《运筹学》试题及答案(四)

合集下载

运筹学考试复习题及参考答案

运筹学考试复习题及参考答案

《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( )4. 满足线性规划问题所有约束条件的解称为可行解。

( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( )6. 对偶问题的对偶是原问题。

( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。

A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。

南开大学22春“物流管理”《运筹学》作业考核题库高频考点版(参考答案)试题号4

南开大学22春“物流管理”《运筹学》作业考核题库高频考点版(参考答案)试题号4

南开大学22春“物流管理”《运筹学》作业考核题库高频考点版(参考答案)一.综合考核(共50题)1.设x1,x2,x3,x4,x5,x6分别代表大张、大李、小王、小赵、小田、小周是否被选上,其中1表示是,0表示否,在这六人中,恰好选中三人的表达正确的是()。

A.x1+x2+x3+x4+x5+x6=3,xi=0或1,i=1,2, (6)B.x1+x2+x3=3,xi=0或1,i=1,2,3C.x1+x2+x3=3,xi=1,i=1,2,3D.以上说法均不正确参考答案:A2.下图是某最大流的网络表格模型,下面关于单元格“I10”输入的公式中正确的是()。

A.“=-D9-D10+D12”B.“=-D4+D7”C.“=-D11-D12”D.“=-D7-D8+D11”参考答案:C3.在使用“给单元格命名”时,主要是指给诸如数据单元格、输出单元格以及目标单元格三种有关的单元格命名。

()A.正确B.错误4.下列属于最小费用流问题的为()。

A、运输和指派B、转运问题C、最大流问题D、最短路问题参考答案:A5.设 x1,x2,x3,x4,x5,x6分别代表大张、大李、小王、小赵、小田、小周是否被选上,其中1表示是,0表示否,在这六人中,小王和小赵不能同时入选的表达正确的是()。

A.x3+x41B.x3+x41C.x1+x31D.x1+x21参考答案:B6.按下面指定的括号填入下面所给的正确选项:一般在给“单元格命名”时,应在()菜单中,单击指向(),再选择()。

A.视图B.插入C.名称D.指定参考答案:BCD7.在EXCEL中,常用命令COVAR(array1,array2)来求解两个同规格变量的协方差。

()A.正确B.错误参考答案:A若非线性规划的目标函数为变量的二次函数,约束条件又都是决策变量的线性等式或不等式,则称这种规划为二次规划。

()A.正确B.错误参考答案:A9.针对下面的电子表格模型,单元格“I13”处的公式输入正确的是()。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
�2 x1 � 4 x2 � 22

�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1

3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �

x2 � 0
18
60
费销
用 地
B1
B2
B3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》试题及答案一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。

AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。

AA.一定B.一定不C.不一定D.无法判断15.动态规划最优化原理的含义是:最优策略中的任意一个K-子策略也是最优的()AA.正确B.错误C.不一定D.无法判断16.动态规划的核心是什么原理的应用()AA.最优化原理B.逆向求解原理C.最大流最小割原理D.网络分析原理17.动态规划求解的一般方法是什么?()CA.图解法B.单纯形法C.逆序求解D.标号法18.工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 919.工序A 是工序B 的紧后工序,则错误的结论是 (B )A .工序B 完工后工序A 才能开工 B.工序A 完工后工序B 才能开工 C.工序B 是工序A 的紧前工序 D.工序A 是工序B 的后续工序 20.工序(i ,j )的最迟必须结束时间T LF (i ,j )等于 (C) A. ),()(j i t i T E + B.ijL t j T -)( C. T L (j ) D.ijL t j T +)(21.工序(i ,j )的最早开工时间TES (i ,j )等于 ( C) A.TE (j ) B. TL (i ) C.{}max ()E ki kT k t + D.{}min ()L ij iT j t -22.工序(i ,j )的总时差R(i ,j )等于 (D) A .()()L E ijT j T i t -+ B. ),(),(j i T j i T ES EF - C.(,)(,)LS EF T i j T i j - D.ijE L t i T j T -)()(-23.活动(i ,j )的时间为t ij ,总时差为R (i ,j ) ,点i 及点j 的最早开始时刻为T E (i )和T E (j ),最迟结束时间为T L (i )和T L (j ),下列正确的关系式是 (A ) A.B. CD.24.互为对偶的两个线性规划问题的解存在关系 (A)A.一个问题具有无界解,另一问题无可行解B 原问题无可行解,对偶问题也无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解25.互为对偶的两个线性规划问题的解存在关系 (B)A.原问题有可行解,对偶问题也有可行解B.一个有最优解,另一个也有最优解C.一个无最优解,另一个可能有最优解D.一个问题无可行解,则另一个问题具有无界解26.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模27.基本可行解是满足非负条件的基本解。

( )AA.正确B.错误C.不一定D.无法判断28. 极大化线性规划,单纯形法计算中,如果不按照最小化比值的方法选取换出变量,则在下一个解中至少有一个变量为负,改变量为什么变量?( )D A.换出变量B.换入变量C.非基变量D.基变量 29.可行解是满足约束条件和非负条件的决策变量的一组取值。

( )A A.正确B.错误C.不一定D.无法判断30. 连通图G 有n 个点,其部分树是T ,则有 (C )A.T 有n 个点n 条边B.T 的长度等于G 的每条边的长度之和C.T 有n 个点n -1条边D.T 有n -1个点n 条边 31. m+n -1个变量构成一组基变量的充要条件是 (B)A.m+n -1个变量恰好构成一个闭回路B.m+n -1个变量不包含任何闭回路C.m+n -1个变量中部分变量构成一个闭回路D.m+n -1个变量对应的系数列向量线性相关 32. (A)A.无可行解B.有唯一最优解C.有无界解D.有多重最优解 33.(B)A.无可行解B.有唯一最优解C.有多重最优解D.有无界解34.某个常数b i 波动时,最优表中引起变化的有 (A)A.B-1bB.C.B-1D.B-1N35.某个常数b i波动时,最优表中引起变化的有(C)A. 检验数B.C B B-1C.C B B-1bD.系数矩阵36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量。

( B ) A.正确 B.错误C.不一定D.无法判断37.若线性规划问题的最优解同时在可行解域的两个顶点处达到,则此线性规划问题的最优解为()B A.两个 B.无穷多个 C.零个 D.过这的点直线上的一切点38.若LP最优解不唯一,则在最优单纯形表上()AA.非基变量的检验数必有为零者B.非基变量的检验数不必有为零者C.非基变量的检验数必全部为零D.以上均不正确39.若线性规划不加入人工变量就可以进行单纯形法计算(B)A.一定有最优解B.一定有可行解C.可能无可行解D.全部约束是小于等于的形式40.如果决策变量数相等的两个线性规划的最优解相同,则两个线性规划(D)A.约束条件相同B.模型相同C.最优目标函数值相等D.以上结论都不对41.设线性规划的约束条件为(D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)42.设线性规划的约束条件为(C)则非可行解是A.(2,0,0,0) B.(0,1,1,2) C.(1,0,1,0) D.(1,1,0,0)43.设P是图G从v s到v t的最短路,则有(A)A.P的长度等于P的每条边的长度之和B.P的最短路长等于v s到v t的最大流量C.P的长度等于G的每条边的长度之和D.P有n个点n-1条边44.事件j的最早时间T E(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间45.使函数减少得最快的方向是(B)A.(-1,1,2)B.(1,-1,-2)C. (1,1,2)D.(-1,-1,-2)46.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?(B )A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题( C )A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则(A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则49.网络图关键线路的长度( C )工程完工期。

A.大于B.小于C.等于D.不一定等于50.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( B )。

A.求最短路法B.求最小技校树法C.求最大流量法D.树的逐步生成法51.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近52.求解线性规划模型时,引入人工变量是为了()BA.使该模型存在可行解B.确定一个初始的基可行解C.使该模型标准化D.以上均不正确53.求最短路的计算方法有(B)A. 加边法B.Floyd算法C. 破圈法D. Ford-Fulkerson算法54.求最大流的计算方法有(D)A. Dijkstra算法B. Floyd算法C. 加边法D. Ford-Fulkerson算法55. X是线性规划的基本可行解则有(A)A.X中的基变量非负,非基变量为零B.X中的基变量非零,非基变量为零 C. X不是基本解 D.X不一定满足约束条件56.X是线性规划的可行解,则错误的结论是(D)A.X可能是基本解B. X可能是基本可行解C.X满足所有约束条件D. X是基本可行解57.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量58.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流59.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值60.下列正确的结论是(B) A.最大流量等于最大割量B.最大流量等于最小割量C.任意流量不小于最小割量D.最大流量不小于任意割量61.下列说法错误的是(D)A.旅行售货员问题可以建立一个0-1规划数学模型B.旅行售货员问题归结为求总距离最小的Hamilton回路C.旅行售货员问题是售货员遍历图的每个点D.旅行售货员问题是售货员遍历图的每条边62.下列错误的关系式是(B)A. B. C. D63.下列正确的说法是(D )A.在PERT中,项目完工时间的标准差等于各关键工序时间的标准差求和B.单位时间工序的应急成本等于工序总应急成本减去工序总正常成本C.项目的总成本等于各关键工序的成本之和D.项目的总成本等于各工序的成本之和64.下列变量组是一个闭回路(C)A.{x11,x12,x23,x34,x41,x13}B.{x21,x13,x34,x41,x12}C.{x12,x32,x33,x23,x21,x11}D .{x12, x22,x32,x33,x23,x21}65.下列结论正确的有(A)A 运输问题的运价表第r行的每个c ij同时加上一个非零常数k,其最优调运方案不变B 运输问题的运价表第p列的每个c ij同时乘以一个非零常数k,其最优调运方案不变C.运输问题的运价表的所有c ij同时乘以一个非零常数k, 其最优调运方案变化D.不平衡运输问题不一定存在最优解66.下列说法正确的是(D)A.若变量组B包含有闭回路,则B中的变量对应的列向量线性无关B.运输问题的对偶问题不一定存在最优解C. 平衡运输问题的对偶问题的变量非负D.第i行的位势u i是第i个对偶变量67.下列错误的结论是(A)A.将指派(分配)问题的效率矩阵每行分别乘以一个非零数后最优解不变B.将指派问题的效率矩阵每行分别加上一个数后最优解不变C.将指派问题的效率矩阵每个元素同时乘以一个非零数后最优解不变D.指派问题的数学模型是整数规划模型68.下列说法正确的是():AA.在PERT网络图中只能存在一个始点和一个终点B.网络图中的任何一个结点都具有某项作业的开始和他项作业结束的双重标志属性C.同一结点为开始事件的各项作业的最早开始时间相同D.结点的最早开始时间和最迟完成时间两两相同的所组成的路线是关键路线69.下例错误的说法是(C)A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负70.下例错误的结论是(D)A.检验数是用来检验可行解是否是最优解的数B.检验数是目标函数用非基变量表达的系数C.不同检验数的定义其检验标准也不同D.检验数就是目标函数的系数71.线性规划标准型的系数矩阵A m×n,要求(B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m72.线性规划具有无界解是指(C)A.可行解集合无界B. 最优表中所有非基变量的检验数非零C.存在某个检验数D. 有相同的最小比值73.线性规划具有唯一最优解是指(A)A.最优表中非基变量检验数全部非零B.不加入人工变量就可进行单纯形法计算C.最优表中存在非基变量的检验数为零D.可行解集合有界74.线性规划具有多重最优解是指(B)A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大于零75.线性规划的退化基可行解是指(B)A.基可行解中存在为零的非基变量B.基可行解中存在为零的基变量C.非基变量的检验数为零D.所有基变量不等于零76.线性规划无可行解是指(C)A.第一阶段最优目标函数值等于零B.进基列系数非正C.用大M法求解时,最优解中还有非零的人工变量D.有两个相同的最小比值77.线性规划可行域的顶点一定是(A)A.可行解B.非基本解C.非可行D.是最优解78.线性规划模型中,决策变量()是非负的。

相关文档
最新文档