半导体光源特性测量

合集下载

实验一 半导体激光器P-I特性曲线测量

实验一 半导体激光器P-I特性曲线测量

实验一半导体激光器P-I特性曲线测量一、实验目的:1.了解半导体光源和光电探测器的物理基础;2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性;3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;4.掌握有源光电子器件特性参数的测量方法;二、实验原理:光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。

1.发光二极管(LED)和半导体激光二极管(LD):LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。

LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。

LD通过受激辐射发光,是一种阈值器件。

LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。

使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。

在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。

当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。

如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。

(1) LED和LD的P-I特性与发光效率:图1是LED和LD的P-I特性曲线。

LED是自发辐射光,所以P-I曲线的线性范围较大。

半导体激光器特性测量实验报告

半导体激光器特性测量实验报告

半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。

2.测量半导体激光器的几个主要特性。

3.掌握半导体激光器性能的测试方法。

二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。

三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。

该设备集光学、精密机械、电子学、计算机技术于一体。

光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。

入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。

四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。

从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。

实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。

半导体发光二极管测试国标(精)

半导体发光二极管测试国标(精)

基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。

1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。

由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。

通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。

图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。

2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。

(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。

变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。

如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。

_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。

图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。

而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。

(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。

因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。

半导体发光二极管LED的测试方法

半导体发光二极管LED的测试方法
为光源在指,
电磁 能量,单位为 瓦特 ( )。 它通 常 w 表示L D在 空间4 E n度 范围内,每秒钟所
发 出 的 能 量 。 实 际 上 ,辐 射 通 量 就 是 辐 ’
角元dQ内月
这 个立体 角, 在此方 向上f
, 一

射体 的辐射 功率。 由于光子 能量 的大 小
半导体发光二极管L D E 的测试方法
光地 北京光 电子技术实验室主任 半导体发光二极 管 ( E L D) 已经被
广 泛 应 用 于 指 示 灯 、 信 号 灯 、 仪 表 显
的红外线放射作用。而 16 年美国通用 92
电气公 司 ( ikHoo y kJ) 则开 GE N c ln a r
量 、辐 射效率 、光强、光强分布特 性和
光谱参数等。
光通 量和 光效。光通 量 的测试有 两 种 方法,即积分球法和 变角光度 计法。 在辐射度学上,L D辐射通量中e E m来衡
量 发 光 二极 管 在 单 位 时 间 内 发 射 的 总 的
I ) ( ( 1 )
距离和探测
之间不 同波长 的光线 ,而业界也有紫色

紫外线 的L D。近年 来L D最吸引入 E E
的发展是蓝光L D上涂上萤光粉 ,将蓝 E
现 了砷 化镓Ga 与及 其他半 导体合 金 AS
光转化成 白光 的白光L D产 品。L D之 E E
Techn oq ol
所 以被称 为世 纪新光源 ,原 因在于LE D 具备 点光源与 固态光源的特性 ,能够节
省 能源 、高耐震、寿命长 、体积4 响应 、
快速、并且色彩饱和度高。
电特性测试方法 L ED是一个 由半导体无机 材料构成 的单 极性P n 二极 管 ,其 电压 与 电流 —结

LED特性及光度测量实验(中大)

LED特性及光度测量实验(中大)

LED特性及光度测量实验中山大学 光信实验数据记录与分析1. LED的U-I特性测量(1) 红光LED的U-I特性实验测得数据如下:表1 红光LED电流与电压测量数据U(V)0 1.81 1.86 1.92 1.84 1.82 1.87 1.88 I(A)00.0050.010.0180.0080.0070.0120.013 P(nw) 2.935.462113.849.740.776.284.6 U(V) 1.89 1.91 1.94 1.95 1.8 1.79 1.78 1.76 I(A)0.0140.0160.0210.0250.0040.0030.0020.001 P(nw)88.997.5126.4153.432.727.520.316.2根据Shockley理论,对于一个散射面积为A的二极管,其电流电压关系为: ,即I与V之间存在指数关系。

所以以下用Origin7.5对红光LED电流与电压的关系进行指数拟合,如下图:图1 红光LED的V-I特性测量由此可得, 指数拟合曲线的表达式为:实验数据分析:对于红光LED,由图1和其拟合系数可知,拟合度R^2=0.99046,拟合度非常接近1,所以可以认为其U-I特性是指数关系,符合Shockley理论。

当电压大于某一值(即阈值)时,LED才有明显的电流反映,才开始发光,而且随着电压的增大,电流呈指数增长,发光愈强。

(2) 蓝光LED的U-I特性实验测得数据如下:表2 蓝光LED电流与电压测量数据U(V) 3.2 3.25 3.33 3.38 3.41 3.44 3.46 3.5I(A)0.0010.0020.0030.0040.0050.0060.0070.008 P(nw) 5.47.310.812.613.91515.817.2U(V) 3.55 3.57 3.61 3.63 3.67 3.69 3.72 3.75I(A)0.0090.010.0110.0120.0130.0140.0150.016 P(nw)18.819.620.320.821.52222.623.1U(V) 3.78 3.8 3.85 3.87 3.93 3.95 3.974I(A)0.0170.0180.020.0210.0230.0240.0250.026 P(nw)2323.824.124.224.324.724.724.9同(1),由Origin7.5做出蓝光LED电流与电压的指数拟合曲线如下图:图2 蓝光LED的V-I特性测量由此可得, 指数拟合曲线的表达式为:实验数据分析:对于蓝光LED,其拟合度为R^2=0.9792,拟合度非常接近1,所以可以认为其U-I特性是指数关系,符合Shockley理论。

半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验学号:姓名:班级:日期:【摘要】激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。

本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。

【关键词】半导体激光器、偏振度、阈值、光谱特性一、实验背景激光是在有理论准备和实际需要的背景下应运而生的。

光电子器件和技术是当今和未来高技术的基础之一。

受激辐射的概念是爱因斯坦于1916年在推导普朗克的黑体辐射公式时提出来的, 从理论上预言了原子发生受激辐射的可能性,这是激光的理论基础。

直到1960年激光才被首次成功制造(红宝石激光器)。

半导体激光(Semiconductor laser)在1962年被成功发明,在1970年实现室温下连续输出。

半导体激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 等多种工艺。

由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。

半导体激光器已经成功地用于光通讯和光学唱片系统,还可以作为红外高分辨率光谱仪光源,用于大气检测和同位素分离等;同时半导体激光器成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。

半导体激光器与调频器、放大器集成在一起的集成光路将进一步促进光通讯和光计算机的发展。

半导体激光器主要发展方向有两类,一类是以传递信息为目的的信息型激光器,另一类是以提高光功率为目的的功率型激光器。

本实验旨在使学生掌握半导体激光器的基本原理和光学特性,利用光功率探测仪和CCD光学多道分析器,测量可见光半导体激光器输出特性、不同方向的发散角、偏振度,以及光谱特性,并熟悉光路的耦合调节及CCD光学多道分析器等现代光学分析仪器的使用,同时进一步了解半导体激光器在光电子领域的广泛应用。

LED和LD的光源特性测试实验

LED和LD的光源特性测试实验

LD/LED光源特性测试实验1. 实验目的通过测量LED发光二极管和LD半导体激光器的输出功率-电流(P-I)特性曲线和P-I特性随器件温度的变化,理解LED发光二极管和LD半导体激光器在工作原理及工作特性上的差异。

2. 实验原理2.1 LD工作原理从激光物理学中我们知道,半导体激光器的粒子数反转分布是指载流子的反转分布。

正常条件下,电子总是从低能态的价带填充起,填满价带后才能填充到高能态的导带;而空穴则相反。

如果我们用电注入等方法,使p-n结附近区域形成大量的非平衡载流子,即在小于复合寿命的时间内,电子在导带,空穴在价带分别达到平衡,如图1所示,那么在此注入区内,这些简并化分布的导带电子和价带空穴就处于相对反转分布,称之为载流子反转分布。

注入区称为载流子分布反转区或作用区。

结型半导体激光器通常用与p-n结平面相垂直的一对相互平行的自然解理面构成平面腔。

在结型半导体激光器的作用区内,开始时导带中的电子自发地跃迁到价带和空穴复合,产生相位、方向并不相同的光子。

大部分光子一旦产生便穿出p-n结区,但也有一部分光子在p-n结区平面内穿行,并行进相当长的距离,因而它们能激发产生出许多同样的光子。

这些光子在平行的镜面间不断地来回反射,每反射一次便得到进一步的放大。

这样重复和发展,就使得受激辐射趋于占压倒的优势,即在垂直于反射面的方向上形成激光输出。

图1半导体激光器的能带图2.2 LED 工作原理发光二极管是大多由Ⅲ-Ⅳ族化合物,如GaAs (砷化镓)、GaP (磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN 结。

因此它具有一般P-N 结的I-N 特性,即正向导通,反向截止、击穿特性。

此外,在一定条件下,它还具有发光特性。

在正向电压下,电子由N 区注入P 区,空穴由P 区注入N 区。

进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图2所示。

由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生。

光纤通信实验报告光源的PI特性测试

光纤通信实验报告光源的PI特性测试
y=[,387,,,,,,,,,,,,];
plot(x,y)
xlabel('I/mA');ylabel('P/uW');
title('实验得LD半导体激光器P-I特性曲线')
gridon;
对实验结果曲线图的阈值电流部分进行局部放大,如图所示:
实验结果及分析:
通过进行了光源的P-I特性测试实验,结合了书本上的知识,我对半导体激光器LD的P-I特性有了进一步的了解,同时也掌握了光源P-I特性曲线的测试方法。
(3)用同轴电缆线将25号光收发模块P4(光探测器输出)连至23号模块P1(光探测器输入)。
2、将25号光收发模块开关J1拨为“10”,即无APC控制状态。开关S3拨为“数字”,即数字光发送。
3、将25号光收发模块的电位器W4和W2顺时针旋至底,即设置光发射机的输出光功率为最大状态;
4、开电,设置主控模块菜单,选择主菜单【光纤通信】→【光源的P-I特性测试】功能。
在做实验的过程中,也因为是初次接触,还有些不习惯,从这第一个实验开始对实验箱的每个模块进行熟悉,中间在读数的时候,我们测得的数据波动的很厉害,不能稳定地读数,所以只能取中间值进行采集。
在实验的过程中,我们对多组数据进行了测量。我们首先由u=(V)测量至u=(V),发现了P-I大致的规律,后又估计在u=(V)左右对应有阈值电流,故又在此范围附近多测量了几组,使最终结果更精确。最后根据我们的数据绘出了实验测得的LD光源P-I特性曲线,曲线与理想情况还有些偏差,我认为造成误差的原因,主要可能有实验温度的影响和测量过程中读数与记录的误差等,但在误差允许的范围内,实验结果与理论基本吻合。可以从曲线上看出,阈值电流在左右,阈值功率在左右。
实验步骤:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于直接带隙半导体,在热平衡状态下,电子基本上处于价带中(如图),半导体介质对光辐射只有吸收而没有放大作用,但当电流注入结区时,热平衡状态被破坏(如图),电子处于导带中能量为E的状态的几率 为
电子处于阶带中能量为E的状态的几率 为
和 是导带和价带的准费米能级,为了在结区中心有源区内得到受激辐射,要求 ,即要求伯纳德-杜拉福格条件成立
半导体激光器原理
1.半导体异质结能带结构和粒子数反转分布条件
半导体异质结是指由两种基本物理参数不同的半导体单晶材料构成的晶体界面(过度区),不同物理参数可以是禁带宽度( ),功函数( ),电子亲和势( )介电常数( ),对它们进行适当选择就可以获得诸如高注入比,超注入效应,对载流子和光场的限制作用,“窗口效应”等。
半导体激光器的最重要应用是光纤通信:比如将1.55μm,窄线宽的分布反馈布拉格半导体激光器(DFB-LD)用于光纤通信,单信道码率可达10Gb/s,为适应更高码率的波分复用(WDM)和时分复用(TWM)等光纤信号传输技术,发展了量子阱有源,多段结构的可调谐DFB-LD或DBR-LD(分布布拉格反射激光器),由于其线宽窄,微分增益系数大,有利于降低调制啁啾引起的展宽,这样即有助于提高信道码率;半导体激光器另一项重要应用在光盘技术领域,光盘技术是门综合技术,融会了计算机,激光与数字通信技术,半导体激光器用于光盘写入时,关键技术有光斑聚焦和光束圆化,强度和波长涨落以及光反馈影响方面的控制等。
整个七十年代的工作重点是提高半导体激光器的各项基本参数要求:低的阈值电流密度;室温工作;连续大功率输出;长寿命;含盖可见光与近红外的多种单频激光器;窄线宽;波长可调谐激光器等。八十年代以来,随着分子束外延(MBE),金属有机化学气相沉积(MOCVD)和化学束外延(CBE)技术取得重大突破,诞生了诸如量子阱激光器(MQW),应变量子阱激光器(SL-MQW),垂直腔面发射激光器及高功率激光器阵列等所谓“能带工程”的产物
虽然单异质结能够利用其势垒将注入电子限制在GaAs P-N结的P区内使室温阈值电流密度降到 水平,但真正的突破是双异质结(DH)的发明:把p-GaAs半导体夹在N-AlxGa1-xAs层和P-AlxGa1-xAs层之间,两个异质结势垒能有效地将载流子和光场限制在p-GaAs薄层有源层内,使室温阈值电流密度减小了一个数量级。这项重要的发明由阿尔费洛夫,Hayashi,潘尼希等人共同完成。
上世纪六十年代初开始将半导体材料作为激光媒质,伯纳德(Bernard)和杜拉福格(Duraffourg)提出在半导体中实现受激辐射的必要条件:对应于非平衡电子,空穴浓度的准费米能级差必须大于受激发射能量。由此,半导体激光器开始了从同质结到异质结的快速发展过程,单异质结最初由美国的克罗默(Kroemer)和前苏联的阿尔费洛夫于1963年提出,其实质是把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,从窄带隙半导体中产生高效率复合和辐射,这个设想很大程度上取决于异质结材料的生长工艺,1967年IBM公司的伍德尔(Woodall)用液相外延方法(LPE)在GaAs上生长出AlGaAs,两三年后,贝尔实验室的潘尼希(Panish)等人研制成功AlGaAs/GaAs单异质结半导体激光器。
该式表明,半导体中产生受激发射的必要条件是非平衡电子和空穴的准费米能级之差应大于受激辐射的光子能量,也就是说,无任用光照还是电流激励,在激射发生之前,导带和价带的准费米能级之差应大于带隙 ,在这个条件下可形成集居数反转密度同时可得到净的总受激跃迁增益系数。
只是提出了产生激光的前提条件,要实际获得相干受激辐射,必须将增益介质置于光学谐振腔内,实现光放大,一般利用半导体材料的两个解理面(比如110晶面)构成部分反射(通过蒸镀抗反射或增透薄膜)的F-P腔,理论上沿z方向形成纵模分布。另外,DFB-LD(分布反馈半导体激光器)或DBR-LD(分布布拉格反射半导体激光器)则是由内含布拉格光栅来实现选择性反馈。
2.半导Байду номын сангаас介质光波导
典型的F-P腔条形结构双异质结 可见光半导体激光器(中心波长780nm)的典型结构如图,其中 是有源区,它在x方向上的厚度为0.1~0.2μm。有源区被两层相反掺杂的 包围层所夹持。受激辐射的产生与放大就是在有源区中进行的。
异质结半导体二极管激光器中的二维光场约束(以及载流子约束)在x方向(横向)通常是通过折射率的阶跃变化来实现的,一般有DH(双异质结),LOC(大光腔)和SCH(分别限制异质结)三种,而在y方向(侧向)则既可以通过折射率的阶跃变化(强折射率波导,实折射率差大于0.01),也可以通过折射率的逐渐变化(弱折射率波导,实折射率差介于0.005和0.01之间)实现,或通过增益的适当空间分布来实现,就如氧化物限制条形方式使得在有源层中沿y方向形成一定的载流子浓度分布。上述两种光场约束方法分别称为折射率波导和增益波导,用电磁理论可以证明由增益所形成的波导作用将产生沿y方向的高斯光场分布,不过要想获得模式稳定的激光振荡,一般要用实折射率导波机制。
为使光波模振荡的阈值注入电流密度;S为注入载流子密度; 为单位时间内载流子的复合几率。
2)半导体激光器的输出功率
受激辐射的光功率为
I为二极管激光器的注入电流, 是有源区内载流子复合而发射辐射的几率,称为内量子效率。考虑到有源层的增益和损耗,通过有源层两端输出的光功率为
条形半导体激光器当满足横向尺寸(y方向) 时视做三层介质平板波导,在x方向的场分布可分为TE模和TM模(即只考虑沿z方向传播的光波模),应当指出,零阶横模始终存在,但要在弱导条件下实现基模运转(只有零阶横模),有源层厚度可能达微米量级。
半导体激光器的主要特性
1)阈值电流密度
光波模的起振条件为该模式的光波在半导体激光器内沿z向往返一周获得的增益大于该模式经受的损耗,模式的增益等于模式的损耗称为模式振荡的阈值条件。由于有源层载流子密度与增益系数成正比,因此光波模的阈值振荡条件是否满足取决于注入载流子密度,有源层厚度以及光约束因子等因素,在稳态振荡时,载流子注入有源层的速率应与有源层内载流子的复合速率相等,即
相关文档
最新文档