模数转换器ADC0809应用原理

合集下载

ADC0809 AD转换器基本应用技术

ADC0809 AD转换器基本应用技术

ADC0809 A/D转换器基本应用技术基本知识ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1).ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

实验六 ADC0809AD转换实验

实验六 ADC0809AD转换实验

实验六 ADC0809AD转换实验一、实验目的1、掌握ADC0809AD芯片的工作原理和使用方法。

2、掌握如何使用51单片机配合ADC0809AD芯片实现模拟量转换。

二、实验原理ADC0809AD是一种8位分辨率、并行输出、单通道,3MHz 工作速率的A/D转换器。

ADC 有两个输入电压端子,IN+和IN-,它们之间加入了一个内部参考电压源(RE),所以在输入模拟信号时常在IN+端连接信号输入,而IN-端接地。

当选用RE = +2.5 V时,IN+的输入范围约为0-VREF,在本实验中选用的是RE = +5 V,所以IN+的输入范围约为0-5V。

当外部触发信号TRIGGER开启后,ADC执行转换操作。

在转换时,电压采样保持时间通常为 100 ns,最长转换时间为 200 us,当转换结束时,ADC将数字输出置在低电平并发出一个中断请求(INTR)信号。

转换结果可以通过 8个输出线路(DB0-DB7)获得。

三、实验器材2、*1 9针座(1x9 Pin Socket)。

3、*1 51单片机学习板。

4、*1 电阻10KΩ。

5、*1 电压源。

6、*1 面包板。

7、*5 条杜邦线。

四、实验步骤1、根据下表将ADC0809AD芯片插入到面包板中。

ADC0809AD引脚码ADC0809AD引脚名称功能1 A0- A/D输入(低、多路)引脚17 AGND 模拟地18 VREF/2 参考电压输出19 VCC 数字电源2、将9脚座插入面包板的横向边缘上。

3、使用杜邦线将ADC0809AD转换器连接到学习板上,并根据原理部分对芯片引脚进行接线。

4、将一个10KΩ的电阻连接到ADC0809AD芯片的IN+引脚和GND之间。

6、使用杜邦线将ADC0809AD芯片的DB0-DB7引脚连接到学习板的P0.0-P0.7引脚上。

7、将学习板的P0.0-P0.7引脚转为输出模式。

五、实验代码#include <reg52.h>// SFR位定义sfr ADC_CONTR = 0xBC; // ADC控制寄存器sfr ADC_RES = 0xBD; // ADC结果寄存器sfr ADC_RESL = 0xBE; // ADC结果低字节寄存器sfr P0 = 0x80; // P0口// 公用函数void delay(int time) // 延时函数{int i, j;for (i = 0; i < time; i++) {for (j = 0; j < 125; j++);}}while (1) {ADC_CONTR |= 0x08; // 开始转换while (!(ADC_CONTR & 0x10)); // 等待转换结束P0 = ADC_RES; // 将结果输出到P0口delay(1000); // 延时1000ms}}根据程序分析,程序采用了循环语句控制ADC的转换、输出,程序中实现的是ADC的一次转换。

使用ADC0809的AD转换实验

使用ADC0809的AD转换实验

实验二 使用ADC0809的A/D 转换实验一、实验目的加深理解逐次逼近法模数转换器的特征和工作原理,掌握ADC0809的接口方法以及A/D 输入程序的设计和调试方法。

二、预备知识逐次逼近法A/D 也称逐次比较法A/D 。

它由结果寄存器、D/A 、比较器和置位控制逻辑等部件组成,如图5-1所示。

图5-1三、实验内容1 、实验原理本实验采用 ADC0809 做 A/D 转换实验。

ADC0809 是一种8路模拟输入、8位数字输出的逐次逼近法A/D 器件,转换时间约100us ,转换精度为±1/512,适用于多路数据采集系统。

ADC0809片内有三态输出的数据锁存器,故可以与8088微机总线直接接口。

IN-026msb2-1212-220IN-1272-3192-418IN-2282-582-615IN-312-714lsb2-817IN-42E OC7IN-53ADD-A 25IN-64ADD-B 24ADD-C 23IN-75ALE22ref(-)16E NABL E 9ST ART 6ref(+)12CLOCK 10UB43ADC0809123UB42A 74L S02456UB42B 74L S02E B4122U/16VCB41103RB41510IORIOWVCCADD0ADD1ADD2GNDGNDGNDVre f+5VIN6IN7IN1IN2IN3IN4IN5D7D0D1D2D3D4D5D6E OC/EOCIN0CS_0809CLK_080912UA32A 74L S04WA5110K VCCGNDRA51100V1Y61MHZ图中ADC0809的CLK 信号接CLK=,基准电压Vref(+)接Vcc 。

一般在实际应用系统中应该接精确+5V ,以提高转换精度,ADC0809片选信号0809CS 和/IOW 、/IOR 经逻辑组合后,去控制ADC0809的ALE 、START 、ENABLE 信号。

ADC0809芯片的应用

ADC0809芯片的应用
元器件选择 逐次比较式 A / D 转换器通常均为二进制码输 出 , 其数据输出符合微处理器数据总线要求 , 与位处 理器接口的兼容性好 , 因此逐次比较式 A / D 转换接 口具有简单 、清晰 , 软件配置简单的优点 。ADC0809 可输入 8 路模拟信号 , 是单片机应用系统中最广泛应 用的 A / D 转换芯片之一 。ADC0809 典型时钟频率为 640k Hz ,它内部没有时钟电路 ,f CL K 需由外部提供 ,而 串口与主控机通信速率为 9600b/ s , 此速率要求用 11. 059M Hz 晶振 。8031 的 AL E 频率太高 ,需经分频 器后再送入 ADC0809 。这里选用 4024 芯片 ,它是 7 位 二进制串行分频器 ,由 7 个主从触发器构成 。 由于要对 96 个模拟通道作 A / D 转换 ,需用模拟 开关配合实现 。4067 芯片是单 16 通道模拟开关 ,选用 6 个 4067 ,可以满足要求 。 为提高采样的精确性 ,ADC0809 的采样通入口和 6 个 4067 的公共 O / I 之间增加 A C/ DC 转换电路
开关的 16 个通道 , 逐个采集每个通道 , 完成 96 个通 道的 A / D 转换 。
为提高彩样数据的精确性 , 在 AD0809 的采样通 道入口与 4067 公共 O / I 之间加 A C/ DC 的转换电 路 ,将交流信号转换为直流信号之后再去采样 。
采样得到的数据 , 经串行口送给主控机分析处 理 ,串行口采用 RS - 232 标准接口 。
性能特点 (1 )ADC0809 芯片性能特点 :外部供给基准电压 ; 微处理器兼容 (三态输出 ) ; 含单路 8 信道多路转换 器 ; 不要调零及满标度 ; 典型时钟频率为 640k Hz ; 单 通道转换时间 116μs 。 (2 )4067芯片性能特点 :数字信号控制的16选1模 拟开关 ;禁止端 IN H =“H ”时 ,全部开关为关状态 。

ADC0809课件

ADC0809课件

度误差,线性度等。
(2)ADC0809和AT89S52单片机的接口
①ADC模数转换芯片介绍 按ADC工作原理划分,常用的ADC器件可分为两种:逐次逼近 型和双积分型。逐次逼近型ADC转换速率较高,主要用于嵌入 式控制系统、信号测量领域;双积分型DAC转换速率低是,但 是其精度比较高,具有很强的抗干扰能力,价格低,主要用于 仪表设备中。 所有的ADC器件都需要基准电压源,基准电压源的稳定性是 影响转换结果精度的主要原因。
在进过ADC0809转换后,原来的物理量的量纲发生了变化,为了能从数 码管上直接读取带有被测量单位的数值,就必须进行必要的变换,这种变 换就称为标度变换。线性通道软件的标度变换为如下公式:
NH NL Ni N L ( Di DL ) DH DL
D N, N L 为线性测量范围的上下限;,H DL为与 N H N L对应的A/D转换结果 , H
Di 为与被测量 Ni 对应的转换结果。(选做对电压值进行标定)
【设计简单试验概述】
采用ADC0809模数转换芯片,对电位器输出到IN0引脚的模拟电压 进行A/D转换,并将结果在数码管上显示出来。通过改变电位器的输出, 观察数码管显示的变化。
③ADC0809芯片和AT89S52单片机的硬件连接
工作时序是设计接口电路和编制应用程序的重要依据。单 片机可以通过数据总线与控制信号直接采用存储器访问形式、 I/O 设备访问形式控制该ADC0809模块。
图2 ADC0809 的时序图
中断方式和数据总线控制方式接口
图3 ADC0809与AT89S52接口
MCU16单片机DA/AD模块
Wuxi Machinery and Electron Higher Vocational and Technical School

ADC0809A-D转换器基本应用技术

ADC0809A-D转换器基本应用技术

ADC0809A-D转换器基本应用技术D(6).当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。

3.实验任务如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。

ADC0809的VREF接+5V 电压。

4.电路原理图图1.27.15.系统板上硬件连线(1).把“单片机系统板”区域中的P1端口的P1.0-P1.7用8芯排线连接到“动态数码显示”区域中的A B C D E F G H端口上,作为数码管的笔段驱动。

(2).把“单片机系统板”区域中的P2端口的P2.0-P2.7用8芯排线连接到“动态数码显示”区域中的S1 S2 S3 S4 S5 S6 S7 S8端口上,作为数码管的位段选择。

(3).把“单片机系统板”区域中的P0端口的P0.0-P0.7用8芯排线连接到“模数转换模块”区域中的D0D1D2D3D4D5D6D7端口上,A/D转换完毕的数据输入到单片机的P0端口(4).把“模数转换模块”区域中的VREF端子用导线连接到“电源模块”区域中的VCC端子上;(5).把“模数转换模块”区域中的A2A1A0端子用导线连接到“单片机系统”区域中的P3.4 P3.5 P3.6端子上;(6).把“模数转换模块”区域中的ST端子用导线连接到“单片机系统”区域中的P3.0端子上;(7).把“模数转换模块”区域中的OE端子用导线连接到“单片机系统”区域中的P3.1端子上;(8).把“模数转换模块”区域中的EOC端子用导线连接到“单片机系统”区域中的P3.2端子上;(9).把“模数转换模块”区域中的CLK端子用导线连接到“分频模块”区域中的/4 端子上;(10).把“分频模块”区域中的CK IN端子用导线连接到“单片机系统”区域中的ALE 端子上;(11).把“模数转换模块”区域中的IN3端子用导线连接到“三路可调压模块”区域中的VR1 端子上;6.程序设计内容(1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。

ADC0809

ADC0809

ADC0809概述ADC0809是采样分辨率为8位的、以逐次逼近原理进行模—数转换的器件。

其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。

1.主要特性1)8路输入通道,8位A/D转换器,即分辨率为8位。

2)具有转换起停控制端。

3)转换时间为100μs(时钟为640kHz时),130μs(时钟为500kHz时)4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。

2.内部结构ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近3.外部特性(引脚功能)4.ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。

下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。

START:A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

Vcc:电源,单一+5V。

GND:地。

ADC0809的工作过程首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

adc0809的工作原理

adc0809的工作原理

adc0809的工作原理
ADC0809是一种8位串行模数转换器(Analog-to-Digital Converter,简称ADC),其工作原理如下:
1. 输出控制信号:当待转换的模拟信号准备好后,控制信号线将置为高电平,通知ADC开始转换过程。

2. 选择输入通道:通过输入通道选择信号来选择要进行转换的模拟信号源。

ADC0809有8个输入通道,因此需要使用3个输入引脚来选择通道。

3. 启动时钟信号:通过发送时钟信号来控制转换过程。

ADC0809需要一个时钟源来同步转换过程。

时钟信号的频率决定了转换速度。

4. 采样保持电路:在转换期间,输入信号将被采样并保持在一个样本保持电容中。

这个采样保持电路保证了转换期间输入信号的稳定性。

5. 双斜率积分器:ADC0809采用了双斜率积分器技术来进行模拟信号的转换。

在转换开始后,ADC开始对采样保持电容的电压进行积分,直到电压上升到参考电压。

6. 输出数据:一旦积分电压达到参考电压,ADC会将其状态固定,并将其转换为二进制数字输出。

输出数据以8位二进制形式呈现。

7. 转换结束信号:当转换完成后,ADC会通过标志信号线发出转换完成的信号。

这个信号可以被连接到微控制器或其他数字设备,以通知它们可以读取新的转换结果了。

通过以上步骤,ADC0809可以将模拟信号转换为数字信号,实现模拟到数字的转换功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AD0809应用原理--很全面的资料1. 0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当O E端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。

ADC0809的VREF接+5V电压。

4.电路原理图5.程序设计:(1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。

(2).进行A/D转换之前,要启动转换的方法:ABC=110选择第三通道ST=0,ST=1,ST=0产生启动转换的正脉冲信号 .(3). 关于0809的计算:ad0809是根据逐位逼近的方法产生数据的。

参考电压为0-5V的话。

以0809八位255的转换精度每一位的电压值为(5-0)/255≈0. 0196V设输入电压为X则:X-27*0.0196>=0则AD7=1否则AD7=0。

X-26*0.0196>=0则AD6=1否则AD6=0。

X-20*0.0196>=0则AD0=1否则AD0=0。

(27指2的7次方。

26-------20同理)若参考电压为0-1V(1-0)/255≈0.0039V精度自然高了。

可测量范围小了。

1)汇编源程序:CH EQU 30HDPCNT EQU 31HDPBUF EQU 33HGDATA EQU 32HST BIT P3.0精品文档OE BIT P3.1EOC BIT P3.2ORG 00HLJMP STARTORG 0BHLJMP T0XORG 30HSTART: MOV CH,#0BCHMOV DPCNT,#00HMOV R1,#DPCNTMOV R7,#5MOV A,#10MOV R0,#DPBUFLOP: MOV @R0,AINC R0DJNZ R7,LOPMOV @R0,#00HINC R0MOV @R0,#00HINC R0MOV @R0,#00HMOV TMOD,#01HMOV TH0,#(65536-4000)/256MOV TL0,#(65536-4000) MOD 256SETB TR0SETB ET0SETB EAWT: CLR STSETB STCLR STWAIT: JNB EOC,WAITSETB OEMOV GDATA,P0CLR OEMOV A,GDATAMOV B,#100DIV ABMOV 33H,AMOV A,BMOV B,#10DIV ABMOV 34H,AMOV 35H,BSJMP WTT0X: NOPMOV TH0,#(65536-4000)/256MOV TL0,#(65536-4000) MOD 256MOV DPTR,#DPCDMOV A,DPCNTADD A,#DPBUFMOV R0,AMOV A,@R0MOVC A,@A+DPTRMOV P1,AMOV DPTR,#DPBTMOV A,DPCNTMOVC A,@A+DPTRMOV P2,AINC DPCNTMOV A,DPCNTCJNE A,#8,NEXTMOV DPCNT,#00HNEXT: RETIDPCD: DB 3FH,06H,5BH,4FH,66HDB 6DH,7DH,07H,7FH,6FH,00HDPBT: DB 0FEH,0FDH,0FBH,0F7HDB 0EFH,0DFH,0BFH,07FHEND2)C语言源程序#includeunsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7, 0xef,0xdf,0xbf,0x7f};unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00};unsigned char dispbuf[8]={10,10,10,10,10,0,0,0}; unsigned char dispcount;sbit ST="P3"^0;sbit OE="P3"^1;sbit EOC="P3"^2;unsigned char channel="0xbc";//IN3 unsigned char getdata;void main(void){TMOD=0x01;TH0=(65536-4000)/256;TL0=(65536-4000)%256;TR0=1;ET0=1;EA=1;P3=channel;while(1){ST=0;ST=1;ST=0;while(EOC==0);OE=1;getdata=P0;OE=0;dispbuf[2]=getdata/100;getdata=getdata%10;dispbuf[1]=getdata/10;dispbuf[0]=getdata%10;}}void t0(void) interrupt 1 using 0 {TH0=(65536-4000)/256;TL0=(65536-4000)%256;P1=dispcode[dispbuf[dispcount]]; P2=dispbitcode[dispcount]; dispcount++;if(dispcount==8){dispcount=0;}}3)FPGA实现的程序:(verilog)module AD0809(clk, //脉宽(至少100ns)rst_n,EOC, //约100us后EOC变为高电平转换结束START, //启动信号,上升沿有效(至少100ns)OE, //高电平打开三态缓冲器输出转换数据ALE, //高电平有效,选择信道口ADDA,//因为ADDB,ADDC都接地了,这里只有ADDA为变量DATA,// //转换数据DATA_R);output START,OE,ALE,ADDA;input EOC,clk,rst_n;input[7:0] DATA;output[7:0] DATA_R;reg START,OE,ALE,ADDA;reg[7:0] DATA_R;reg[4:0] CS,NS;parameter IDLE=5''b00001,START_H=5''b00010,START_L=5''b00100, CHECK_END=5''b01000,GET_DATA=5''b10000;always @(*)case(CS)IDLE:NS=START_H;START_H:NS=START_L;START_L:NS=CHECK_END;CHECK_END:if(EOC)NS=GET_DATA;elseNS=CHECK_END;GET_DATA:NS=IDLE;default:NS=IDLE;endcasealways @(posedge clk)if(!rst_n)CS<=IDLE;elseCS<=NS;always @(posedge clk)case(NS)IDLE:beginOE<=0;START<=0;ALE<=0;ADDA<=1;endSTART_H:beginOE<=0;START<=1; //产生启动信号ALE<=1;ADDA<=1;//选择信道口IN0 endSTART_L:beginOE<=0;START<=0;ALE<=1;//启动信号脉宽要足够长,在启动的时候ALE要一直有效endCHECK_END:beginOE<=0;START<=0;ALE<=0;endGET_DATA:beginOE<=1; //高电平打开三态缓冲器输出转换数据DATA_R<=DATA;//提取转换数据START<=0;ALE<=0;enddefault:beginOE<=0;START<=0;ALE<=0;ADDA<=0;endendcaseendmodule4)FPGA实现的程序:(VHDL)LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY AD0809 ISPORT( D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);CLK,EOC: IN STD_LOGIC; CLOCK:IN STD_LOGIC;ALE,START,OE,LOCK0: OUT STD_LOGIC;DOUT:OUT STD_LOGIC_VECTOR(6 DOWNTO 0);SEL:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END AD0809;ARCHITECTURE behav OF AD0809 ISTYPE states IS (st0,st1,st2,st3,st4);SIGNAL current_state,next_state:states:=st0; SIGNAL REGL :STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL LOCK :STD_LOGIC;SIGNAL CNT1:STD_LOGIC_VECTOR(0 DOWNTO 0); SIGNAL A :INTEGER RANGE 0 TO 1;SIGNAL LOWDATA:STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL HIGHDATA:STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL LOWLED7S:STD_LOGIC_VECTOR(6 DOWNTO 0); SIGNAL HIGHLED7S:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINLOCK0<=LOCK;PROCESS(REGL)BEGINLOWDATA<=REGL(3 DOWNTO 0);HIGHDATA<=REGL(7 DOWNTO 4);CASE LOWDATA ISWHEN "0000" => LOWLED7S<="0111111";WHEN "0001" => LOWLED7S<="0000110";WHEN "0010" => LOWLED7S<="1011011";WHEN "0011" => LOWLED7S<="1001111";WHEN "0100" => LOWLED7S<="1100110";WHEN "0101" => LOWLED7S<="1101101";WHEN "0110" => LOWLED7S<="1111101";WHEN "0111" => LOWLED7S<="0000111";WHEN "1000" => LOWLED7S<="1111111";WHEN "1001" => LOWLED7S<="1101111";WHEN "1010" => LOWLED7S<="1110111";WHEN "1011" => LOWLED7S<="1111100";WHEN "1100" => LOWLED7S<="0111001";WHEN "1101" => LOWLED7S<="1011110";WHEN "1110" => LOWLED7S<="1111001";WHEN "1111" => LOWLED7S<="1110001";WHEN OTHERS => Null;END CASE;CASE HIGHDATA ISWHEN "0000" => HIGHLED7S<="0111111";WHEN "0001" => HIGHLED7S<="0000110";WHEN "0010" => HIGHLED7S<="1011011";WHEN "0011" => HIGHLED7S<="1001111";WHEN "0100" => HIGHLED7S<="1100110";WHEN "0101" => HIGHLED7S<="1101101";WHEN "0110" => HIGHLED7S<="1111101";WHEN "0111" => HIGHLED7S<="0000111";WHEN "1000" => HIGHLED7S<="1111111";WHEN "1001" => HIGHLED7S<="1101111";WHEN "1010" => HIGHLED7S<="1110111";WHEN "1011" => HIGHLED7S<="1111100";WHEN "1100" => HIGHLED7S<="0111001";WHEN "1101" => HIGHLED7S<="1011110";WHEN "1110" => HIGHLED7S<="1111001";WHEN "1111" => HIGHLED7S<="1110001";WHEN OTHERS => Null;END CASE;END PROCESS;PROCESS(CLOCK)BEGINIF CLOCK'EVENT AND CLOCK='1' THEN CNT1<=CNT1+1; END IF;END PROCESS;PROCESS(CNT1)BEGINCASE CNT1 ISWHEN "0" =>SEL<="111"; A<=0;WHEN "1" =>SEL<="110";A<=1;WHEN OTHERS =>NULL;END CASE;END PROCESS;PROCESS(A)BEGINCASE A ISWHEN 0 =>DOUT<=LOWLED7S;WHEN 1 =>DOUT<=HIGHLED7S;WHEN OTHERS =>NULL;END CASE;END PROCESS;COM:PROCESS(current_state,EOC)BEGINCASE current_state ISWHEN st0=>ALE<='0';START<='0';LOCK<='1';OE<='0';next_state<=st 1;WHEN st1=>ALE<='1';START<='0';LOCK<='1';OE<='0';next_state<=st 2;WHEN st2=>ALE<='0';START<='1';LOCK<='0';OE<='0';IF (EOC='1') THEN next_state<=st3;ELSE next_state<=st2;END IF;WHEN st3=>ALE<='0';START<='0';LOCK<='0';OE<='1';next_state<=st 4;WHEN st4=>ALE<='0';START<='0';LOCK<='1';OE<='1';next_state<=st 0;WHEN OTHERS=>next_state<=st0;END CASE;END PROCESS COM;REG: PROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1') THEN current_state<=next_state; END IF;END PROCESS REG;LATCH1: PROCESS(LOCK)BEGINIF LOCK='1' AND LOCK'EVENT THEN REGL<=D;END IF;END PROCESS LATCH1;END behav;。

相关文档
最新文档