模数转换器ADC0809应用原理
ADC0809 AD转换器基本应用技术

ADC0809 A/D转换器基本应用技术基本知识ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1).ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。
多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。
三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。
当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。
A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。
通道选择表如下表所示。
数字量输出及控制线:11条ST为转换启动信号。
当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。
EOC为转换结束信号。
当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。
OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。
OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。
D7-D0为数字量输出线。
CLK为时钟输入信号线。
因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。
2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。
模数转换器ADC0809应用原理

模数转换器ADC0809应用原理模数转换器(Analog-to-Digital Converter,简称ADC)是一种将模拟信号转换为数字信号的电子元件。
在电子领域中,模数转换器有着广泛的应用,其中最常见的就是采集模拟信号,并将其转换为数字信号进行处理。
ADC0809是一种八位分辨率的8通道模数转换器,它可以将输入模拟信号转换为一个八位的二进制数字。
ADC0809的工作原理ADC0809采用了单倍增量逐次比较式ADC,其基本工作原理是,将输入的模拟信号与一个参考电压进行比较,输出相应的数字信号。
具体工作流程如下图所示:___________________________________ ________________________| 时钟||___________________________________________________________________|______________ ________ ________ ________ ________| 输入模拟信号 | | 比较器0 | | 比较器1 | | ...... | | 比较器7 ||_____________| _________ |________| |________| |________| |________|| | || || | ___________ | ___________ | ___________ || |__| |__|__||__|__| |__|| 串—并串—并串—并串—并八个比较结果反相器(INV)| ________ ________ ________|______________________________| 反相器| | 反相器 | | ...... | | 反相器 ||________| |________| |________| |________|| | | || | | || | | |V V V V____ ____ ________ ________ ________| | | | | ...... | | || D0 ~ D7 |_______| D0 ~ D7 |_______| D0 ~ D7 |_______| D0 ~ D7 ||____ _____| |________| |________| |________|| | | || | | || | | || | | || | | |____ ____ ________ ________ ________| | | | | ...... | | || 转换器 | | 转换器 | | ...... | | 转换器 | |____ _____| |________| |________| |________|| | | || | | || | | |V V V V____ ____ ________ ________ ________| | | | | ...... | | || A0 ~ A7 |_______| A0 ~ A7 |______| A0 ~ A7 |_______| A0 ~ A7 ||____ _____| |________| |________| |________| ADC0809采样过程通过时序的序列完成,当转换器满足转换条件时为转换器一个时钟等分周期“CLK R”,其转换过程又称为一次采样,转换结果产生在结束时取样“EOC”有效之后的下一次时钟上升沿ACTIVE EDGE时,由拨动设置开关的方式进行设定(ADDRESS A, B, C, OE)。
ADC0809芯片的应用

开关的 16 个通道 , 逐个采集每个通道 , 完成 96 个通 道的 A / D 转换 。
为提高彩样数据的精确性 , 在 AD0809 的采样通 道入口与 4067 公共 O / I 之间加 A C/ DC 的转换电 路 ,将交流信号转换为直流信号之后再去采样 。
采样得到的数据 , 经串行口送给主控机分析处 理 ,串行口采用 RS - 232 标准接口 。
性能特点 (1 )ADC0809 芯片性能特点 :外部供给基准电压 ; 微处理器兼容 (三态输出 ) ; 含单路 8 信道多路转换 器 ; 不要调零及满标度 ; 典型时钟频率为 640k Hz ; 单 通道转换时间 116μs 。 (2 )4067芯片性能特点 :数字信号控制的16选1模 拟开关 ;禁止端 IN H =“H ”时 ,全部开关为关状态 。
adc0809原理

adc0809原理ADC0809是一款8位串行输入模数转换器(ADC),由National Semiconductor(现为德州仪器)开发和生产。
它的原理是将输入的模拟信号转换成对应的数字信号,用于数字系统的处理和分析。
ADC0809采用逐次逼近型模数转换技术,具有8个模拟输入通道,并且能完成8位精度的转换。
它的输入范围为0-5V,输入阻抗为100kΩ。
ADC0809包含一个8位逐次逼近型模数转换器、一个输入多路选择器、一个时钟驱动电路、一个控制逻辑和一个数据锁存器。
ADC0809的工作原理如下:首先,用户通过使用时钟信号来驱动转换器的工作。
时钟信号一般由控制器提供,控制器通过多个IO引脚向ADC0809发送指令信号。
时钟信号使得转换器按照指定的频率工作。
其次,输入模拟信号经过模拟开关输入,并通过输入多路选择器将选中的信号路径引入到采样保持电路中。
ADC0809的输入多路选择器可以选择8个不同的输入通道。
输入模拟信号经过采样保持电路后,被锁存并保持一段时间以进行后续处理。
然后,转换器根据锁存的模拟信号进行逐步逼近型模数转换。
逐序地,转换器首先将8位比较器的基准电压与DAC输出进行比较。
如果DAC输出高于基准电压,则比较器输出为高电平,否则为低电平。
比较器输出经过一个选择和存储逻辑单元(LCU),得到一个3位的二进制数,供数值控制逻辑(NCL)使用。
NCL 根据LCU的输出向DAC施加增量或减量,使得DAC输出逐渐逼近输入模拟量。
最后,转换器通过串行接口将转换后的数字结果通过数据锁存器传送到输出端,供控制器读取。
串行接口为8位的串行输出,由转换器的输出引脚提供。
转换后的数字结果可以进行进一步的数字处理和显示。
需要注意的是,ADC0809的转换精度和转换速率在一定程度上有一定的权衡。
为了提高转换精度,需要减小转换速率。
当转换速率较高时,转换精度可能会下降。
因此,在具体应用中需要根据需求选择合适的转换速率和精度。
ADC0809A-D转换器基本应用技术

ADC0809A-D转换器基本应用技术D(6).当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。
3.实验任务如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。
ADC0809的VREF接+5V 电压。
4.电路原理图图1.27.15.系统板上硬件连线(1).把“单片机系统板”区域中的P1端口的P1.0-P1.7用8芯排线连接到“动态数码显示”区域中的A B C D E F G H端口上,作为数码管的笔段驱动。
(2).把“单片机系统板”区域中的P2端口的P2.0-P2.7用8芯排线连接到“动态数码显示”区域中的S1 S2 S3 S4 S5 S6 S7 S8端口上,作为数码管的位段选择。
(3).把“单片机系统板”区域中的P0端口的P0.0-P0.7用8芯排线连接到“模数转换模块”区域中的D0D1D2D3D4D5D6D7端口上,A/D转换完毕的数据输入到单片机的P0端口(4).把“模数转换模块”区域中的VREF端子用导线连接到“电源模块”区域中的VCC端子上;(5).把“模数转换模块”区域中的A2A1A0端子用导线连接到“单片机系统”区域中的P3.4 P3.5 P3.6端子上;(6).把“模数转换模块”区域中的ST端子用导线连接到“单片机系统”区域中的P3.0端子上;(7).把“模数转换模块”区域中的OE端子用导线连接到“单片机系统”区域中的P3.1端子上;(8).把“模数转换模块”区域中的EOC端子用导线连接到“单片机系统”区域中的P3.2端子上;(9).把“模数转换模块”区域中的CLK端子用导线连接到“分频模块”区域中的/4 端子上;(10).把“分频模块”区域中的CK IN端子用导线连接到“单片机系统”区域中的ALE 端子上;(11).把“模数转换模块”区域中的IN3端子用导线连接到“三路可调压模块”区域中的VR1 端子上;6.程序设计内容(1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。
adc0809的工作原理

adc0809的工作原理
ADC0809是一种8位串行模数转换器(Analog-to-Digital Converter,简称ADC),其工作原理如下:
1. 输出控制信号:当待转换的模拟信号准备好后,控制信号线将置为高电平,通知ADC开始转换过程。
2. 选择输入通道:通过输入通道选择信号来选择要进行转换的模拟信号源。
ADC0809有8个输入通道,因此需要使用3个输入引脚来选择通道。
3. 启动时钟信号:通过发送时钟信号来控制转换过程。
ADC0809需要一个时钟源来同步转换过程。
时钟信号的频率决定了转换速度。
4. 采样保持电路:在转换期间,输入信号将被采样并保持在一个样本保持电容中。
这个采样保持电路保证了转换期间输入信号的稳定性。
5. 双斜率积分器:ADC0809采用了双斜率积分器技术来进行模拟信号的转换。
在转换开始后,ADC开始对采样保持电容的电压进行积分,直到电压上升到参考电压。
6. 输出数据:一旦积分电压达到参考电压,ADC会将其状态固定,并将其转换为二进制数字输出。
输出数据以8位二进制形式呈现。
7. 转换结束信号:当转换完成后,ADC会通过标志信号线发出转换完成的信号。
这个信号可以被连接到微控制器或其他数字设备,以通知它们可以读取新的转换结果了。
通过以上步骤,ADC0809可以将模拟信号转换为数字信号,实现模拟到数字的转换功能。
ADC0809工作原理及C编程

3.C 语言源代码编辑
C51 程序设计是单片机应用的必要组成部分。常见的 C 程序包括注释、头文件、全局变
量定义、自定义函数声明、宏定义、主函数和子函数等内容,对于一个优秀的 C 程序案例,
注释必不可少。本任务作为电压模拟信号采集实验。参考程序如下所示:
/********************************************************************************** * 平台:THMEMU-1 + Keil U4 + STC89C52 * 晶振:12MHZ
**********************************************************************************/
#include<reg51.h>
//调用库文件
unsigned char weima[10]={0xfc,0x60,0xda,0xf2, 0x66,0xb6,0xbe,0xe0,0xfe,0xf6};
ADC0809 是 8 通道 8 位 CMOS 逐次逼近式 A/D 转换芯片,片内有模拟量通道选择开关 及相应的通道锁存、译码电路,A/D 转换后的数据由三态锁存器输出,由于片内没有时钟需 外接时钟信号,利用它可直接输入 8 个单端的模拟信号分时进行 A/D 转换,在多点巡回检测 和过程控制、运动控制中应用十分广泛。。芯片的引脚及内部结构如图 2。
//时钟信号 //延时函数
//T1 初始化 //串口初始化 //T1 定时开始
//先上升沿,后下降沿,延时给转换时间
//T1 定时器,方式 2 //初值,10us,时钟频率 50KHz // // // //
ADC0809 Microsoft Word 文档

ad08091、AD0809 的逻辑结构ADC0809 是8 位逐次逼近型A/D转换器。
它由一个8路模拟开关、一个地址锁存译码器、一个A/D 转换器和一个三态输出锁存器组成(见图1)。
多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。
三态输出锁器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。
2、AD0809 的工作原理IN0-IN7:8 条模拟量输入通道ADC0809 对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条ALE 为地址锁存允许输入线,高电平有效。
当ALE线为高电平时,地址锁存与译码器将A,B,C 三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。
A,B 和C 为地址输入线,用于选通IN0-IN7 上的一路模拟量输入。
通道选择表如下表所示。
C B A 选择的通道0 0 0 IN00 0 1 IN10 1 0 IN20 1 1 IN31 0 0 IN41 0 1 IN51 1 0 IN61 1 1 IN7数字量输出及控制线:11 条ST 为转换启动信号。
当ST 上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D 转换;在转换期间,ST 应保持低电平。
EOC 为转换结束信号。
当EOC 为高电平时,表明转换结束;否则,表明正在进行A/D 转换。
OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。
OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。
D7-D0 为数字量输出线。
CLK为时钟输入信号线。
因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD0809应用原理--很全面的资料1. 0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/ D转换器和一个三态输出锁存器组成。
多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。
三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
4.电路原理图5.程序设计:(1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。
(2).进行A/D转换之前,要启动转换的方法:ABC=110选择第三通道ST=0,ST=1,ST=0产生启动转换的正脉冲信号.(3). 关于0809的计算:ad0809是根据逐位逼近的方法产生数据的。
参考电压为0-5V的话。
以0809八位255的转换精度每一位的电压值为(5-0)/2 55≈0.0196V设输入电压为X则:X-27*0.0196>=0则AD7=1否则AD7=0。
X-26*0.0196>=0则AD6=1否则AD6=0。
X-20*0.0196>=0则AD0=1否则AD0=0。
(27指2的7次方。
26-------20同理)若参考电压为0-1V(1-0)/255≈0.0039V精度自然高了。
可测量范围小了。
1)汇编源程序:CH EQU 30HDPCNT EQU 31HDPBUF EQU 33HGDATA EQU 32HST BIT P3.0OE BIT P3.1EOC BIT P3.2ORG 00HLJMP STARTORG 0BHLJMP T0XORG 30HSTART: MOV CH,#0BCHMOV DPCNT,#00HMOV R1,#DPCNTMOV R7,#5MOV A,#10MOV R0,#DPBUFLOP: MOV @R0,AINC R0DJNZ R7,LOPMOV @R0,#00HINC R0MOV @R0,#00HINC R0MOV @R0,#00HMOV TMOD,#01HMOV TH0,#(65536-4000)/256MOV TL0,#(65536-4000) MOD 256 SETB TR0SETB ET0SETB EAWT: CLR STSETB STCLR STWAIT: JNB EOC,WAITSETB OEMOV GDATA,P0CLR OEMOV A,GDATAMOV B,#100DIV ABMOV 33H,AMOV A,BMOV B,#10DIV ABMOV 34H,AMOV 35H,BSJMP WTT0X: NOPMOV TH0,#(65536-4000)/256MOV TL0,#(65536-4000) MOD 256MOV DPTR,#DPCDMOV A,DPCNTADD A,#DPBUFMOV R0,AMOV A,@R0MOVC A,@A+DPTRMOV P1,AMOV DPTR,#DPBTMOV A,DPCNTMOVC A,@A+DPTRMOV P2,AINC DPCNTMOV A,DPCNTCJNE A,#8,NEXTMOV DPCNT,#00HNEXT: RETIDPCD: DB 3FH,06H,5BH,4FH,66HDB 6DH,7DH,07H,7FH,6FH,00HDPBT: DB 0FEH,0FDH,0FBH,0F7HDB 0EFH,0DFH,0BFH,07FHEND2)C语言源程序#includeunsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7, 0xef,0xdf,0xbf,0x7f};unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00};unsigned char dispbuf[8]={10,10,10,10,10,0,0,0}; unsigned char dispcount;sbit ST="P3"^0;sbit OE="P3"^1;sbit EOC="P3"^2;unsigned char channel="0xbc";//IN3unsigned char getdata;void main(void){TMOD=0x01;TH0=(65536-4000)/256;TL0=(65536-4000)%256;TR0=1;ET0=1;EA=1;P3=channel;while(1){ST=0;ST=1;ST=0;while(EOC==0);OE=1;getdata=P0;OE=0;dispbuf[2]=getdata/100;getdata=getdata%10;dispbuf[1]=getdata/10;dispbuf[0]=getdata%10;}}void t0(void) interrupt 1 using 0{TH0=(65536-4000)/256;TL0=(65536-4000)%256;P1=dispcode[dispbuf[dispcount]];P2=dispbitcode[dispcount];dispcount++;if(dispcount==8){dispcount=0;}}3)FPGA实现的程序:(verilog)module AD0809(clk, //脉宽(至少100ns)rst_n,EOC, //约100us后EOC变为高电平转换结束START, //启动信号,上升沿有效(至少100ns)OE, //高电平打开三态缓冲器输出转换数据ALE, //高电平有效,选择信道口ADDA,//因为ADDB,ADDC都接地了,这里只有ADDA为变量DATA,// //转换数据DATA_R);output START,OE,ALE,ADDA;input EOC,clk,rst_n;input[7:0] DATA;output[7:0] DATA_R;reg START,OE,ALE,ADDA;reg[7:0] DATA_R;reg[4:0] CS,NS;parameter IDLE=5''b00001,START_H=5''b00010,START_L=5''b00100,CHECK_END=5''b01000,GET_DATA=5''b10000;always @(*)case(CS)IDLE:NS=START_H;START_H:NS=START_L;START_L:NS=CHECK_END;CHECK_END:if(EOC)NS=GET_DATA;elseNS=CHECK_END;GET_DATA:NS=IDLE;default:NS=IDLE;endcasealways @(posedge clk)if(!rst_n)CS<=IDLE;elseCS<=NS;always @(posedge clk)case(NS)IDLE:beginOE<=0;START<=0;ALE<=0;ADDA<=1;endSTART_H:beginOE<=0;START<=1; //产生启动信号ALE<=1;ADDA<=1;//选择信道口IN0 endSTART_L:beginOE<=0;START<=0;ALE<=1;//启动信号脉宽要足够长,在启动的时候ALE要一直有效endCHECK_END:beginOE<=0;START<=0;ALE<=0;endGET_DATA:beginOE<=1; //高电平打开三态缓冲器输出转换数据DATA_R<=DATA;//提取转换数据START<=0;ALE<=0;enddefault:beginOE<=0;START<=0;ALE<=0;ADDA<=0;endendcaseendmodule4)FPGA实现的程序:(VHDL)LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY AD0809 ISPORT( D: IN STD_LOGIC_VECTOR(7 DOWNTO 0); CLK,EOC: IN ST D_LOGIC;CLOCK:IN STD_LOGIC;ALE,START,OE,LOCK0: OUT STD_LOGIC;DOUT:OUT STD_LOGIC_VECTOR(6 DOWNTO 0);SEL:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END AD0809;ARCHITECTURE behav OF AD0809 ISTYPE states IS (st0,st1,st2,st3,st4);SIGNAL current_state,next_state:states:=st0;SIGNAL REGL :STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL LOCK :STD_LOGIC;SIGNAL CNT1:STD_LOGIC_VECTOR(0 DOWNTO 0); SIGNAL A :INTEGER RANGE 0 TO 1;SIGNAL LOWDATA:STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL HIGHDATA:STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL LOWLED7S:STD_LOGIC_VECTOR(6 DOWNTO 0); SIGNAL HIGHLED7S:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINLOCK0<=LOCK;PROCESS(REGL)BEGINLOWDATA<=REGL(3 DOWNTO 0);HIGHDATA<=REGL(7 DOWNTO 4);CASE LOWDATA ISWHEN "0000" => LOWLED7S<="0111111";WHEN "0001" => LOWLED7S<="0000110";WHEN "0010" => LOWLED7S<="1011011";WHEN "0011" => LOWLED7S<="1001111";WHEN "0100" => LOWLED7S<="1100110";WHEN "0101" => LOWLED7S<="1101101";WHEN "0110" => LOWLED7S<="1111101";WHEN "0111" => LOWLED7S<="0000111";WHEN "1000" => LOWLED7S<="1111111";WHEN "1001" => LOWLED7S<="1101111";WHEN "1010" => LOWLED7S<="1110111";WHEN "1011" => LOWLED7S<="1111100";WHEN "1100" => LOWLED7S<="0111001";WHEN "1101" => LOWLED7S<="1011110";WHEN "1110" => LOWLED7S<="1111001";WHEN "1111" => LOWLED7S<="1110001";WHEN OTHERS => Null;END CASE;CASE HIGHDATA ISWHEN "0000" => HIGHLED7S<="0111111";WHEN "0001" => HIGHLED7S<="0000110";WHEN "0010" => HIGHLED7S<="1011011";WHEN "0011" => HIGHLED7S<="1001111";WHEN "0100" => HIGHLED7S<="1100110";WHEN "0101" => HIGHLED7S<="1101101";WHEN "0110" => HIGHLED7S<="1111101";WHEN "0111" => HIGHLED7S<="0000111";WHEN "1000" => HIGHLED7S<="1111111";WHEN "1001" => HIGHLED7S<="1101111";WHEN "1010" => HIGHLED7S<="1110111";WHEN "1011" => HIGHLED7S<="1111100";WHEN "1100" => HIGHLED7S<="0111001";WHEN "1101" => HIGHLED7S<="1011110";WHEN "1110" => HIGHLED7S<="1111001";WHEN "1111" => HIGHLED7S<="1110001";WHEN OTHERS => Null;END CASE;END PROCESS;PROCESS(CLOCK)BEGINIF CLOCK'EVENT AND CLOCK='1' THEN CNT1<=CNT1+1; END IF;END PROCESS;PROCESS(CNT1)BEGINCASE CNT1 ISWHEN "0" =>SEL<="111"; A<=0;WHEN "1" =>SEL<="110"; A<=1;WHEN OTHERS =>NULL;END CASE;END PROCESS;PROCESS(A)BEGINCASE A ISWHEN 0 =>DOUT<=LOWLED7S;WHEN 1 =>DOUT<=HIGHLED7S;WHEN OTHERS =>NULL;END CASE;END PROCESS;COM: PROCESS(current_state,EOC)BEGINCASE current_state ISWHEN st0=>ALE<='0';START<='0';LOCK<='1';OE<='0';next_state< =st1;WHEN st1=>ALE<='1';START<='0';LOCK<='1';OE<='0';next_state< =st2;WHEN st2=>ALE<='0';START<='1';LOCK<='0';OE<='0';IF (EOC='1') THEN next_state<=st3;ELSE next_state<=st2;END IF;WHEN st3=>ALE<='0';START<='0';LOCK<='0';OE<='1';next_state< =st4;WHEN st4=>ALE<='0';START<='0';LOCK<='1';OE<='1';next_state< =st0;WHEN OTHERS=>next_state<=st0;END CASE;END PROCESS COM;REG: PROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1') THEN current_state<=next_state; END IF;END PROCESS REG;LATCH1: PROCESS(LOCK)BEGINIF LOCK='1' AND LOCK'EVENT THEN REGL<=D;END IF;END PROCESS LATCH1;END behav;。