5、大气条件对气隙击穿特性的影响及校正
高电压技术(赵智大)1-2章总结讲诉

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。
气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。
气体放电是对气体中流通电流的各种形式统称。
由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。
正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。
自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。
()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。
带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。
电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。
电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。
产生带电粒子的物理过程称为电离,是气体放电的首要前提。
光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。
碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。
电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。
电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
气隙的击穿特性

第3章 气隙的击穿特性
主要内容
一. 气隙的击穿时间 二. 持续作用电压下空气的击穿电压 三. 雷电冲击电压下空气的击穿电压及伏秒特性 四. 操作冲击电压下空气的击穿电压 五. 提高气体间隙击穿电压的措施
影响空气间隙放电电压的因素主要: 电场情况:均匀、稍不均匀、极不均匀 电压形式:直流电压、交流电压、雷电冲击电压
电场极不均匀的极端情况典型电极来研究 棒(尖)—板 :电场分布不对称 棒(尖)—棒(尖) :电场分布对称
直流、工频间的差别比较明显,分散性较大, 且极性效应显著
1. 直流电压下的击穿电压
Ub (kV)
极性效应:尖—尖电极 间的击穿电压介于极性 900 不同的尖—板电极之间
棒—板间隙:棒具有正 极性时,平均击穿场强
小于下包络线所示数值t的概率为0%,
放电时间具有分散性,实际上 伏秒特性是以上、下包线为
其左方完全不击穿; 小于上包络线所示数值 其右方完全击穿;
t的概率为100%,
界的一个带状区域
小于 t的概率为50%——50%概率放电时
间对应50%伏秒特性
作法:保持一定的波形而逐渐升高电压,以示波图来求取, 电压较低时,击穿发生在峰值过后,取峰值作纵坐标; 击穿发生在波峰时,取峰值作纵坐标; 击穿发生在尚未到峰值时,取击穿时电压值作纵坐标。
tb t0 ts t f
tl ts t f
持续作用电压
直流电压、工频电压
与电压的变化速度相比,放电发展所需时间可以忽略 不计 。当气体状态不变时,一定距离的间隙的击穿电 压具有确定的数值,当间隙上的电压升高达到击穿电 压时,间隙击穿
非持续作用电压 操作过电压、雷电过电压
气体介质的电气强度知识

2.2 极不均匀电场气隙的击穿特性
常见的极不均匀电场气隙
工程上的极不均匀电场气隙,均可以用两类极端 的模型表示,实际的工程应用可依据这两类电场类 型的测量值进行推算:
b).棒-板电极(完全不对称结构)
2.2 极不均匀电场气隙的击穿特性
1. 直流电压
稍短间隙
显著特征:极性效应
平均击穿场强:
正极性棒-板间隙: 7.5kV/cm
气体介质的电气强度
气体放电的物理过程:气体中带电质点的产生、汤逊放 电、流注放电、电晕放电、沿面放电(微观特性) 工程上,要用击穿特性表示(击穿场强,击穿电压) (宏观特性)
气体介质的电气强度
2.1 均匀和稍不均匀电场气隙的击穿特性 2.2 极不均匀电场气隙的击穿特性 2.3 大气条件对气隙击穿特性的影响及其校正 2.4 提高气体介质电气强度的方法 2.5 六氟化硫和气体绝缘电气设备
3、饱和特性
4、分散性更大(可以理解为伏秒特性带宽更宽)。
2.3 大气条件对气隙击穿特性的影响及其校正
为何要对不同大气条件下的击穿特性进行校正
高海拔地区的 高纬度地区 沿海地区
2.3 大气条件对气隙击穿特性的影响及其校正
我国国标规定的标准大气条件
压力:101.3 kPa 温度:293 K 绝对湿度:11 g/m³
2.4 提高气体介质电气强度的方法
1、改进电极形状以改善电场分布 2、利用空间电荷改善电场分布 3、采用介质阻挡方法 4、采用高气压的方法 5、采用高电气强度气体 6、采用高真空
2.4 提高气体介质电气强度的方法
1、改进电极形状以改善电场分布
电场均匀——击穿场强高——通过改善电极形状均匀电场
大气条件改变,如在高海 拔地区,气压、气体密度、 温度、湿度等条件均改变。 在此条件下测量的气隙击 穿数据与在标准大气条件 下所测数据不具有可比性。
高电压技术-试题及答案

《高电压技术》二、填空(每题2分,共20分)1。
带电质点的复合2。
棒-板3. 1.24。
离子电导5. 低6. 降低7.反接法8. 工频高电压试验9. 巴申10.雷电冲击1. 带电质点消失的途径有带电质点受电场力的作用流入电极、带电质点的扩散和带电质点的复合____________。
2. 工程实际中,常用棒-棒或________________电极结构研究极不均匀电场下的击穿特性。
3。
国际上大多数国家对于标准雷电波的波前时间规定为________________μs。
.4. 固体电介质的电导按载流子种类可分为电子电导和__________________。
5. 棒-板电极系统,棒为负极性时的电晕起始电压比棒为正极性的电晕起始电压低______。
6. 某220kV电气设备从平原地区移至高原地区,其工频耐压水平将_________________。
7.当电气设备的外壳接地时,采用西林电桥测量tanδ宜采用_________________.8. 电气绝缘的高电压试验包括_________________、直流高电压试验和冲击高压试验。
9.在实际应用中,采用压缩气体或高真空作为高压设备绝缘的理论依据是____________定律。
10.BIL是指电气设备的____________绝缘水平.三、单项选择题(每题2分,共32分)1.C 2。
D 3。
A 4. A 5. B 6。
A 7. D 8。
C9. C 10。
B 11.B 12。
C 13.A 14.C 15.B 16.A1.气体中带电质点产生的最重要方式是():A。
热电离 B. 光电离 C。
碰撞电离 D. 以上都不是2。
下列仪器中,不能用来测量直流高电压的是()A.测量球隙 B.静电电压表 C.电阻分压器 D.电容分压器3. 下列说法中,()是不正确的A.加在气隙上的电压达到最低静态击穿电压时,气隙即被击穿B.伏秒特性表示的是间隙上出现的电压最大值和间隙击穿时间的关系C.由于放电具有分散性,一般用50%击穿电压表示气隙的冲击击穿特性D.伏秒特性曲线是一个带状区域4. 关于操作冲击电压作用下极不均匀场的击穿电压,()是不正确的A.操作冲击电压下气隙的击穿通常发生在波尾部分B.击穿电压与波前时间的关系曲线呈现“U”形C.气隙的操作冲击电压远低于雷电冲击电压,D.操作冲击击穿特性具有显著的饱和特征5. ( )不是提高沿面放电电压的措施A.采用屏障和屏蔽 B.降低表面憎水性C.减小绝缘体的表面电阻率 D.使沿面的电位分布均匀6. 工频耐压试验时,工频变压器的负载大都为( )A. 电容性 B。
高电压考点答案

1-1、电介质基本电气特性为极化特性、电导特性、损耗特性和击穿特性。
相对介电常数Er,电导率y,介质损耗因数tgδ和击穿电场强度E。
1-2、电介质的极化可分为无损极化和有损极化。
无损极化包括电子式极化和离子式极化,有损极化包括偶极子式极化、空间电荷极化和夹层极化。
无损极化包括电子式极化和离子式极化。
夹层极化是空间电荷极化的一种特殊形式,多层介质相串联的绝缘结构,在加上直流电压的初瞬,各层介质中的电场分布与介质的相对介电常数成反比;稳态时的电场分布则与介质的电导率成反比,在此过程中存在吸收现象。
1-3、电介质的电导与金属的电导有着本质的区别,电介质电导属离子式电导磨碎温度的升高按指数规律增大;金属电导属电子式电导,随温度的升高而减小。
1-4、电介质在电场作用下存在损耗,其中气体电介质的损耗可以忽略不计。
在直流电压作用下电介质的损耗仅为由电导引起的电导损耗,而交流电压作用下电介质的损耗既有损耗,又有极化损耗。
因此,电介质在交流电压下的损耗远大于其直流电压下的损耗。
2-1绝缘介质通常由气体、液体和固体三种形态,其中气体和液体电介质属于自恢复绝缘,固体电介质属于非自恢复绝缘。
2-2气体放电的根本原因在于气体中发生了电离的过程,在气体中产生了带电粒子;而气体具有自恢复绝缘特性的根本原因在于气体中存在去电离的过程,它使气体中的带电粒子消失。
电离和去电离这对矛盾的存在与发展状况决定着气体介质的电气特性。
2-3在气体电离的四种基本特性中,碰撞电离是最基本的一种电离形式。
而在碰撞电离中电子最活跃的因素。
2-4电子崩的概念是汤逊气体放电理论的基础。
汤逊理论是建立在均匀电场、短间隙、低气压的实验条件下,因此它不适合解释高气压、长间隙、不均匀电场中的气体放电现象,对于后者只能用流注放电理论予以解释。
2-5流注放电理论与汤逊放电理论的根本不同点在于流注理论认为电子的碰撞电离和空间光电离是形成自持放电的主要因素,并强调电荷畸变电场的作用。
《高电压技术》辅导资料三

高电压技术辅导资料三主题:第一章介子在强电场下的特性(第7-8节)学习时间:2013年10月14日-10月20日内容:我们这周主要学习第一章第七、八节“各种电压作用下气隙的特性”、“大气条件对空气间隙击穿电压的影响及提高气体介质强度的方法”的相关内容。
希望通过下面的内容能使同学们加深对气隙放电的理解以及了解大气环境下的击穿电压和提高气体介质强度的方法。
第七节各种电压作用下气隙的特性(1)概述气体间隙的击穿电压和电场分布、电压种类都有很大关系。
也就是说气隙的击穿特性取决于电场形式和外加电压类型。
通常,有如下划分:电场形式:均匀电场,稍不均匀电场,极不均匀电场。
在间隙距离相同的情况下,通常电场越均匀,击穿电压越高。
外加电压类型:直流电压稳态电压工频交流电压雷电过电压冲击电压操作过电压(2)均匀电场气隙的击穿在均匀电场中,不存在极性效应,起始场强等于击穿场强。
直流、工频、冲击电压作用下的击穿电压相同,击穿电压分散性很小。
空气间隙的击穿电压经验公式:Ub=24.55δd+6.4(δd)0.5 kVUb-击穿电压峰值,kVδ-空气的相对密度d-间隙距离,cm间隙距离比较小(d=1 ~10cm)时,可以用这个经验公式估算,均匀电场中空气的电气强度大致为Eb=30kV/cm(3)稍不均匀电场与均匀电场相似,一旦出现局部放电,立即导致整个间隙的完全击穿。
稍不均匀电场中直到击穿为止不发生电晕;电场不对称时,极性效应不明显(但是存在)。
直流击穿电压、工频击穿电压(幅值)、50%冲击击穿电压基本上相等,击穿电压的分散性质也不大。
该电场中,电场越均匀,相同间隙距离下的击穿电压越高,其极限是均匀电场中的击穿电压。
该电场中,不能形成稳定的电晕放电,电晕起始电压就是其击穿电压,所以负极性下击穿电压略低于正极性下的数值(可参见上一周内容的极性效应相关内容)。
(4)极不均匀电场在极不均匀电场中,有持续的局部放电,空间电荷积累导致显著的极性效应。
高电压技术第三章

高电压技术第三章
(3)极不均匀电场长气隙的操作冲击击穿特性 具有显著的“饱和特征”,而其雷电冲击击穿特性 却是线性的。电气强度最差的正极性“棒—板”气隙 的饱和现象最为严重,尤其是在气隙长度大于5m 以后,这对特高压输电技术来说,是一个极其不 利的制约因素。
高电压技术第三章
正由于此,在不同大气条件和海拔高度下所 得出的击穿电压实测数据都必须换算到某种标准 条件下才能互相进行比较。
国标规定的大气条件:
压力:p0=101.3kPa(760mmHg); 温度:t0=20摄氏度或T0=293K; 绝对湿度:hc=11g/m3。
高电压技术第三章
实验条件下的气隙击穿电压U与标准大气条
高电压技术第三章
二、稍不均匀电场气隙的击穿特性 与均匀电场相似,冲击系数接近1,冲击击穿电
压与工频击穿电压及直流击穿电压相等。
1、球间隙 若球间距离d,球极直径为D d<D/4时,与均匀电场相似 d>D/4时,不均匀度增大,大地影响加大
一般取d ≤ D/2范围内工作
高电压技术第三章
2、同轴圆筒
外筒内半径 R=10cm,改变内筒 外半径r之值,气 隙起始电晕电压Uc 和击穿电压随内筒 外直径r变化规律 如图2-3所示。
高电压技术第三章
三、对海拔的校正
我国幅员辽阔,有不少电力设施(特别是输电 线路)位于高海拔地区。随着海拔高度的增大,空 气变得逐渐稀薄,大气压力和相对密度减小,因 而空气的电气强度也将降低。
海拔高度对气隙的击穿电压和外绝缘的闪络 电压的影响可利用一些经验公式求得。
高电压技术第三章
哈工大高电压技术 总复习

气体分子在外界因素的作用下,发生电离而
分解成电子和正离子。 ☆ 、电离的主要形式 碰撞电离、光电离、热电离、金属表面电离
☆ 、气体放电的主要形式
辉光放电、火花放电、电晕放电、刷状放电、 电弧放电
☆、汤逊理论的实质
电子碰撞电离是气体放电的主要原因,二次
电子来源于正离子撞击阴极表面逸出电子,逸出
电子是维持气体放电的必要条件。
☆、极间距离相同的正、负极性“棒—板”气隙在自持放 电前、后气体放电的差异 自持放电前的阶段(电晕放电阶段) 正极性“棒 — 板”:因棒极带正电位,电子崩中的电
子迅速进入棒极,正离子暂留在棒极附近,这些空间电荷
消弱了棒极附近的电场而加强了外部空间的电场,阻止了 棒极附近流注的形成,使得电晕起始电压有所提高 负极性“棒 — 板”:因棒极带负电位,电子崩中电子 迅速向板极扩散,正离子暂留在棒极附近,这些空间电荷 加强了棒极附近的电场而消弱了外部空间的电场,使得棒
污闪过程: 积污 电晕或辉光放电出现
受潮
干区形成 沿面闪络
局部电弧出现
积污地点:城市 > 农村;化工厂、火电厂、冶炼厂等重 污染地区 污层受潮条件:多雾;常下毛毛雨;易凝露地区;长期 干旱 积污是发生污闪的温床,治理环境可以防止积污;污层 受潮或湿润是污闪的催化剂
☆、污闪事故的对策
(一)调整爬电比距
在操作冲击电压作用下:其击穿特性具有“U形曲线”
特性和“饱和”特性;其击穿电压不仅远低于雷电冲击电 压,有时在波前时间内比工频击穿电压还低;且其击穿电 压和放电时间的分散性比雷电冲击电压下要大得多
☆、表征气隙冲击击穿特性的两种方法是:
50%冲击击穿电压和伏秒特性曲线 1、50%冲击击穿电压(U50%) 工程上常采用50%冲击击穿电压(U50%)来描述气隙的 冲击击穿特性。 50%冲击击穿电压(U50%):在多次施加同一电压时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特性的影响
对空气密度的校正 对湿度的校正 对海拔的校正
前面介绍的不同气隙在各种电压下的击穿特性 均对应于标准大气条件和正常海拔高度。 由于大气的压力、温度、湿度等条件都会影响
空气的密度、电子自由行程长度、碰撞电离及附着
过程,所以也必然会影响气隙的击穿电压。 海拔高度的影响亦与此类似,因为随着海拔高 度的增加,空气的压力和密度均下降。
小
结
在不同大气条件和海拔高度下所得出的击穿电 压实测数据都必须换算到某种标准条件下才能互 相进行比较。
对 空气密度、湿度和海拔,分别有不同的
校正方法。
式中的因数k与绝对湿度和电压类型有关,而 指数 之值则取决于电极形状、气隙长度、电压 类型及其极性。
三、对海拔的校正 我国幅员辽阔,有不少电力设施(特别是输电 线路)位于高海拔地区。随着海拔高度的增大,空 气变得逐渐稀薄,大气压力和相对密度减小,因
而空气的电气强度也将降低。 海拔高度对气隙的击穿电压和外绝缘的闪络
气隙的电场强度都较大,电子的运动速度较快, 不易被水气分子所俘获,因而湿度的影响就不太 明显,可以忽略不计。 例如用球隙测量高电压时,只需要按空气相 对密度校正其击穿电压就可以了,而不必考虑湿 度的影响。
在极不均匀电场中,湿度的影响就很明显了,
这时可以用下面的湿度校正因数来加以修正:
Kh k
电压的影响可利用一些经验公式求得。
我国国家标准规定:对于安装在海拔高于 1000m、但不超过4000m处的电力设施外绝缘,其试
验电压 U 应为平原地区外绝缘的试验电压 Up 乘以海
拔校正因数足Ka即:
U KaU p
1 而: K a 4 1.1 H 10
式中H 为安装点的海拔高度,单位是m。
关系,并不是一种简单的线性关系,而是随电极形
状、电压类型和气隙长度而变化的复杂关系。
除了在气隙长度不大、电场也比较均匀或长度虽 大、但击穿电压仍随气隙长度呈线性增大(如雷电冲击
电压)的情况下,上式仍可适用外,其他情况下的空气
密度校正因数应按下式求取:
p 273 t0 Kd p 0 273 t
Kd U U0 Kh
K d :空气密度校正因数 K h :湿度校正因数
上式不仅适用于气隙的击穿电压,也适用于
外绝缘的沿面闪络电压。
一、对空气密度的校正 空气密度与压力和温度有关。空气的相对密
度:
p 2.9 T
式中: p :气压,kPa
T :温度,K.
在大气条件下,气隙的击穿电压随 而提高。
1 、极间距离相同的正、负极性“棒 — 板”气隙在自持放 电前、后气体放电的差异 自持放电前的阶段(电晕放电阶段) 正极性“棒 — 板”:因棒极带正电位,电子崩中的电
子迅速进入棒极,正离子暂留在棒极附近,这些空间电荷
消弱了棒极附近的电场而加强了外部空间的电场,阻止了 棒极附近流注的形成,使得电晕起始电压有所提高 负极性“棒 — 板”:因棒极带负电位,电子崩中电子 迅速向板极扩散,正离子暂留在棒极附近,这些空间电荷 加强了棒极附近的电场而消弱了外部空间的电场,使得棒
正由于此,在不同大气条件和海拔高度下所
得出的击穿电压实测数据都必须换算到某种标准
条件下才能互相进行比较。
国标规定的大气条件: 压力:p0=101.3kPa(760mmHg); 温度:t0=20摄氏度或T0=293K; 绝对湿度:hc=11g/m3。
实验条件下的气隙击穿电压 U 与标准大气条
件下的击穿电压 U 之间关系: 0
的增大
实验表明,当 处于0.95 ~1.05的范围内时,
气隙的击穿电压几乎与 成正比,即此时的空气
密度校正因数
K,因而: d
U U 0
气隙不很长(例如不超过1m)时:上式能足够准
确地适用于各种电场型式和各种电压类型下作近似 的工程估算。
更长的空气间隙:击穿电压与大气条件变化的
极附近流注容易形成,降低了电晕起始电压
电晕放电电压:正极性“棒 — 板” 〉负极性“棒 —
板” 自持放电后的阶段(击穿放电阶段) 正极性棒 — 板:当电压进一步提高,随着电晕放电
区的扩展,强场区逐步向板极推进,流注发展是顺利持续 的,直至气隙被击穿,其击穿电压较低 负极性棒 — 板:当电压进一步提高时,电晕区不易
m
n
式中指数 m,n与电极形状、气隙长度、电压类型 及其极性有关,其值在0.4~1.0的范围内变化,具体取 值国家标准中有规定。
二、对湿度的校正
大气中所含的水气分子能俘获自由电子而形 成负离子,这对气体中的放电过程显然起着抑制 作用,可见大气的湿度越大,气隙的击穿电压也 会增高。
在均匀和稍不均匀电场中,放电开始时,整个
向外扩展,流注发展是逐步顿挫的,整个气隙的击穿是不
顺利的,其击穿电压比正极性时高得多,击穿完成时间也 要长得多
击穿放电电压:正极性“棒 —板”〈 负极性“棒 —
2、极不均匀电场中的短间隙、长间隙的放电发展过程 短间隙: 电子崩 — 流注 — 主放电(击穿) 长间隙: 电子崩 — 流注 — 先导 — 主放电(击穿)