空间光调制器实现相位调制的原理
3.7-空间光调制器资料

c ,c m,c 2m
时间调制器
电光调制器:电场控制 (克尔效应或泡克耳斯效应)
磁光调制器(磁光效应)
声光调制器:用超声信号驱动
幅度大而速度快的光强时间调制器可 作光开关
幅度大而有规律的光方向时间调制器可作光扫描器
空间调制器:光强、偏振态或相位等随空间各点而变化, 进行调制,可产生光强的某种空间分布。
A(x,y)=A0T(x,y)
或者是形成随坐标变化的相位分布 A(x,y)=A0Texp[iθ(x,y)]
y x
或者是形成随坐标变化的不同的散射状态。顾名思义, 这是一种对光波的空间分布进行调制的器件。它的英文名 称是Spatial Light Modulator(SLM)。
空间光调制器含有许多独立单元,它们在空间排列成 一维或二维阵列,每个单元都可以独立地接受光信号或电 信号的控制,并按此信号改变自身的光学性质(透过率、反 射率、折射率等),从而对通过它的光波进行调制;控制这 些单元光学性质的信号称为“写入信号”,写入信号可以 是光信号也可以是电信号,射入器件并被调制的光波称为 “读出光”;经过空间光调制器后的输出光波称为“输出 光”。实时的二维并行处理。
3.电光数字式扫描
由电光晶体和双折射晶体组合而成,其结构原理如图5所示。
图中S为KDP晶体,B为方解石双折射晶体(分离棱镜),它能使线偏振
光分成互相平行、振动方垂直的两束光,其间隔 b为分裂度,为分裂角(也
称离散角)。
纵向电光调制器及其工作原理
T
Io Ii
sin 2
2
sin
2
2
V V
上述电光晶体和双折射晶体就构成了一个一级数字扫描器, 入射的线偏振光随电光晶体上加和不加半波电压而分别占据两 个“地址”之一,分别代表“0”和“l”状态 。
空间光调制器教材

DVI端口
DVI-I双通道 数字/模拟 可转换VGA DVI-I单通道 数字/模拟 可转换VGA DVI-D双通道 数字 不可转换VGA DVI-D单通道 数字 不可转换VGA
HDMI接口 制作:Alan
HDMI是基于DVI(Digital Visual Interface)制定的,是High Definition Multimedia Interface(高分数字多媒体接 口)的简称,可以看作是DVI的强化与延伸, 两者可以兼容。HDMI在保证高品质的情况 下能够以数码形式传输未经压缩的高分辨率 视频和多声道音频数据。HDMI可以支持所 有的ATSC HDTV标准,不仅能够满足目前 最高画质1080p的分辨率,还可以支持 DVDAudio等最先进的数字音频格式,支持 八声道96kHz或立体声192kHz数码音频传 递,而且只用一条HDMI线连接,可以用于 免除数码音频接线。与此同时HDMI标准所 具备的额外扩展空间,它允许应用在日后升 级的音频或视频的格式中。与DVI相比 HDMI接口的体积更小而且支持同时传输音 频及视频信号。
制作: Alan
其它配件 制作:Alan
高精度纯相位LCOS显示面板
RS232数据线
DVI数据线
软件部分 制作:Alan
HOLOEYES 的调制器可以直接通过 显卡的DVI 接口连接到计算机上。空间 光调制器能如此方便使 用离不开在 windows 平台上的灵活高效的帧速率图 形卡。该空间光调制器由HOLOEYE 软 件驱动, 该软件可工作在所有版本的 windows 操作平台上。该软件能方便的 控制所有相关的图像参数, 另外,精心 设计的空间光调制器软件能实现多种光 学函数,像,光栅、透镜、轴锥体和光 圈, 并且能够根据用户设定的图像设计 衍射光学器件(DOE)。完整的套件包 括调制器、视频分配器 和图像处理的所 有相关器件。由于它小的尺寸,可以容 易的被集成到光学系统中。为保证器件 的光学质量(如:相位调制), HOLOEYE 对每个器件都进行了测量。
空间光调制器原理

空间光调制器原理
空间光调制器是一种利用光的相位、强度或偏振进行光信号调制的设备。
它可以将电信号转换为光信号,并对光信号进行调制,实现光通信、光传感、光计算和光存储等应用。
空间光调制器的原理可以分为两类:光学调制器和光电调制器。
光学调制器是利用物质的光学非线性效应来实现光信号调制的。
通过在光学材料中加入控制电场,可以改变材料的折射率、吸收系数或光学路径长度,从而实现对光信号的调制。
常用的光学调制器包括Mach-Zehnder插入波导调制器和热光调制器等。
光电调制器则是利用光电效应来实现光信号调制的。
光电调制器通常由光探测器和电调制器两部分组成。
光探测器将光信号转化为电信号,而电调制器则利用电信号对光信号进行调制。
常用的光电调制器包括光电晶体管、光电导和光电效应晶体等。
空间光调制器在光通信系统中起着重要的作用。
它可以将电信号转换为光信号,并调制光信号的相位、强度或偏振,实现光信号的编码、解码和传输。
同时,空间光调制器还可以用于光存储和光计算等领域,广泛应用于光学信息处理、光学传感和光纤通信等领域。
总之,空间光调制器是一种重要的光学器件,它通过光学调制或光电调制的方式对光信号进行调制,用于实现光通信、光传感、光计算和光存储等应用。
空间光调制器的相位调制特性

空间光调制器的相位调制特性作者:贺腾李建强王辉安俊鑫来源:《价值工程》2017年第03期摘要:载波的相位对其参考相位的偏离值随调制信号的瞬时值成比例变化的调制方式,称为相位调制,或称调相。
本文拟采用杨氏干涉装置,测量其相位调制特性。
具体内容包括搭建杨氏干涉光路,完成数据的采集以及实现干涉条纹的处理,得到相位调制特性。
Abstract: The phase modulation or phase refers to a modulation way in which the carrier phase will proportionally change along with the instantaneous value of the modulated signal to the reference phase deviation value modulation. This paper plans to use Young's interference device to measure the phase modulation characteristic. The specific contents include building Young's interference light path, completing the data collection, and achieving the process of interference fringes, obtaining the phase modulation characteristics.关键词:相位调制;杨氏干涉;干涉条纹Key words: phase modulation;Young's interference;interference fringe中图分类号:TN761 文献标识码:A 文章编号:1006-4311(2017)03-0120-020 引言空间光调制器是一种对光波的光场分布进行调制的元件,广泛地应用于光信息处理、光束变换、输出显示等诸多应用领域。
近代物理实验 液晶空间光调制器的振幅调制 实验报告

近代物理实验液晶空间光调制器的振幅调制实验报告在光通信、显微和望远等成像系统、自适应光学、光镊等许多应用领域中,都会涉及到光相位的调制,这时就需要用到一种新型的可编程光学仪器——空间光调制器。
空间光调制器是采用LCOS(LiquidCrystalOnSilicon,硅基液晶)芯片来调节光波前的振幅或相位的光学器件。
LCOS芯片是由液晶像元组成的像素阵列,每个像素都能单独地调制光。
对于同一束光来说,像元的尺寸越小,调制得就越精细;像素的个数就是芯片的分辨率,分辨率越高,可调制的自由度就越高。
从早期的铁电物质和扭曲向列液晶结构开始,到利用光电寻址。
滨松的中央研究所和固体事业部致力于空间光调制技术已有30多年的历史了。
其空间光调制器目前主要在高端市场中,以高线性度、高光利用率、高衍射效率等性能著称。
对于滨松空间光调制器LCOS本身的性质来说,它只改变光的相位,而不影响光的强度和偏振状态(振幅/光强的调制需要通过光路来实现)。
通过改变电压来改变液晶的排列方式,相位调制随着液晶的排列方式而变化。
通过CMOS背板和PC输出的DVI信号,液晶的排列是单像素可控的。
选择分辨率和像元大小LCOS是由像素阵列组成的,目前滨松可以提供两种分辨率:792×600,1272×1024;对于792×600分辨率的产品,还有两种像元大小可供选择:20μm,12.5μm。
不同的分辨率和像元大小以系列表示在产品型号的前半部分,如X10468-08,X10468指的就是该型号的产品分辨率为792×600,像元大小为20μm。
表中的“有效面积(Effecttiveareasize)”是指LCOS头上可以对光进行调制的液晶面的面积。
而用户在选型时,需要考虑该面积是否可以容纳下所需调制的光斑大小。
“填充因子(Fillfactor)”则是指单个像素有效面积占总面积的百分比,它在影响光利用率方面比较关键。
液晶空间光调制器综述

液晶的基பைடு நூலகம்性质
液晶的取向效应
• 液晶具有光学各向异性,沿分子长轴方向上的折射 率不同于沿短轴方向上的折射率。 • 如果沿分子长轴方向上的折射率大于沿短轴方向上 的折射率,称为正性液晶,反之称为负性液晶。 • 对基片表面处理,可使液晶分子平行于基片且容易 排成同一方向。如:摩擦定向方法。
液晶的电光效应
液晶空间光调制器
张望平
2012.04.03
主要内容
一、空间光调制器的发展历史 二、空间光调制器的原理 三、液晶材料简介 四、液晶空间光调制器的主要参数 五、扭曲向列液晶的调制原理 六、液晶屏的光调制特性测量与分析 七、液晶空间光调制器的应用
一 、发展历史
1888年奥地利植物学家莱尼采尔(F.Reinitezer)发现了液晶 20世纪初,液晶的研究进入高峰期,主要成就是发现了液晶的 一些物理性质 1961年美国无线电公司(RCA)普林斯顿研究所的海麦尔 (GH.Heilmeier)从微波固体元件研究方向转入有机半导体方向 1963年RCA的威廉斯发现了电场影响液晶的分子排列 1964年他们发现了液晶的动态散射效应(dynamieseattering),为 液晶在显示领域的应用打开了大门,因此海麦尔成为液晶显示的 先驱
●向列型(nematic)液晶
●近晶型(smectic)液晶 ●胆甾醇型(cholesteric)液晶
●向列型(nematic)液晶 液晶分子大致以长轴方向平行配的,因此具有一维空间 的规则性排列。此类型液晶的粘度小,应答速度快,是最早 被应用的液晶,普遍的使用于液晶电视、笔记本电脑以及各 类型显示元件上。
4 两种写入方式
①电写入的SLM:代表待输入系统的信息的电信号直接驱动一个 器件(空间光调制器),方式是控制其吸收或相移的空间分布。
空间光调制器不同波长的频率响应

空间光调制器不同波长的频率响应下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!空间光调制器不同波长的频率响应一、简介空间光调制器是一种重要的光学器件,广泛应用于光通信、激光材料加工和光学成像等领域。
空间光调制器原理

空间光调制器原理空间光调制器(Spatial Light Modulator,SLM)是一种能够控制光波相位和振幅的光学器件,广泛应用于光学通信、光学成像、光学信息处理等领域。
它的原理基于光的干涉、衍射和折射等光学现象,通过控制光波的相位和振幅,实现对光信号的调制和控制。
本文将介绍空间光调制器的原理及其在光学领域的应用。
空间光调制器的原理主要基于两种调制方式,即相位调制和振幅调制。
相位调制是通过改变光波的相位来实现光信号的调制,而振幅调制则是通过改变光波的振幅来实现光信号的调制。
这两种调制方式可以单独使用,也可以结合使用,根据具体的应用需求进行选择。
相位调制是空间光调制器最常见的调制方式之一。
它利用液晶、光栅、电光晶体等材料的光学特性,通过外加电场或其他外界条件来改变光波的相位。
这种方式可以实现对光波的相位进行微调,从而实现光信号的相位调制。
相位调制可以用于光学通信中的相位调制调制、光学成像中的相位调制成像等领域。
振幅调制是另一种常见的调制方式。
它通过改变光波的振幅来实现光信号的调制,通常利用光电二极管、光电探测器等器件来实现。
振幅调制可以实现对光信号的强度调制,常用于光学通信中的振幅调制、光学成像中的对比度调制等领域。
除了相位调制和振幅调制,空间光调制器还可以实现空间光调制。
空间光调制是指通过控制光波的空间相位分布来实现光信号的调制,通常利用液晶空间光调制器、光学相位阵列等器件来实现。
空间光调制可以实现对光信号的空间分布调制,常用于光学信息处理、光学成像中的空间滤波等领域。
空间光调制器在光学领域有着广泛的应用。
在光学通信中,空间光调制器可以实现光信号的调制和解调,提高光通信系统的传输速率和容量。
在光学成像中,空间光调制器可以实现对光信号的调制和控制,提高成像质量和分辨率。
在光学信息处理中,空间光调制器可以实现对光信号的处理和分析,实现光学信息的存储和处理。
总之,空间光调制器是一种能够控制光波相位和振幅的光学器件,通过相位调制、振幅调制和空间光调制等方式,实现对光信号的调制和控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间光调制器的基本原理
空间光调制器(Spatial Light Modulator,简称SLM)是一种用于控制光波相位
的装置。
它利用特殊的光学材料(如液晶、单晶硅等)和电调制技术,通过改变材料中的折射率或光的吸收特性来实现对光波相位的调制。
这样,可以对光波进行相位调制,并实现包括干涉、衍射、全息等光学功能。
空间光调制器通过改变光的相位,可以控制光波传输的方向、强度、波前形状等参数,广泛应用于光学通信、光学显示、光学信息处理、全息成像等领域。
空间光调制器主要有两种类型:液晶空间光调制器(Liquid Crystal Spatial Light Modulator,简称LC-SLM)和单晶硅空间光调制器(Silicon Spatial
Light Modulator,简称Si-SLM)。
以下将分别介绍它们的工作原理。
液晶空间光调制器(LC-SLM)的工作原理
液晶空间光调制器由液晶材料、玻璃基板、透明电极、控制电路等组成。
液晶材料是一种具有自发偏振性质的有机分子,可通过外加电场改变其取向,从而改变其光学性质。
液晶材料的取向状态可以分为平行(平面向列型)和垂直(逆锥型)两种。
液晶空间光调制器通常采用平行取向的液晶材料,使光波经过液晶层时,被液晶材料的分子沿着相同的方向旋转一定的角度,从而改变光波的相位。
液晶空间光调制器的原理可以分为两个步骤,即电场调制和光学调制。
1.电场调制
液晶空间光调制器的玻璃基板上覆盖有透明电极,通过外加电压激发电场,使液晶材料的分子取向发生变化。
当液晶层中没有电场时,液晶分子呈现无序排列,电场激发后,液晶分子趋向于沿着电场方向旋转。
这种液晶分子的取向可以通过控制电场的大小、方向和施加时间来实现,从而实现对光波相位的调制。
2.光学调制
当外加电场产生后,液晶材料的折射率发生改变。
当光波通过液晶层时,会受到液晶材料的折射率差异影响,从而引起相位的改变。
液晶空间光调制器通过控制电场,实现对光波相位的调制,具体来说,可以通过调整电场强度和方向来改变液晶层中的折射率分布,进而改变光波的相位分布。
单晶硅空间光调制器(Si-SLM)的工作原理
单晶硅空间光调制器是利用硅基材料制成的光电器件,通过改变硅材料的折射率或能带结构来实现光波相位的调制。
单晶硅空间光调制器主要由两个关键部分组成:控制电极和单晶硅薄膜。
控制电极是由导电材料制成的,可以通过控制电场的大小和方向来改变单晶硅薄膜中的折射率或能带结构。
单晶硅空间光调制器的原理可以分为两个步骤,即电调制和光调制。
1.电调制
在单晶硅薄膜上加上控制电压后,控制电极会施加电场。
电场会改变硅材料的折射率或能带结构。
对于折射率调制,通过施加电场,可以改变硅材料中的自由载流子分布,从而改变折射率。
对于能带结构调制,施加电场可以改变硅材料中的能带结构,进而改变折射率。
2.光调制
当施加外场后,光波通过单晶硅薄膜时,会受到硅材料的折射率或能带结构的变化影响,从而引起相位的改变。
单晶硅空间光调制器通过控制外场,实现对光波相位的调制。
具体来说,可以通过调整电场的大小和方向来改变硅薄膜中的折射率或能带结构分布,进而改变光波的相位分布。
总结
空间光调制器通过改变光波的相位,可以实现对光波传输的控制,广泛应用于光学通信、光学显示、光学信息处理、全息成像等领域。
液晶空间光调制器(LC-SLM)和单晶硅空间光调制器(Si-SLM)是两种常见的空间光调制器。
液晶空间光调制器利用液晶材料的电光效应实现相位调制,而单晶硅空间光调制器利用硅材料的电光效应实现相位调制。
通过控制电场或外场,可以改变液晶分子的取向或硅材料的折射率或能带结构,从而实现对光波相位的调制。
空间光调制器的原理及其应用将为光学技术的发展提供更多的可能性。