第7章常微分方程数值解法
常微分方程的数值解法

常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。
然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。
在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。
这些方法可以给出解的近似表达式,通常称为近似解析方法。
还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。
利用计算机解微分方程主要使用数值方法。
我们考虑一阶常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy在区间[a, b]上的解,其中f (x, y )为x, y 的已知函数,y 0为给定的初始值,将上述问题的精确解记为y (x )。
数值方法的基本思想是:在解的存在区间上取n + 1个节点b x x x x a n =<<<<= 210这里差i i i x x h -=+1,i = 0,1, …, n 称为由x i 到x i +1的步长。
这些h i 可以不相等,但一般取成相等的,这时na b h -=。
在这些节点上采用离散化方法,(通常用数值积分、微分。
泰勒展开等)将上述初值问题化成关于离散变量的相应问题。
把这个相应问题的解y n 作为y (x n )的近似值。
这样求得的y n 就是上述初值问题在节点x n 上的数值解。
一般说来,不同的离散化导致不同的方法。
§1 欧拉法与改进欧拉法 1.欧拉法1.对常微分方程初始问题(9.2))((9.1) ),(00⎪⎩⎪⎨⎧==y x y y x f dx dy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
常微分方程的数值解

f ( x, y1 ) f ( x, y2 ) L y1 y2
(其中 L 为 Lipschitz 常数)则初值问题( 1 )存 在唯一的连续解。
求问题(1)的数值解,就是要寻找解函数在一 系列离散节点x1 < x2 <……< xn < xn+1 上的近似 值y1, y 2,…,yn 。 为了计算方便,可取 xn=x0+nh,(n=0,1,2,…), h称为步长。
(1),(2)式称为初值问题,(3)式称为边值问题。 在实际应用中还经常需要求解常微分方程组:
f1 ( x, y1 , y2 ) y1 ( x0 ) y10 y1 (4) f 2 ( x, y1 , y2 ) y2 ( x0 ) y20 y2
本章主要研究问题(1)的数值解法,对(2)~(4)只 作简单介绍。
得 yn1 yn hf ( xn1 , yn1 )
上式称后退的Euler方法,又称隐式Euler方法。 可用迭代法求解
二、梯形方法 由
y( xn1 ) y( xn )
xn1 xn
f ( x, y( x))dx
利用梯形求积公式: x h x f ( x, y( x))dx 2 f ( xn , y( xn )) f ( xn1 , y( xn1 ))
常微分方程的数言 简单的数值方法 Runge-Kutta方法 一阶常微分方程组和高阶方程
引言
在高等数学中我们见过以下常微分方程:
y f ( x, y, y) a x b y f ( x, y ) a x b (2) (1) (1) y ( x ) y , y ( x ) y 0 0 0 0 y ( x0 ) y0 y f ( x, y, y) a x b (3) y(a) y0 , y(b) yn
第7章 常微分方程初值问题的数值解法

例1 函数f ( t , y ) = t y 在区域D0 = {( t , y ) | 1 ≤ t ≤ 2, −3 ≤ y ≤ 4}
关于y满足Lipschitz条件,相应的Lipschitz常数可取为L = 2
3 存在性定理 定理1 设函数f ( t , y )在凸集D ⊂ R 2中有定义,若存在常数
(7.2.7)
称为显式Runge-Kutta(龙格-库塔 )方法,简称R-K方法,
其中正整数N 称为R-K方法的级,所有ci , ai , bij 都是待定 常数。
根据定义(7.2.7),N 级R-K方法(7.9)的局部截断误差为
Rn+1 = y( t n+1 ) − y( t n ) − h∑ ci ki
dy 其斜率为 = f ( t0 , y0 ) dt ( t0 , y0 ) 由 点 斜 式 写 出 切线 方 程 dy y = y0 + ( t − t0 ) = y0 + ( t − t0 ) f ( t0 , y0 ) dt ( x0 , y )
0
等步长为h,则t1 - t0 = h, 可由切线算出 y1 : 则 y1 = y0 + hf ( t0 , y0 ) 按此逐步计算y( tn ), 在tn +1处的值 : yn+1 = yn + hf ( tn , yn ) y 注意: 这是“ 注意 : 这是 “ 折 yN 线法” 而非“ 线法 ” 而非 “ 切 线法” 线法 ” 除第一个 点是曲线切线外, 点是曲线切线外 , 其他点不是切线 y2 而是折线(如右 y1 y0 图所示)。 图所示 。
பைடு நூலகம்
则称数值解法(7.5)为显式方法。否则,称数值解法(7.3) 为隐式方法。
第七章常微分方程数值解法

h2 h3 y ( xi 1 ) y ( xi h) y ( xi ) hy '( xi ) y ''( xi ) y '''( xi ) 2! 3!
丢掉高阶项,有
y( xi 1 ) y( xi h) y( xi ) hy '( xi ) yi hf ( xi , yi )
| f ( x, y1 ) f ( x, y2 ) | L | y1 y2 | ,
那么模型问题在 [ a, b] 存在唯一解。
Lipschitz 连续: | f ( x, y1 ) f ( x, y2 ) | L | y1 y2 | .
(1) 比连续性强: y1 y2 可推出 f ( x, y1 ) f ( x, y2 ) ; (2) 比连续的 1 阶导弱:具有连续的 1 阶导,则
f | f ( x, y1 ) f ( x, y2 ) || ( ) || y1 y2 | L | y1 y2 | . y
常微分方程数值解法
目标:计算出解析解 y ( x) 在一系列节点 a x0 x1 xn1 xn b 处的近似值 yi y( xi ) ,即所谓的数值解。节点间距 hi xi 1 xi ,一般 取为等距节点。
常微分方程初值问题的数值解法一般分为两大类: (1)单步法:在计算 yn 1 时,只用到前一步的值,即用到 xn1 , xn , yn ,则给定初
值之后,就可逐步计算。例如 Euler 法、向后欧拉法、梯形公式、龙格-库塔法;
(2) 多步法: 这 类 方 法 在 计算 yn 1 时 , 除 了 用 到 xn1 , xn , yn 外 , 还 要 用到
第7章 常微分方程数值解法

代入(6―3)式得
h yi 1 yi [ f ( xi , yi ) f ( xi 1 , yi 1 )] 2 i 0,1, 2, , n 1
(6―5)
这样得到的点列仍为一折线,只是用平均斜率 来代替原来一点处的斜率。式(6―5)称为改进的欧拉 公式。
不难发现,欧拉公式(6―3)是关于yi+1 的显式,只
h y xi 1 yi 1 f xi 1 , y xi 1 f xi 1 , yi 1 2 (6―15) h 3 '' f 12
因此
hL h3 y ( xi 1 ) yi 1 y ( xi 1 ) yi 1 f ( ) 2 12 h3 (1 q) y ( xi 1 ) yi 1 f ( ) 12 y ( xi 1 ) yi 1 O ( h 3 )
c 并取 yi 1 yi(1)
(6―7)
虽然式(6―7)仅迭代一次,但因进行了预先估计,
故精度却有较大的提高。 在实际计算时,还常常将式(6―7)写成下列形式:
k1 f ( xi , yi ) k f ( x h, y hk ) i i 1 2 h yi 1 yi 2 (k1 k2 ) i 0,1, 2,
在进行误差分析时,我们假设yi=y(xi),考虑用
yi+1 代替y(x
i+1)而产生截断误差,确定欧拉公式和改
进的欧拉公式的精确度。 设初值问题(6―1)的准确解为y=y(x),则利用泰 勒公式
y ( xi 1 ) y ( xi h ) h2 y ( xi ) hy ( xi ) y ( xi ) 2! h3 y ( xi ) 3!
常微分方程数值解法

第七章 常微分方程数值解法常微分方程中只有一些典型方程能求出初等解(用初等函数表示的解),大部分的方程是求不出初等解的。
另外,有些初值问题虽然有初等解,但由于形式太复杂不便于应用。
因此,有必要探讨常微分方程初值问题的数值解法。
本章主要介绍一阶常微分方程初值问题的欧拉法、龙格-库塔法、阿达姆斯方法,在此基础上推出一阶微分方程组与高阶方程初值问题的 数值解法;此外,还将简要介绍求解二阶常微分方程值问题的差分方法、试射法。
第一节 欧拉法求解常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy(1)的数值解,就是寻求准确解)(x y 在一系列离散节点 <<<<<n x x x x 210 上的近似值 ,,,,,210n y y y y{}n y 称为问题的数值解,数值解所满足的离散方程统称为差分格式,1--=i i ix x h 称为步长,实用中常取定步长。
显然,只有当初值问题(1)的解存在且唯一时,使用数值解法才有意义,这一前提条件由下 面定理保证。
定理 设函数()y x f ,在区域+∞≤≤-∞≤≤y b x a D ,:上连续,且在区域D 内满足李普希兹(Lipschitz)条件,即存在正数L ,使得对于R 内任意两点()1,y x 与()2,y x ,恒有()()2121,,y y L y x f y x f -≤-则初值问题(1)的解()x y 存在并且唯一。
一、欧拉法(欧拉折线法)若将函数)xy 在点nx处的导数()n x y '用两点式代替, 即()hx y x y x y n n n )()(1-≈'+,再用n y 近似地代替()n x y ,则初值问题(1)变为⎩⎨⎧==++=+ ,2,1,0),()(001n x y y y x hf y y n n n n(2)(2)式就是著名的欧拉(Euler)公式。
以上方法称 为欧 拉法或欧拉折线法。
实验报告七常微分方程初值问题的数值解法

浙江大学城市学院实验报告课程名称数值计算方法实验项目名称常微分方程初值问题的数值解法 实验成绩指导老师签名日期2015/12/16 一.实验目的和要求1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题;二.实验内容和原理编程题2-1要求写出Matlab 源程序m 文件,并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上; 2-1 编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 2-2 分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度; 2-3 分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法; 3龙格-库塔方法;2-4 分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较; MATLAB 相关函数求微分方程的解析解及其数值的代入dsolve‘egn1’,‘egn2’,‘x ’ subsexpr,{x,y,…},{x1,y1,…}其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t ; subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入; >>symsxyz>>subs'x+y+z',{x,y,z},{1,2,3} ans= 6>>symsx>>subs'x^2',x,2 ans= 4>>s=dsolve‘12Dy y ∧=+’,‘(0)1y =’,‘x ’ ans= >>symsx >>subss,x,2 ans=右端函数(,)f x y 的自动生成f=inline ‘expr ’,’var1’,‘var2’,……其中’expr ’表示函数的表达式,’var1’,‘var2’表示函数表达式中的变量,运行该函数,生成一个新的函数表达式为fvar1,var2,……; >>f=inline'x+3y','x','y' f=Inlinefunction: fx,y=x+3y >>f2,3 ans= 114,5阶龙格-库塔方法求解微分方程数值解t,x=ode45f,ts,x0,options其中f 是由待解方程写成的m 文件名;x0为函数的初值;t,x 分别为输出的自变量和函数值列向量,t的步长是程序根据误差限自动选定的;若ts=t0,t1,t2,…,tf,则输出在自变量指定值,等步长时用ts=t0:k:tf,输出在等分点;options 用于设定误差限可以缺省,缺省时设定为相对误差310-,绝对误差610-,程序为:options=odeset ‘reltol ’,rt,’abstol ’,at,这里rt,at 分别为设定的相对误差和绝对误差;常用选项见下表;选项名 功能 可选值 省缺值 AbsTol 设定绝对误差正数 RelTol 设定相对误差 正数InitialStep 设定初始步长 正数 自动 MaxStep设定步长上界正数MaxOrder 设定ode15s 的最高阶数 1,2,3,4,5 5 Stats 显示计算成本统计 on,off off BDF 设定ode15s 是否用反向差分on,offoff例:在命令窗口执行>>odefun =inline ‘2*y t y -’,‘t ’,‘y ’;>>[],45(,[0,4],1)t y ode odefun =;ans=>>t y ‘o-’,%解函数图形表示>>45(,[0,4],1)ode odefun %不用输出变量,则直接输出图形 >>[],45(,0:4,1)t y ode odefun =;[],t yans=三.操作方法与实验步骤包括实验数据记录和处理2-1编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1Euler 法y=eulera,b,n,y0,f,f1,b1 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; yi+1=yi+hfxi,yi; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; for i=1:100y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解'改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 %求微分方程的数值解 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; T1=fxi,yi; T2=fxi+1,yi+hT1; yi+1=yi+h/2T1+T2; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; fori=1:100 y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解' 2-2分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度;1向前欧拉法>>euler0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8(2)改进欧拉法>>eulerpro0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8改进欧拉法的精度比向前欧拉法更高; 2-3分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法;2-4分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较;1>>euler0,50,50,,inline'','t','p','Dp=','p0= 1' ans= 精确解为 s=1-99/100expx/500 ans=Columns1through82>>dsolve'Dp=','p0=','t' ans=1-99/100expt/500 >>1-99/100exp ans=与欧拉法求得的精确值差0,0001四.实验结果与分析。
数值分析-第七章小结

第七章 常微分方程初值问题的数值解法--------学习小结姓名 班级 学号一、 学习体会本章研究求解常微分方程初值问题的数值方法.构造数值方法主要有两条途径:基于数值积分的构造方法和基于泰勒展开的构造方法.后一种方法更灵活,也更具有一般性.泰勒展开方法还有一个优点,它在构造差分公式的同时可以得到关于截断误差的估计.常微分方程初值问题的数值解法的基本思想就是对常微分方程初值问题的数值解法,就是要算出精确解y(x)在区间[a,b]上的一系列离散节点处的函数值的近似值.数值解法需要把连续性的问题加以离散化,从而求出离散节点的数值。
本章介绍了常微分方程初值问题的基本数值解法,包括单步法和多步法。
单步法主要有欧拉法、改进欧拉法和龙格—库塔方法,多步法是Adams 法。
它们都是基于把一个连续的定解问题离散化为一个差分方程来求解,是一种步进式的方法。
用多步法求常微分方程的数值解可获得较高的精度。
实际应用时,选择合适的算法有一定的难度,既要考虑算法的简易性和计算量,又要考虑截断误差和收敛性、稳定性。
谢谢半年多来的老师和助教的辛勤劳动!二、 知识梳理7.1 常微分方程初值问题的数值解法一般概念基本思想:将初值问题离散化步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000'(,),()y f t y t t Ty t y =≤≤⎧⎨=⎩ 的数值解法的一般形式是1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-显式Euler 公式10(,),0,1,n n n n n y y hf t y t t nh n +=+⎧⎨=+=⎩隐式Euler 公式1110(,),0,1,n n n n n y y hf t y t t nh n +++=+⎧⎨=+=⎩7.2 显示单步法7.2.1 显示单步法的一般形式1(,,),(0,1,...,1)n n n n y y h t y h n M ϕ+=+=-单步法的局部截断误差111()()[,(),]n n n n n R y t y t h t y t h φ---=--整体截断误差()n n n y t y ε=-定理7.2.1 单步法的阶设增量函数在区域00{(,,)|,||,0}D t y h t t T y h h =≤≤<∞≤≤内对变量y 满足Lipschitz 条件,即存在常数K ,使对D 内任何两点1(,,)t u h 和2(,,)t u h ,不等式1212|(,,)(,,)|||t u h t u h K u u ϕϕ-≤-成立,那么,若单步法的局部截断误差1n R +与1(1)p h p +≥同阶,即11()p n R O h ++=,则单步法的整体截断误差1n ε+与p h 同阶,即1()p n O h ε+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.使用数值积分的方法
对于微分方程 y’=f(x,y)两边求x0到 x的定积分
即
x x0
dy dx
dx
x x0
f
(
x,
y(
x))dx
x
y( x) y( x0 ) x0 f (t, y(t))dt
或写为
x
y( x) y0
f (t, y(t))dt x0
这就是与初值问题
y' f ( x, y)
本章只讨论x0, x1,…,xn等距的情 况,设
xi+1-xi = h,
i = 0, 1, …, n-1
上式中的h值称为步长 .
对于常微分初值问题
一般解 y = y(x) 数值解
x x0 x1 x2 … xn … y y0 y1 y2 … yn …
注:本章使用的符号
y(xi) : 一 般 解 y=y(x) 在 x=xi 处的精确值.
根据y’=f(x,y),得公式
yi1 yi hf y0 y(x0 )
(
xi
,
yi i
)
0,1,2
又因为y’=f(x,y),故
y" f f dy f f f x y dx x y
故若取泰勒展式的前三项,则可 得公式
yn1
yn
hy'n
h2 2
y"n
yn hf ( xn , yn )
h2 2
f
x
( xn,
f (xn,
yn ) yn )
f
'y
(
xn
,
yn
)
与上类似,一般可取公式为如下形
式
yn1
yn
hy'n
h2 2!
y"n
hp p!
y( p) n
注:应用泰勒公式求数值解,从形式上看 简单,其实具体构造这种公式往往是相当困
难的,因为它需要提供导数值,y(j)n当阶数
提高时,求导过程可能很复杂,因此泰勒公 式通常不直接使用,但可以用它来启发思路。
y(
x0
)
y0
常微分方程
理论上可以证明:只要函数f(x,y)适当光 滑—关于y满足李普希兹(Lipschitz)条件
| f ( x, y) f ( x, y) | L | y y |
则初值问题的解存在唯一。
例 y' 2x
y(0)
0
y'1 2xy
y(0)
0
思考:常微分方程中的未知数是什么?
yi y( xi ) (i 1, ... , n)
节点间距 hi xi1 xi (i 0, ... , n 1) 为步长,通常采用等距节点, 即取 hi = h (常数)。
§7.2.1 欧拉方法
➢ 欧拉公式:
向前差商近似导数
x0
y( x0 )
y( x1 ) h
y(x0 )
y( x1 ) y( x0 ) hy( x0 ) y0 h f ( x0 , y0 )
二、常微分方程的数值解
由于在实用上对初值问题,一般 是要求得到解在若干点上满足规定 精确度的近似值yi,或者是得到一 个满足精确度要求的便于计算的近 似表达式。
故常微分方程的数值解就是求出 在若干点上解的近似值。
定义:常微分方程初值问题的数值解
一般是指在由初始点x0开始的若干 离散的x值处,即对x0<x1<x2<…<xn, 求出准确值y(x1),y(x2),…,y(xn)的近似 值y1,y2,…,yn
第7章 常微分方程数值解法 §7.1 引言
一、有关常微分方程 二、数值解法 三、数值解法的三种类型
/* Numerical Methods for Ordinary Differential Equations */
一、有关常微分方程
1. 什么是常微分方程的初值问题?
初值问题
y f (x, y)
2.使用泰勒公式
在微分方程y’=f(x,y)中,y’是x及 y(x)的函数.由于精确值y(x+h)在 h=0处的泰勒展式为
y(x h) y(x) hy' (x) h2 y"(x) 2
h3 y( x) h4 y (4) (x)
6
24
若取泰勒展式的前两项,则有
y(x+h)y(x)+hy’(x)
的隐函数.
§7.2 简单数值方法与基本概念
一、欧拉公式 二、隐式的欧拉公式 三、梯形公式 四、中点欧拉公式 五、改进的欧拉公式
考虑一阶常微分方程的初值问题 /* InitialValue Problem */:
dy f ( x, y) x [a, b] dx y(a) y0
要计算出解函数 y(x) 在一系列节点 a = x0< x1<…< xn= b 处的近似值
即 y(x+h)≈y(x)+hf(x,y)
故原初值问题可离散化为
yi1 yi hf y0 y(x0 )
(
xi
,
yi i
)
0,1,2
于是由初始值y(x0)=y0出发,可 依次地计算出
y1=y0+hf(x0,y0) y2=y1+hf(x0+h,y1)
……
yn=yn-1+hf(x0+(n-1)h,yn-1) ……
y(
x0
)
y0
等价的积分方程。只要用某种数值 积分方法便可建立起近似公式。
例:对积分部分应用左矩形公式,则
有
y(xi1) y(xi )
xi1 f (t, y(t))dt xi
xi1 xi
2
f (xi , y(xi ))
yi1 yi hf (xi , yi )
y0
y(x0 )
2.常微分方程的一般解(解析解)
对一些典型的微分方程(可分离变量方程, 一阶线性方程等等),有可能找出它们的一 般解表达式,然后用初始条件确定表达式 中的任意常数,这样解即能确定。
例如 求解
y' 2x
y(0)
0
解:分离变量得 dy=2xdx 积分得y=x2+c 由初值得c=0 故解为y=x2
注:生产和科研中所处理的微分方 程往往很复杂且大多得不出一般解
i 0,1,2
例:对积分部分应用梯形公式,则有
y(
xi1
) y(xi
xi1 xi
2
) f
( xi
,
xi1 f (t, xi y(xi )) f
y(t))dt ( xi1, y( xi1
))
故其数值公式为
yi1
yi
h[ 2
f
(xi ,
yi )
f
( xi 1 ,
yi 1 )]
其 特 点 是 yi+1 表 示 成 xi , xi+1 及 yi
yi : 一 般 解 y=y(x) 在 x=xi 处 的近似值.
三、数值解法的三种类型
1.用差商代替导数
由导数定义
y'(x) lim y(x h) y(x)
n0
h
故若h的值较小,则有
y'(x) y(x h) y(x) h
代入y’= f (x,y)可得
y(x h) y(x) f (x, y) h