高等数学 第七章 常微分方程
合集下载
高等数学-第七章-微分方程

工程应用
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
高等数学 上册 第7章 微分方程

形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)
②
两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x
;
5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2
①
假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程
①
dx
y x1 3
②
由①得
( C为任意常数)
第七章 常微分方程 第二节 一阶微分方程

3u + 2 3 du = − d x, 2 x u(u +1)
2
两边积分, 两边积分,得
20112011-4-16 高 等 数 学 习 题 课 16
3u + 2 ∫ u(u2 +1) du = −3ln | x | +lnC,
2
3u2 + 2 2 u du = ∫ ( + 2 )du 由于 ∫ 2 u u +1 u(u +1) 1 2 ( = 2ln | u| + ln u +1) +C1 , 2 C 2 2 故方程的通解为 u u +1 = , 3 x
5
例2 求解方程 yd x + (x − 4x)d y = 0.
2
此方程为一个可分离变量的微分方程. 解 此方程为一个可分离变量的微分方程.分离 变量, 变量,得
dy dx = , 2 y 4x − x
dx 1 1 1 = + d x, 2 4 x 4− x 4x − x
因
两边积分, 两边积分,得
第七章(1) 第七章
习题课
一阶微分方程的解法及应用
一、一阶微分方程求解 二、解微分方程应用问题 三、课外练习题
20112011-4-16
高 等 数 学 习 题 课
1
一、一阶微分方程求解
1. 一阶标准类型方程求解 几个标准类型: 可分离变量方程, 齐次方程, 几个标准类型 可分离变量方程 齐次方程 线性方程 关键: 关键 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解 代换自变量 变量代换法 —— 代换自变量 代换因变量 代换因变量 代换某组合式 代换某组合式
03考研 考研
2
两边积分, 两边积分,得
20112011-4-16 高 等 数 学 习 题 课 16
3u + 2 ∫ u(u2 +1) du = −3ln | x | +lnC,
2
3u2 + 2 2 u du = ∫ ( + 2 )du 由于 ∫ 2 u u +1 u(u +1) 1 2 ( = 2ln | u| + ln u +1) +C1 , 2 C 2 2 故方程的通解为 u u +1 = , 3 x
5
例2 求解方程 yd x + (x − 4x)d y = 0.
2
此方程为一个可分离变量的微分方程. 解 此方程为一个可分离变量的微分方程.分离 变量, 变量,得
dy dx = , 2 y 4x − x
dx 1 1 1 = + d x, 2 4 x 4− x 4x − x
因
两边积分, 两边积分,得
第七章(1) 第七章
习题课
一阶微分方程的解法及应用
一、一阶微分方程求解 二、解微分方程应用问题 三、课外练习题
20112011-4-16
高 等 数 学 习 题 课
1
一、一阶微分方程求解
1. 一阶标准类型方程求解 几个标准类型: 可分离变量方程, 齐次方程, 几个标准类型 可分离变量方程 齐次方程 线性方程 关键: 关键 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解 代换自变量 变量代换法 —— 代换自变量 代换因变量 代换因变量 代换某组合式 代换某组合式
03考研 考研
微分方程

dy P ( x ) y Q( x ) dx
dy 2 dx 2 例如 y x , x sin t t , 线性的; dx dt
yy 2 xy 3, y cos y 1,
非线性的.
高等数学(上)
一阶线性非齐次微分方程的通解为:
ye
Ce
P ( x ) dx
过定点的积分曲线; 微分方程的图形
y f ( x , y , y ) 二阶: y x x0 y0 , y x x0 y0
过定点且在定点的切线的斜率为定值的积分曲线.
高等数学(上)
第二节 一阶微分方程
一、可分离变量的微分方程
二、齐次方程
三、一阶线性微分方程
cos x C.
所以原方程通解为
y
1 cos x C . x
高等数学(上)
1 sin x 求方程 y y 的通解. x x
1 解 P( x) , x
sin x Q( x ) , x
sin x y x ln x sin x ln x e e dx C x 1 1 sin xdx C cos x C . x x
高等数学(上)
( x, C1 )
例3 求方程 xy
解
(5)
y
(4)
0 的通解.
(5)
设y
(4)
P ( x ), y
P ( x )
(4)
代入原方程 分离变量,得
xP P 0, (P 0)
1 2 两端积分,得 y C1 x C 2 , 2
原方程通解为
高等数学(上)
高等数学-第七章-微分方程

即求 s = s (t) .
制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
高等数学第七章微分方程微分方程

了解高阶线性微分方程阶的结构,并知道高阶常系数齐线 性微分方程的解法.
熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念
解
2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2
解
对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:
故
等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析
因
本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.
熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念
解
2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2
解
对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:
故
等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析
因
本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.
高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
《高等数学》 第七章

C
;
第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1
.
求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.
解
将方程化为齐次方程的形式
dy dx
y x
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点
五种标准类型的一阶方程的求解
可降阶的高阶方程的求解
二阶常系数齐次和非齐次线性方程的求解
难点
求解全微分方程 求常系数非齐次线性方程的通解
基本要求
①明确微分方程的几个基本概念
②牢固掌握分离变量法,能熟练地求解可 分离变量的微分方程
③牢固掌握一阶线性微分方程的求解公式,
会将Bernoulli 方程化为一阶线性方程来求解 ④掌握全微分方程的解法
三、主要问题-----求方程的解
微分方程的解: 代入微分方程能使方程成为恒等式的函数.
设y ( x )在区间 I 上有 n 阶导数,
F ( x, ( x ), ( x ),, ( n) ( x )) 0.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且独 立的任意常数的个数与微分方程的阶数相同 .
例 y y ,
y y 0,
(2)特解:
通解 y ce x ;
通解 y c1 sin x c2 cos x;
确定了通解中任意常数以后的解.
解的图象:
通解的图象:
微分方程的积分曲线.
积分曲线族.
初始条件:
用来确定任意常数的条件.
初值问题: 求微分方程满足初始条件的解的问题.
d x 方程 2 k 2 x 0的解. 并求满足初始条件 dt dx x t 0 A, 0 的特解. dt t 0 dx 解 kC1 sin kt kC2 cos kt , dt 2 d x 2 2 k C cos kt k C 2 sin kt , 1 2 dt 2 d x 将 2 和x的表达式代入原方程 , dt
⑤会用降阶法求解几种特殊类型的高阶方程 ⑥掌握二阶线性微分方程解的结构并能熟 练地应用特征根法、待定系数法求解二阶 常系数线性方程
一、问题的提出
例 1 一 曲 线 通 过 点 (1,2), 且 在 该 曲 线 上 任 一 点
M ( x , y ) 处的切线的斜率为2 x ,求这曲线的方程.
解ቤተ መጻሕፍቲ ባይዱ
设所求曲线为 y y( x )
y f ( x , y ) 一阶: y x x0 y 0
过定点的积分曲线;
y f ( x , y , y ) 二阶: y y , y y 0 0 x x x x 0 0
过定点且在定点的切线的斜率为定值的积分曲线.
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分
y
( n)
( n1 ) f ( x , y, y ,, y ).
分类3: 线性与非线性微分方程.
y P ( x ) y Q( x ),
2 x( y ) 2 yy x 0;
分类4: 单个微分方程与微分方程组.
dy dx 3 y 2 z , dz 2 y z , dx
故 s 0.2t 20t ,
2
20 开始制动到列车完全停住共需 t 50(秒), 0 .4
列车在这段时间内行驶了
s 0.2 50 20 50 500(米).
2
二、微分方程的定义
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程 . 例
y 2 y 3 y e x , z 2 x y, ( t x )dt xdx 0, x
y xy ,
实质: 联系自变量,未知函数以及未知函数的 某些导数(或微分)之间的关系式.
分类1: 常微分方程, 偏常微分方程.
微分方程的阶: 微分方程中出现的未知函数的最 高阶导数的阶数.
分类2: 一阶微分方程 F ( x , y, y) 0,
y f ( x , y );
高阶(n)微分方程 F ( x , y , y,, y ( n ) ) 0,
所求特解为 x A cos kt . 补充: 微分方程的初等解法: 初等积分法.
求解微分方程
求积分
(通解可用初等函数或积分表示出来)
解
设制动后t 秒钟行驶 s 米, s s(t )
ds d 2s t 0时, s 0, v 20, 0.4 2 dt dt ds 2 s 0.2t C1t C 2 v 0.4t C1 dt
代入条件后知
C1 20, C 2 0
ds v 0.4t 20, dt
2
k 2 (C1 cos kt C 2 sin kt ) k 2 (C1 cos kt C 2 sin kt ) 0.
故 x C1 cos kt C2 sin kt 是原方程的解 .
x t 0 dx A, 0, dt t 0
C1 A, C2 0.
常微分方程
在力学、物理学及工程技术等领域中 为了对客观事物运动的规律性进行研究, 往往需要寻求变量间的函数关系,但根据 问题的性质,常常只能得到待求函数的导 数或微分的关系式,这种关系式在数学上 称之为微分方程。微分方程又分为常微分 方程和偏微分方程,本章讨论的是前者。
常微分方程是现代数学的一个重要分支,内容 十分丰富,作为一种有效的工具在电子科学、自动 控制、人口理论、生物数学、工程技术以及其它自 然科学和社会科学领域中有着十分广泛的应用 由于学时有限,高等数学中的常微分方程仅包 含几种特殊类型的一阶微分方程的求解,可通过降 阶求解的高阶微分方程,二阶常系数齐次和非齐次 线性微分方程及其解的结构和特殊情况下的求解方 法。 本章先从解决这类实际问题入手,引出微 分方程的一些基本概念,然后着重讨论一些特殊 类型的微分方程的求解方法。
dy 2x dx
y 2 xdx
其中 x 1时, y 2
即 y x2 C,
求得C 1,
所求曲线方程为 y x 2 1 .
例 2 列车在平直的线路上以 20 米/秒的速度行驶, 2 当制动时列车获得加速度 0.4 米/秒 ,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?