f 在区域G 内连续且关于y 满足局部Lipschtiz 条件,则任一非饱和解均可延拓为( 饱和解 )。
7. 设初值问题(3.1)满足初始条件00()y x y =的解是唯一的,记为),,(00y x x y ϕ=,则在此关系式中, (,)x y 与00(,)x y 可以调换其相对位置.即在解的存在范围内成立关系式( 00(,,)y x x y ϕ= )。
8. 如果),(y x f 以及(yy x f ∂∂),( )在G 内连续,则(3.1)的解),,(00y x x y ϕ=作为 00,,x x y 的函数,在它定义范围内连续可微。
9. 0)()()(1111=++++---x t a dt dx t a dtx d t a dt x d n n n n n n Λ称为( n 阶线性齐次微分方程 )。
高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
常微分方程 练习题

常微分方程练习题常微分方程(Ordinary Differential Equations, ODEs)是数学中一门重要的分支,研究的是未知函数的导数与自变量之间的关系。
在物理、经济学、生物学等领域中,常微分方程广泛应用于描述系统的动态行为。
本文将为您提供一些常微分方程的练习题,帮助您加深对常微分方程的理解。
练习一:一阶常微分方程1. 求解初值问题:dy/dx = x^2 - y^2, y(0) = 1。
解:观察到方程右侧与左侧的差异较大,我们可以尝试寻找一个特殊的函数,使得方程变得简单。
假设y = x + u(x),则dy/dx = 1 + u',代入原方程得到:1 + u' = x^2 - (x + u)^2u' = x^2 - x^2 - 2ux - u^2 - 1u' = -2ux - u^2 - 1这是一个关于u和x的常微分方程。
我们可以尝试通过求解这个方程来得到y的解。
2. 求解初值问题:dy/dx = (x^2 - 1)/(y + 1), y(0) = 0。
解:将方程进行变形,得到(y+1)dy = (x^2 - 1)dx,两边同时积分:∫(y+1)dy = ∫(x^2 - 1)dx1/2(y^2 + 2y) = 1/3(x^3 - x) + C其中C为常数。
代入初值条件y(0) = 0,解得C = 0,进一步化简得到:y^2 + 2y = 2/3(x^3 - x)这就是给定初值问题的解。
练习二:二阶常微分方程1. 求解方程:y'' + 2y' + y = e^(-x),已知初值条件y(0) = 1,y'(0) = 0。
解:我们可以使用特征方程法求解这个二阶常微分方程。
首先求解齐次方程:r^2 + 2r + 1 = 0解齐次方程得到r = -1,因此齐次方程的通解为y_h = C1e^(-x) +C2xe^(-x)。
接下来求非齐次方程的一个特解。
常微分方程练习题

常微分方程练习题习题一一、单项选择题.1.微分方程yy32coyy5的阶数是().A.1B.2C.3D.52.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某y22C.某dyyd某0D.某dyyd某0 2某某4.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y 某(a某b某c)e5.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题1.方程y某tany的所有常数解是.某2某某22某某2某某2某某3某2C满足的一阶方程是.2.函数y523.设y1某e某e2某,y2某e某e 某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.d某某dt5.系统的零解的是稳定的.dyydt三、求下列一阶微分方程的通解.dyy4某2y210d某某dyyy2(co某in某)2.d某1.3.(某2y)d某某dy0.四、求下列高阶方程的通解.1.yy1co某2.试用观察法求方程(1ln某)y11y2y0的通解.某某某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.假设m不是矩阵A的特征值,试证非齐线性方程组其中C,P是常数向量.d某A某Cemt,有一解形如:(t)Pemt.dt习题二一、单项选择题1.微分方程dyy2某2的阶数是().d某A.1B.2C.3D.42.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.n阶齐次线性常微分方程的任意n1个解必定().A.可组成方程的一个基本解组B.线性相关C.朗斯基行列式不为0D.线性无关5.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.当n时,微分方程yP(某)yQ(某)y为伯努利方程.n某2某某22某某2某某2某某某2.在方程某p(t)某q(t)某0中,当系数满足条件时,其基本解组的朗斯基行列式等于常数.3.若y=y1(某),y=y2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.24.方程y1y满足解的存在唯一性定理条件的区域是.5.设某0I,Y1(某),,Yn(某)是区间I上线性齐次微分方程的n个解,则Y1(某),,Yn(某)在区间I上线性相关的条件是向量组Y1(某0),,Yn(某0)线性相关.三、求下列一阶微分方程的通解.1.某yy(某y)ln2.某y某dyyy2(co某in某)d某3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解.1.y某yy02.yy21co某d某5y4某dt五、求解微分方程组的通解.dy4y5某dtd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设分因子.f(某,y)及f连续,试证方程dyf(某,y)d某0为线性方程的充要条件是它有仅依赖与某的积yd2ydyp(某)q(某)y0中,p(某)在区间I上连续且恒不为零,2.设在方程试证它的任意两个线d某d某2性无关解的朗斯基行列式是在区间I上严格单调函数.习题三一、单项选择题.1.微分方程y某某iny的阶数是().A.1B.2C.3D.52.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某yC.某dyyd某0D.某2dyy2d某03.微分方程yP(某)yQ(某)y,当n1时为().A.一阶线性齐次微分方程B.一阶线性非齐次微分方程C.伯努利方程D.里卡蒂方程4.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件5.用待定系数法求方程y2yy(某22某)e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.函数某c1cotc2int(其中c1,c2为任意常数)满足的一阶方程是.2.方程tanyd某cot某dy0所有常数解是.3.设y1某e某e2某,y2某e某e某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.n某某2某某2某某2某某22某5.与初值问题某2某7t某et,某(1)7,某(1)2等价的一阶方程组的初值问题为.三、求下列一阶微分方程的通解.1.(某1)y2某y02.22dyyy2(co某in某)d某3.(某4y)y2某3y5四、求下列高阶方程的通解.1.t某2t某2某02.某某2某02某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.证明:二阶线性齐次方程的任意两个线性无关解组的朗斯基行列式之比是一个不为零的常数.习题四一、单项选择题1.微分方程y某y某2的通解中含有任意常数的个数为().A.1B.2C.3D.42.当n1时,微分方程yp(某)yq(某)yn最确切的名称为().A.一阶线性齐次微分方程B.伯努利方程C.一阶线性非齐次微分方程D.里卡蒂方程3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.在整个数轴上线性无关的一组函数为().A.某,C.e某2,某1,某1B.0,某,某2,某3e某2D.e2某,某e某25.用待定系数法求方程y2yy某2e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.方程tanyd某cot某dy0所有常数解是.2.若yy1(某),yy2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.23.方程y1y满足解的存在唯一性定理条件的区域是.某2某某2某某2某某22某4.已知cot和int是二阶齐次线性方程某a(t)某b(t)某0的两个解,则a(t).5.如果常系数线性方程组某A某的特征值的实部都是负数,则该方程组的任一解当t时收敛于.三、求下列一阶微分方程的通解1.dyyytand某某某dyy某22.d某2某2y3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解1.t某3t某5某02.某''某tant2d某4某5ydt五、求解常微分方程组.dy4y5某dt某ya某3六、判定系统(这里的a)的零解稳定性.3y某ay七、设y(某)在[0,)上连续可微,且有lim[y(某)y(某)]0,试证:limy(某)0.某某。
常微分方程练习题

常微分方程练习题在数学中,微分方程是研究函数及其导数之间关系的方程。
常微分方程(Ordinary Differential Equation,ODE)是指只含有一个自变量的微分方程。
常微分方程的研究对于很多领域都具有重要意义,比如物理学、经济学、工程学等。
本文将通过一些常见的常微分方程练习题来帮助读者巩固对这一概念的理解。
练习题一:一阶线性常微分方程求解微分方程 $\frac{{dy}}{{dx}} + y = 2x$。
解答:根据微分方程的一阶线性常数系数形式,我们可以将方程写为$\frac{{dy}}{{dx}} + P(x)y = Q(x)$ 的形式,其中 $P(x) = 1$,$Q(x) =2x$。
首先,我们求解齐次线性微分方程 $\frac{{dy_{h}}}{{dx}} + y_{h} = 0$。
解得 $y_{h} = Ce^{-x}$,其中 $C$ 为常数。
接下来,我们求解非齐次线性微分方程的特解。
首先,我们猜测特解形式为 $y_{p} = Ax + B$,代入微分方程得到 $A = 2$,$B = -1$,因此特解为 $y_{p} = 2x - 1$。
最后,将齐次解和特解相加,得到原微分方程的通解为 $y = Ce^{-x} + 2x - 1$。
练习题二:二阶齐次常微分方程求解微分方程 $y'' - 4y' + 4y = 0$。
解答:首先,我们设 $y = e^{rx}$,代入微分方程得到 $r^{2} - 4r + 4 = 0$。
解这个二次方程得到重根 $r = 2$。
因此,齐次线性微分方程的通解为 $y = (C_{1} + C_{2}x)e^{2x}$,其中 $C_{1}$ 和 $C_{2}$ 为常数。
练习题三:二阶非齐次常微分方程求解微分方程 $y'' + 3y' + 2y = 4x^{2} + 1$。
解答:首先,我们求解齐次线性微分方程 $y'' + 3y' + 2y = 0$。
大学常微分方程习题

常微分方程(A)一、是非题1.任意微分方程都有通解。
( )2.微分方程的通解中包含了它所有的解。
( )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( )4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数)。
() 6.y y sin ='是一阶线性微分方程。
( )7.xy y x y +='33不是一阶线性微分方程。
( )8.052=+'-''y y y 的特征方程为0522=+-r r 。
( )9.221xy y x dx dy+++=是可分离变量的微分方程。
( )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是 。
②()()022=-++dy y x y dx x xy 是 。
③x yy dx dyx ln ⋅=是 。
④x x y y x sin 2+='是 。
⑤02=-'+''y y y 是 。
2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。
3.x e y 2-=''的通解是 。
4.x x y cos 2sin -=''的通解是 。
5.124322+=+'+'''x y x y x y x 是 阶微分方程。
6.微分方程()06='-''⋅y y y 是 阶微分方程。
7.xy 1=所满足的微分方程是 。
8.x y y 2='的通解为 。
9.0=+xdy y dx 的通解为 。
10.()25112+=+-x x y dx dy ,其对应的齐次方程的通解为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题
1-1求下列两个微分方程的公共解。
(1)422x x y y -+='
(2)2422y y x x x y --++='
解 两方程的公共解满足条件
4224222x x y y y x x x -+=--++,
即
022224=-+-y x y x ,
0))(122(22=-++y x y x ,
所以2
x y =或2212
x y +-=。
代入检验可知2
212
x y +-=不符合,所以两方程的公共解为2x y =。
评注:此题是求解方程满足一定条件的解,即求两个微分方程的公共解。
在求解时由于令其导数相等,很容易产生增解,因而要对所求结果回代原方程进行检验,舍去增解。
1-2 求微分方程02
=-'+'y y x y 的直线积分曲线。
解 设直线积分曲线为b ax y +=,则a y =',代入原方程得 02≡--+b ax xa a ,
即0)()(2
≡-+-b a a a x ,
所以 ⎩⎨⎧=-=-0
02b a a a , 可得0==b a 或1==b a 。
因而所求直线积分曲线为0=y 或1+=x y 。
评注:此题是求解方程的部分解,采用的是待定系数法。
待定系数法是求解常微分方程常用的方法之一,有待定常数法和待定函数法。
本题首先设出满足题设条件的含有待定常数
的解,然后代入原方程来确定待定常数,解决此类问题的关键在于正确地设出解的形式。
1-3 微分方程32224xy y y x =-',证明其积分曲线是关于坐标原点成中心对称的曲线。
证 设)(x y ϕ=满足微分方程,只须证明)(x y --=ϕ也满足方程即可。
作变换x t -=,则证明)(t y ϕ-=满足方程即可,代入方程两端,并利用)(x y ϕ=满足此方程,得
左=)())((42222t dx
dt t t ϕϕ-', )()1)((42222t t t ϕϕ--'=
)()(4222t t t ϕϕ-'=)(3t t ϕ==右
故)(t y ϕ-=也满足方程32224xy y y x =-'。
评注:为了验证)(x y --=ϕ也满足方程,利用积分曲线的性质,进行变量代换x t -=,将)(x y --=ϕ变换成)(t y ϕ-=后,问题就很容易解决了。
1-4 物体在空气中的冷却速度与物体和空气的温差成正比,如果物体在20分钟内由100℃冷却至60℃,那么,在多长时间内,这个物体由100℃冷却至30℃?假设空气的温度为20℃
解 设物体在空气中时刻t 的温度为)(t T T =,则依牛顿冷却定理得
)20(--=T k dt
dT , 其中k 是比例常数。
两边积分,得通解为kt Ce T -+=20。
由于初始条件为:,100)0(=T 故得80=C ,所以kt e T -+=8020。
将60,20==T t 代入上式后即得:202ln =
k , 即 20202ln )2
1(80208020t t e T ⋅+=+=-。
故当30=T 时,有20)2
1(802030t ⋅+=,从中解出60=t (分钟),因此,在一小时内,可使物体由100℃冷却至30℃。
评注:这是来自于物理学领域的问题,注意运用基本定律和定理来建立微分方程模型。
1-5 求一曲线族,使它的切线介于坐标轴间的部分被切点分成相等的两部分。
解 解法 1 设所求曲线方程为)(x y y =,过曲线上任一点),(y x P 的切线交ox 轴于点A ,交oy 轴于点B ,由题意,P 为AB 的中点,不妨设)2,0(),0,2(y B x A ,则切线斜率为
x
y x y K -=--=
2002, 另一方面,曲线在P 点的切线的斜率为dx
dy ,得 x y dx dy -= 将变量分离,得到
x
dx y dy -=, 两边积分得
1ln ln C x y +-=,
因此,方程的通解为C xy =,即所求的曲线族为:)0(≠=C C xy 。
解法2 设所求的曲线为)(x y y =,过曲线上任一点),(y x 的切线方程为
y x X y Y +-'=)(,
它与y x ,轴的交点分别为),0(),0,(y y x x y
y +'-+'-,由题可得 ⎪⎩
⎪⎨⎧+'-=+'-=y y x y x y y x 22, 故这条曲线满足方程
⎪⎩
⎪⎨⎧'-='-=y x y y y x , 由x
y dx dy -=可得方程的解为)0(≠=C C xy 。
1-6 求一曲线所满足的微分方程,过该曲线上任何一点的切线与两坐标轴所围成的三角形的面积等于常数2
a 。
解 设所求曲线为)(x y y =,过曲线上任一点),(y x P 的切线方程为
)(x X dx
dy y Y -=-, 与两坐标轴的截距分别为
dx
dy x y a dy dx y x a -=-=21,, 由三角形的面积公式可得
2))((21a dx
dy x y dy dx y x =--, 整理可得
22))((a y y x y x y ='
-'-, 这就是所求曲线满足的微分方程。
1-7 求一曲线所满足的微分方程,使该曲线上任一点的切线与该点的向径夹角为零。
解 设曲线为)(x f y =,过其上点),(y x 切线斜率为
dx dy ,向径的斜率为x y ,由于二者的夹角为零,所以x
y dx dy =,即所求曲线满足的微分方程为 0=-'y y x 。
评注:以上三题的求解方法类似于例1-3,这是考研中常见的题型。
第二章习题
1. 22(1)(1)0x y dx y x dy -+-=
2. 222()0xydx x y dy +-=
3.
220ydx xdy x y -=+ 4. (1)10x
x y y x e dx e dy y
⎛
⎫++-= ⎪⎝⎭ 5. ln (ln )0y ydx x y dy +-=
6. 22dy y x dx xy
-= 7. 3(')1'x y y =+
8. 22('1)(2')y y y -=-
9. ()2
''y y y e = 第三章习题
1. 试用逐次逼近法求方程
2y x dx
dy -=通过(0,0)的第三次近似解,并求在:2,2R x y ≤≤上的误差. 2. 试用逐次逼近法求方程
2y x dx dy +=通过点(0,0)的第三次近似解,并求在:1,1
R x y ≤≤上的误差. 3. 设1,11:),(≤≤+∈y x D y x ,求初值问题⎪⎩⎪⎨⎧=--=0
)1(22y y x dx dy 的解的存在区间,并求第
二次近似解,给出在解的存在区间的误差估计。
4. 求解方程01)()(23=--dx
dy y dx dy x ,并求奇解(如果存在的话)。
5. 求解方程
'y xy =+(如果存在的话)。