相似三角形的性质和判定精品教案例题练习详解,绝对精品

合集下载

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。

(2)顶角或底角对应相等的两个等腰三角形相似。

例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。

(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。

2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。

相似三角形性质与判定教案

相似三角形性质与判定教案

相似三角形性质与判定教案教案标题:相似三角形性质与判定教案目标:1. 理解相似三角形的定义和性质。

2. 掌握相似三角形的判定方法。

3. 能够应用相似三角形的性质解决实际问题。

教学步骤:引入活动:1. 引入活动:通过播放一个有关相似三角形的视频,激发学生对相似三角形的兴趣,并引发他们的思考。

知识讲解:2. 介绍相似三角形的定义:相似三角形是指对应角相等且对应边成比例的两个三角形。

3. 解释相似三角形的性质:a. 对应角相等:两个相似三角形的对应角相等。

b. 对应边成比例:两个相似三角形的对应边之间的比值相等。

c. 相似三角形的比例因子:相似三角形的任意两条对应边之间的比值相等。

案例分析与讨论:4. 呈现一些相似三角形的案例,并引导学生观察案例中的对应角和对应边,让他们发现相似三角形的性质。

5. 引导学生分析相似三角形的比例因子,帮助他们理解比例因子的概念和作用。

判定方法讲解:6. 介绍相似三角形的判定方法:a. AA 判定法:如果两个三角形的两个角分别相等,则它们是相似三角形。

b. SAS 判定法:如果两个三角形的一个角相等,且两个对应边成比例,则它们是相似三角形。

c. SSS 判定法:如果两个三角形的三条对应边成比例,则它们是相似三角形。

练习与巩固:7. 给学生提供一些练习题,让他们应用相似三角形的性质和判定方法进行求解。

8. 逐步引导学生解答问题,及时纠正错误,确保他们掌握相似三角形的判定方法和应用能力。

拓展活动:9. 鼓励学生进行实际问题的拓展应用,例如计算高楼上的阴影长度、测量不便的物体的高度等,让他们将所学知识应用于实际生活中。

总结与反思:10. 总结相似三角形的性质和判定方法,并与学生一起回顾所学内容,解答他们可能存在的疑问。

11. 鼓励学生思考相似三角形在几何学中的重要性,并对他们在本节课中的表现给予肯定和鼓励。

教学辅助工具:1. 相关视频资料。

2. 教材和练习题。

3. 黑板/白板和彩色粉笔/白板笔。

相似三角形的性质与判定(知识点+例题)

相似三角形的性质与判定(知识点+例题)

海豚教育个性化简案学生姓名:年级:科目:授课日期:月日上课时间:时分------ 时分合计:小时教学目标1.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似);2.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题;3.掌握两个直角三角形相似的判定条件,并能解决简单的问题.重难点导航1. 解决相似三角形相似的应用并会探索;2. 由已知条件寻找相似三角形.教学简案:一、真题演练二、个性化教案三、个性化作业四、错题汇编授课教师评价:□ 准时上课:无迟到和早退现象(今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况(大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字:备注:请交至行政前台处登记、存档保留,隔日无效(可另附教案内页)大写:壹贰叁肆签章:海豚教育个性化教案(真题演练)1.(2013•舟山)若一次函数y=ax+b (a≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y=ax 2+bx 的对称轴为( )A .直线x=1B .直线x=-2C .直线x=-1D .直线x=-42.(2010•天津)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列结论:①b 2-4ac >0; ②abc >0; ④9a+3b+c ③8a+c >0; <0其中,正确结论的个数是( )A .1B .2C .3D .43. (2011•扬州)如图,已知函数xy 3=与y=ax 2+bx (a >0,b >0)的图象交于点P .点P 的纵坐标为1.则关于x 的方程032=++xbx ax 的解为 .海豚教育个性化教案相似三角形的性质与判定知识点一:相似三角形的定义及性质1.定义:三个角对应相等、三条边对应成比例的两个三角形叫做相似三角形。

相似三角形教案完美版

相似三角形教案完美版

面积比与边长比关系
1 2
面积比性质
相似三角形的面积比等于对应边长的平方比,即 如果AB/A'B' = k,则S△ABC/S△A'B'C' = k^2。
面积比推论
如果两个三角形的面积比已知,可以通过求边长 比来进一步确定这两个三角形的相似关系。
3
应用
在解决与相似三角形有关的问题时,可以通过面 积比和边长比的关系来建立方程或不等式,从而 找到问题的解决方案。
三角形的边、角、顶点、高、中线、 角平分线等。
三角形全等条件
全等三角形的定义
能够完全重合的两个三角形。
全等三角形的性质
全等三角形的对应边相等,对应角相等。
全等三角形的判定条件
SSS(三边全等)、SAS(两边和夹角全等)、ASA(两角和夹边全等)、AAS(两角和 一非夹边全等)和HL(直角边斜边定理)。
推论
如果两个三角形有两个对 应的角分别相等,则这两 个三角形相似。
对应边成比例性质
定义
当两个三角形的对应边成比例时,这两个三角形 相似。
性质
相似三角形的对应边成比例,即如果AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
推论
如果两个三角形有两边对应成比例,且夹角相等 ,则这两个三角形相似。
相似多边形概念
01
02
03
相似多边形的定义
两个多边形的对应角相等 ,对应边成比例,则这两比值 。
相似多边形的性质
相似多边形的对应角相等 ,对应边成比例,面积比 等于相似比的平方。
03

相似三角形的判定及习题精讲(含答案)

相似三角形的判定及习题精讲(含答案)

14.75或27, 提示:当小多边形的周长为45时,大多边形的周长为 ×45=75;当大多边形的周长为45时,小多边形的周长为 ×45=27。 15.100cm和40cm
(二)选择题: 1. D 2.A 。 提示:过E作EG//AD交BD于G,则 = = ,设BG=2k, GD=3k, 则BD=5k, CD=15k,
A、 B、 C、 D、
6.正方形ABCD中,E是AD中点,BM⊥CE于M,AB=6cm, 则BM的长为 ( )。
A、12 cm B、
cm C、3 cm D、 cm 7.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变, 那么它的边长要增大到原来的( )倍。
A、2 B、4 C、2 D、64 8.梯形ABCD中,AD//BC,AC、BD交于E点,SΔADE∶SΔADC=1∶3, 则SΔADE∶SΔDBC=( )。 A、1∶3 B、1∶4 C、1∶5 D、1∶6 (三)已知:如图,在ΔABC中,AD为中线,E在AB上,AE=AC,CE交 AD于F,EF∶FC=3∶5,
(五)略 (六)提示:过点D作DM//AC交BC于M,证ΔBDM∽ΔBAC及 ΔQDM∽ΔQBD,通过等比代换可得。
(七)本题由正方形在三角形中的位置不同引起分类讨论。提示如 下: 解:直角三角形内接正方形有两种不同的位置。 如下图:
(1)如图(1),作CP⊥AB于P,交GF于H,则CH⊥GF, ∵ GF//AB, ∴ ΔCGF∽ΔCAB, ∴ = , ∵ ∠ACB=90°,AC=8,BC=6由勾股定理得AB=10, ∵ AC·BC=AB·CP, ∴ CP= = = , 设GF=x, 则CH=
∵ EG//PD,∴ = = =
3.C 4. A 5.D
6.B。 提示:如图,易证ΔBMC∽ΔCDE, ∵ ED=

4.7.1《相似三角形的性质》教案

4.7.1《相似三角形的性质》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用相似三角形性质解决实际问题,如证明几何问题、计算长度等。
-重点举例:
a.证明两个三角形相似,并运用相似性质计算未知长度。
b.利用相似三角形性质解释生活中的实际问题,如建筑设计、摄影等。
2.教学难点
-理解相似三角形的性质及其证明过程Байду номын сангаас尤其是对应高的比相等和对应中线的比相等。
-掌握相似三角形的判定方法,能够正确区分和应用AA、SAS、SSS相似定理。
在学生小组讨论环节,我发现有些小组在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分交流。为了提高讨论效果,我打算在下次教学中增加一些互动环节,引导学生更好地进行思想碰撞,提高他们的沟通能力和逻辑思维能力。
最后,我希望通过这次教学反思,能够让自己在今后的教学中更加得心应手,让学生的学习效果更上一层楼。

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。

相似三角形判定+性质+经典例题分析

相似三角形判定+性质+经典例题分析

相似形(一)一、比例性质1.基本性质: bc ad d cb a =⇔=(两外项的积等于两内项积) 2.反比性质:cda b d c b a =⇔= (把比的前项、后项交换)3.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .4.等比性质:(分子分母分别相加,比值不变.)如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 谈重点:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.5.黄金分割:○1内容 ○2尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a 、b 、c 是非零实数,且k cb a dd a b c d c a b d c b a =++=++=++=++,求k 的值.例题2.已知111x y x y+=+,求y x x y +的值。

概念: 谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关. ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述为:三边对应成比例,两三角形相似。

(6)判定直角三角形相似的方法:①以上各种判定均适用。

②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC,(2)(AB)2=BD·BC ,(3)(AC)2=CD·BC 。

注:由上述射影定理还可以证明勾股定理。

即(AB)2+(AC)2=(BC)2。

要点2:常见的相似三角形的解题思路:(1)、深刻理解并掌握“平行截比例”、“平行截相似”、“比例出平行”等平行与相似的关系;(2)、增强识图能力,能够从已知图形中找出全部相似三角形,从中列出所需比例式;(3)、确定“中间比”,“中间积”,方法是找到两组有联系的比例式或两对相似三角形;(4)、准确完成等积式与比例式的互化,并可以依据图形变化比例式;(5)、没有平行怎么办?运用相似三角形的判定定理,或添加平行线;(6)、一对相似三角形可写出一个连比例,应择需而用或同时运用;(7)、添辅助线要能够达到“一线两相似”,“一线两比例”并能与其它知识兼顾,这是辅助线特征“一举两得”在相似形中的体现;(8)、熟悉下图中形如“A”型,“X”型,“子母型”等相似三角形四、【相似三角形的性质】要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例要点2:相似三角形的性质定理:相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方要点3:知识架构图相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长、面积等。

典型例题分析一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。

例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 求证:△DBE ∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。

周长之比等于相似比 相似三角形的性质对应角相等、对应边成比例 面积之比等于相似比的平方对应高之比、对应中线之比、对应角平分线之比都等于相似比.A BCDEF G1234ABCD AB CD EFK二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE , 求证:DF •AC=BC •FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。

求证:(1)MA 2=MD •ME ;(2)MDMEAD AE =22例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。

三、如何用相似三角形证明两角相等、两线平行和线段相等。

例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。

求证:∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线,求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FGABCDEM12ABCDE FABCDS PR Q OABC DEFABCDF G E ABCDE FG例12、Rt△ABC锐角C的平分线交AB于E,交斜边上的高AD于O,过O引BC的平行线交AB于F,求证:AE=BF三、巩固与练习一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=_____;△ADE与△ABC的面积之比为题3 题7 题84. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。

5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72.在比例尺为1:m的某市地图上,规划出长a厘米宽b厘米的矩形工业园区,该园区的实际面积是__________米2A.104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:AB CDEF O123题3 题4 题5①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。

2. 如图,△ABC中,D是AB上一点,且AB=3AD,∠B=75°,∠CDB=60°,求证:△ABC∽△CBD。

4. 如图Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE·AD=16,AB=45。

(1)求证:CE=EF。

(2)求EG的长。

5. 如图,已知DE ∥BC ,EF ∥AB ,则下列比例式错误的是:____________.AD AE A AB AC = .CE EA B CF FB = .DE AD C BC BD = .EF CFD AB CB=6. 如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,BP CD ABC ==123,,求△的边长7. 如图:四边形ABEG 、GEFH 、HFCD 都是边长为a 的正方形,(1)求证:△AEF ∽△CEA 。

(2)求证:∠AFB+∠ACB=45°。

8. 已知:如图,梯形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,EF 经过点O 且和两底平行,交AB 于E ,交CD 于F 。

求证:OE=OF 。

9. 已知:如图,△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F 。

求证:AE AF ACAB=10. 如图,D 为△ABC 中BC 边上的一点,∠CAD=∠B ,若AD=6,AB=8,BD=7,求DC 的长。

(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。

本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。

再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。

例2分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。

借助于计算也是一种常用的方法。

证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72°又BD 平分∠ABC ,则∠DBC=36° 在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36°∴△ABC ∽△BCD例3分析: 由已知条件∠ABD=∠CBE ,∠DBC 公用。

所以∠DBE=∠ABC ,要证的△DBE 和△ABC ,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。

从已知条件中可看到△CBE ∽△ABD ,这样既有相等的角,又有成比例的线段,问题就可以得到解决。

证明:在△CBE 和△ABD 中,∠CBE=∠ABD, ∠BCE=∠BAD ∴△CBE ∽△ABD ∴BC AB =BE BD 即:BC BE =ABBD△DBE 和△ABC 中,∠CBE=∠ABD, ∠DBC 公用∴∠CBE+∠DBC=∠ABD+∠DBC ∴∠DBE=∠ABC 且BC BE =ABBD∴△DBE ∽△ABC例4分析:本题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形11. 如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 于F ,过F 作FG ∥AB 交AE 于G ,求证:AG 2=AF ·FC 。

12.在梯形ABCD 中,AD ∥BC ,若∠BCD 的平分线CH ⊥AB 于点H ,BH=3AH ,且四边形AHCD 的面积为21,求△HBC 的面积。

相关文档
最新文档