CB-1流体力学综合实验..
流体力学综合实验实验报告

流体力学综合实验实验报告一、实验目的1. 了解流体力学原理。
2. 学习流体力学实验的方法,掌握实验的技能。
3. 通过实验,明白流体力学中流体的各种属性及其产生的作用。
二、实验原理流体力学综合实验主要通过实验装置与实验方法,研究流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性(如阻力、压力损失率、混合性等),量化表征流体运动规律,有助于进一步深入研究流体力学的原理。
三、实验设备流体力学综合实验装置由以下部分组成:1.供水管2.压力表3.流量计4.定压调节装置5.实验室水压测试系统6.实验室水压实验系统四、实验步骤1. 打开供水管,启动实验装置,并记录初始温度和流量。
2. 根据实验要求,调整定压调节装置,使实验装置持续运行。
3. 逐步记录实验装置的运行参数,如流量、压力、温度等。
4. 观察实验装置的运行状态,及时记录实验数据。
5. 根据实验结果,归纳总结实验意义,完成实验报告。
五、实验结果实验中测量的参数如下:1. 流量:1.32mL/min;2. 压力:2.45MPa;3. 温度:18℃。
六、实验分析通过实验,可以看出,流量、压力和温度是流体力学中非常重要的参数,改变这些参数,可以影响流体的运动状态,从而得出实验结论。
根据实验,我们可以得出以下结论:1. 压力的变化可以影响流体的流动状态。
随着压力的增加,流体的物理特性也发生了改变,即流量也相应增大。
2. 温度的变化也会影响流体的流动状态。
随着温度的升高,流量会增加。
七、实验总结本实验通过实验装置,和测量方法,了解流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性,我们可以从中得出流体受到压力、温度等影响而发生变化的结论。
流体力学综合实验-实验报告

. . 实验报告课程名称: 过程工程原理实验 指导老师: 成绩:_________________ 实验名称: 流体力学综合实验 实验类型:___ __同组学生: 一、实验目的和要求(必填) 二、实验容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得Ⅰ、流体流动阻力测定一、实验目的⑴掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
⑵测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。
⑶测定流体流经管件(阀门)时的局部阻力系数ξ。
⑷识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理⑴直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2122ff p p p l u h d λρρ∆-=== ⑴即 22fd p lu λρ∆=⑵Re du ρμ=⑶采用涡轮流量计测流量V2900Vu d π=⑷用压差传感器测量流体流经直管的压力降f p ∆。
根据实验装置结构参数l 、d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降 ΔPf,求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。
⑵局部阻力系数ζ的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:'2'2ffp u h g gζρ∆== ⑸ 专业: 化学工程与工艺姓名:学号:日期:2013/9/29地点:教十1208装订线故'22fpuζρ∆=⑹根据连接管件或阀门两端管径中小管的直径d,流体温度T(查流体物性ρ、μ),及实验时测定的流量V、压力降ΔPf ’,通过式⑸或⑹,求取管件(阀门)的局部阻力系数ζ。
三、实验装置与流程实验装置如下图所示:1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器 10、压差传感器 11、压差传感器 12、粗糙管实验段 13、光滑管实验段 14、层流管实验段 15、压差传感器 16、压差传感器 17、局部阻力 18、局部阻力图1 实验装置流程图装置参数:名称材质管径/mm 测量段长度/mm光滑管不锈钢管21 1000粗糙管镀锌铁管22 1000局部阻力闸阀22 640局部阻力截止阀21 620四、实验步骤⑴首先对水泵进行灌水,然后关闭出口阀,打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大。
实验一 流体力学综合实验

实验一 流体力学综合实验流体力学综合实验台为多功能实验装置,其结构示意图如图1所示。
图1 流体力学综合实验台结构示意图1.储水箱2.恒压水箱溢流管3.上水管4.恒压水箱5.墨盒6.实验管段组7.支架8.计量水箱9.回水管10.实验桌利用上述流体力学综合实验台可进行下列实验:I. 雷诺实验;II.能量方程实验;III.阻力损失实验:1.沿程阻力2.局部阻力(含阀门、突扩和突缩);IV.孔板流量计流量系数和文丘里流量计流量系数的测定。
1··I 雷诺实验实验目的1. 观察流体在管道中的流动状态及层流状态下的速度分布。
2. 测定不同流态下的雷诺数,了解流态与雷诺数的关系。
3. 测定下临界雷诺数。
实验原理众所周知,流体在管道中具有不同的流态。
在图2所示的实验装置中,可以看到两种流态的征状。
容器A内装有清水,水从管G送入容器,从侧壁上的玻璃管B及靠近容器顶部的溢流管H流出。
送入的水量应使总有一部分水经过溢流管流出,这样可使容器的液面维持一定。
玻璃管的排水量可用阀C调节。
容器上方有小瓶D,瓶内装入有色液体,有色液体可经过细管E注入玻璃管B内。
图2 雷诺实验装置示意图当玻璃管内的流速较低时,从细管注入的有色液体能成为单独的一股细流前进,同玻璃管内的水不相混杂(见图1a)。
当玻璃管内的流速较高时,从细管注入的那股有色的细流马上消失在水中,同水混杂起来(见图1c)。
前一种情况说明流体流动时,流体的质点成为互不干扰的细流前进,各股细流互相平行,层次分明,流体的这种状态叫层流,或叫滞流。
后一种情况说明流体流动时,出现一种紊乱状态。
流体各质点作不规则的运动,流体内各股细流互相更换位置,流体质点有轴向和横向运动,互相撞击,产生湍动和旋涡,这种流态叫湍流,或称紊流。
这个实验称为雷诺实验。
2··实验证明,除了流速u对流态有影响外,管道直径d、流体密度ρ和粘度μ对流态也产生影响。
若流体处于层流状态时,d、ρ愈大,μ愈小,流态就愈容易从层流转为紊流;相反,d、ρ愈小,μ愈大,流态就愈不易从层流转为紊流。
《流体力学》实验指导书

实验(一)流体静力学综合性实验一、实验目的和要求掌握用测压管测量流体静压强的技能;通过测量静止液体点的静水压强,加深理解位臵水头、压强水头、及测管水头的基本概念;观察真空现象,加深对真空度的理解;验证不可压缩流体静力学基本方程;测量油的重度二、实验装臵本实验装臵如图1.1所示4.真空测压管5.U 型测压管6.通气阀7.加压打气球8.截止阀9.油柱10. 水柱11.减压放水阀说明: 1. 所有测压管液面标高均以标尺(测压管2)零度数为基准;2.仪器铭牌所注^B 、▽D 系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则^B 、▽C .▽D 亦为Z B 、Z C 、Z D3. 本仪器中所有阀门旋柄顺管轴线为开。
4. 测压管读数据时,视线与液面保持水平,读凹液面最低点对应的数据。
三、实验原理1在重力作用下不可压缩流体静力学基本方程pz +=constY或p =+y h式中:z —被测点在基准面以上的位置高度;1.测压管2.带标尺测压管3.连通管 I2367485D图1.1流体静力学综合性实验装臵图p—被测点的静水压强,用相对压强表示,以下同;po—水箱中液面的表面压强Y—液体容重;h—被测点的液体深度。
上式表明,在连通的同种静止液体中各点对于同一基准面的测压管水头相等。
利用液体的平衡规律,可测量和计算出连通的静止液体中任意一点的压强,这就是测压管测量静水压强的原理。
压强水头£和位置水头z之间的互相转换,决定了夜柱高和压差的对应关系:Ap二yKh Y对装有水油(图1.2及图1.3)U型侧管,在压差相同的情况下,利用互相连通的同种液体的等压面原理可得油的比重So有下列关系:Y h0=1—Y h+hw12图1.2图1.3据此可用仪器(不用另外尺)直接测得So。
四、实验方法与步骤1.搞清仪器组成及其用法。
包括:1)各阀门的开关;2)加压方法关闭所有阀门(包括截止阀),然后用打气球充气;3)减压方法开启筒底阀11放水4)检查仪器是否密封加压后检查测管1、2、5液面高程是否恒定。
流体力学综合实验

实验报告课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得1、流体流动阻力的测定实验1.1 实验目的:1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法 1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线 1.1.3测定流体流经阀门时的局部阻力系数ξ1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1.2.1 实验装置:实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。
水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。
1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程:其中:1——水箱 2——离心泵 3——涡轮流量计 4——温度计 5——光滑管实验段 6——粗糙管实验段 7——截止阀 8——闸阀 9、10、11、12——压差传感器 13——引水漏斗图 1 流体力学综合实验装置流程示意图Re Re1.3 基本原理:流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成的机械能损失成为直管阻力损失。
流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。
1.3.1直管阻力摩擦系数λ的测定:由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为:(1) 公式中:fp ∆:流体流经l 米直管的压力将,Pa ;λ:直管阻力摩擦系数,无因次; d :直管内径,m ;fh :单位质量流体流经l 米直管的机械能损失,J/kg ;ρ:流体密度,kg/ ; l :直管长度,m ;u :流体在管内流动的平均速度,m/s ;由上面的式子可知: (2)雷诺数: ρμ式子中:μ:流体粘度,kg/(m ·s)。
综合流体力学实验报告

实验一:综合流体力学实验一、实验目的1、掌握测定流体流经直管、管件和阀门时阻力损失的实验方法;2、测定直管摩擦系数λ与雷诺准数Re,验证在一般湍流区λ与Re的关系;3、测定流体流经阀门时的局部阻力系数ξ;4、学会流量计的使用方法;5、辨识组成管路的各种管件、阀门,并了解其作用。
二、实验原理1.直管阻力摩擦系数λ与雷诺数Re的测定原理流体流经直管时,流体阻力、流体本身的黏性以及管路的粗糙程度是产生能量损失的主要原因。
当流体在水平等径直管中稳定流动时,阻力损失为:流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在的关系为:上式相连可得:,也可为雷诺数计算公式,也可为2、流体经过截止阀门的局部阻力系数ξ的测定原理局部阻力损失测量法有:当量长度法和局部阻力系数法,本实验采取局部阻力系数法------流体通过某一管件或者阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数。
,可化为λ--- 直管阻力摩擦系数;d --- 直管内径,m;---压力降,Pa;---流体流经直管的机械能损失;P --- 流体密度,kg/m3;l --- 直管长度,m;u --- 流体在管内流动的平均速度,m/s;μ--- 流体粘度,kg/(m*s);三、实验设备及流程1、实验设备由水槽、离心泵、不同管径、材质的水管、阀门、管件、涡轮流量计和U形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别为用于粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力系数。
水的流量使用涡流流量计测量,管路直管阻力和局部阻力采用差压传感器测量。
2、实验流程流体由水槽流经离心泵进入排出管路,首先经过一个流量调节阀门,然后经过转子流量计,最后遇到三根平行的管路,最上方的管路是一根粗糙管,主要用于测定粗糙管的摩擦阻力系数λ与雷诺数Re之间的关系;第二根管是一根光滑管,主要用于测定光滑管的摩擦阻力系数λ与雷诺数Re之间的关系,由于光滑管是透明的,也可用它进行雷诺实验的演示;第三根管是中间安装了一个截止阀,主要用于测定流体流经阀门的局部阻力系数ξ;且这几根管路每根管路的入口处都有一个管路阀门,当测量某一跟管路时,需要将这一根管路的管路阀门打开,其余管路阀门关闭。
流体力学综合实验装置实验指导书

《三》实验管道中液流循环如下 (见实验装置)
1 / 31
流体力学综合实验装置
1、实验台潜水泵供水到恒压水箱,水箱内液体分别由实验管 A(雷诺实验及沿 程阻力系数测定实验) 、实验管 B(伯努利方程实验) 、实验管 C(局部阻力系数测定实 验)、实验管 D 毕托管测流速、文丘里、孔板和毕托管实验) 经流量计流入辅助水箱, 再返回到供水水箱中循环使用。 2、雷诺实验:颜色水容器的颜色水径调节阀调节,进入实验管 A,随 A 管内的流 动水一起运动,显示有色的流线;经辅助水箱,辅助水箱排尽阀直接排入地沟; 3、实验中基准水平面的选取 用本实验装置做以上各项实验时,其基准水平面一律选择为工作台面板的上平面。 4、本实验指导书中各项实验所涉及的运算,均采用国际单位制。
《二》实验台参数
1、水泵:型号 HQB-4500;最大扬程:8m;最大流量:75L/min;额定功率 100W; 电源:单相~220V。 2、恒压水箱:长×宽×高=300×350×600; 3、实验管 A:管径内径 Φ14,长约 1.0 (m),雷诺数实验管; 4、实验管 B:小管内径 Φ14,大管内径 Φ30,轴线高度差 70,总长约 1.0 (m); 伯努利方程实验管; 5、实验管 C:管内径 Φ14,大管内径Φ30,总长约 1.0 (m);突然扩大和突然缩 小阻力测定;毕托管的测定速实验和文丘里实验; 6、实验管 D:管内径 Φ14,沿程损失实验管,沿程损失计算长度 L=0.75 (m); 7、实验管 E:管内径Φ14, 闸阀和弯头阻力实验管 8、实验台总尺寸:长×宽×高=1800×500×1700。
λ=64/Re
(2)对于水力滑管紊流流动可取
8 / 29
流体力学综合实验装置
=
0.3164 5 < Re ( ) 10 Re1/4
流体力学综合实验

1、开启水泵,全开上水阀门使水箱注满水,再调节上水阀门,使水箱水位始终保持不 变,并有少量溢出。
四、实验方法
1、能量方程实验 调节出水阀门至一定开度,测定能量方程实验管的四个断面四组测压管的液柱高
度,并利用计量水箱和秒表测定流量。改变阀门的开度,重复上面方法进行测试。 根据测试数据的计算结果,绘出某一流量下各种水头线(如图 3),并运用能量方
四、实验步骤
1、开启调节阀门,测读测压计水面差; 2、用体积法测量流量,并计算出平均流速;
3、将实验的 hw 与计算得出的 u 值标入对数坐标纸内,绘出 lg hr − lg u 关系曲线;
4、调节阀门逐次由大到小,共测定 10 次。
五、实验数据及曲线绘制
仪器常数:
ρ水 =____________ Kg/cm2 , A =____________ cm2
式中 u――毕托管测点处的点速度; C――毕托管的校正系数
Δh ――毕托管全压水头与静压水头差
u = ϕ 2gΔH
联立上两式可得
Z1 + P1 / pg + a1u12 / 2g = Z2 + P2 / pg + a2u22 / 2g + hw
式中:u――测点处流速,由毕托管测定;
ϕ '' ――测点流速系数;
总水头
压力水头 1.
速度水头
能量水头
2.
总水头
压力水头 速度水头 能量水头 能量方程管断面的中心 线距几厂基准线高 (mm) 能量方程管内径 d(mm)
静水头( mmH2O )
表 2-2
测点号
流速
Ⅰ
Ⅱ
Ⅲ
Ⅳ
项目 轴心速度 VB(m/s) 平均速度 V(m/s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CB-1流体力学综合实验报告一、实验目的1. 学习直管摩擦阻力△Pf、直管摩擦系数λ的测定方法。
2. 掌握不同流量下摩擦系数λ与雷诺数Re之间关系及其变化规律。
3. 学习压差传感器测量压差,流量计测量流量的方法。
4. 掌握对数坐标系的使用方法。
5. 熟悉离心泵的结构与操作方法,了解常用的测压仪表。
6. 测定恒定转速条件下泵的扬程(H)、轴功率(N)以及效率(η)与泵的流量(Q)之间的泵特性曲线,加深对离心泵性能的了解。
7. 掌握流量计的标定方法。
8. 了解文丘里流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。
9. 学习合理选择坐标系的方法。
二、装置整体流程图图1 实验装置流程示意图设备主要参数:输送设备:(1)离心泵型号40SBF-13,额定流量6m ³/h ,额定扬程13m ,额定电压380V ,额定功率0.55KW ,材质不锈钢;(2)离心泵型号50SBF-18,额定流量13m ³/h ,额定扬程18m ,额定电压380V ,额定功率1.5KW , 测量仪表:(1)压力PI-101 不锈钢真空表,测量范围-0.1-0MPa PI-102 不锈钢压力表,测量范围0-0.25MPaPI-103 不锈钢差压变送器,测量范围0-200Kpa ,精度1.0,测量介质-水(2)温度TI-101 双金属温度计,测量范围0-100℃,精度1.6,材质-不锈钢 (3)流量FI-101 玻璃转子流量计,型号LZB-25,测量范围100-1000L/h ,精度1.6 FI-102 玻璃转子流量计,型号LZB-10,测量范围10-100L/h ,精度1.6 涡轮流量计,型号LWGY-25,测量范围1-10m ³/h ,精度1.0容器:水槽容积50L ,不锈钢材质三、实验内容(1)离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1. 流量的测定流量是在实验过程中设定值,可直接通过手动阀门来调节实验所需的流量值。
2.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方 程:fH gug p z H g u g p z ∑+++=+++2222222111ρρ(1-1)由于两截面间的管长较短,通常可忽略阻力项f H ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- (1-2) 式中: 12z z -,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
3.轴功率N 的测量与计算k Ne N ⨯= (W ) (1-3)泵的有效功率Ne 可用下式计算:g HQ Ne ρ= (1-4)其中,Ne 为电功率表显示值,k 代表电机效率,可取6.0=k 。
4.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
故泵效率为 %100⨯==NgHQ Neρη (1-5) 二、实验步骤及注意事项1.实验步骤:(1)关闭设备所有阀门,清洗水箱,并加装实验用水,(2)打开离心泵进口阀Q101、开启J102给离心泵灌水,然后全关离心泵流量调节阀J101、J102,打开总电按钮,启动离心泵,等离心泵工作正常后通过阀J102调节流体流量到实验指定值,开始实验,每次测量时分别记录下离心泵前后真空表、压力表的指示值和功率表读数。
(4)测取10组左右数据后,可以停泵,同时记录下设备的相关数据(如离心泵型号,额定流量、额定转速、扬程和功率等),停泵前先将出口阀关闭。
2.注意事项:(1)一般每次实验前,均需对泵进行灌泵操作,以防止离心泵气缚。
同时注意定期对泵进行保养,防止叶轮被固体颗粒损坏。
(2)泵运转过程中,勿触碰泵主轴部分,因其高速转动,可能会缠绕并伤害身体接触部位。
(3)不要在出口阀关闭状态下长时间使泵运转,一般不超过三分钟,否则泵中液体循环温度升高,易生气泡,使泵抽空。
(4)水箱安装于离心泵泵头上端,所以流量比较小时,真空度为零,一般大泵真空度为-0.08MPa,小泵为-0.04MPa方可实验,调节方法就是关小离心泵进口阀,人为的制造真空度,以方便实验取值,关小至真空度到指定值,可进行实验。
(5)实验之前必须做好预习工作,加深对设备的了解,为了防止实验误操作,老师可以通过提问的方式,让学生明白实验的整个操作流程,防止实验实验事故的发生。
(6)本设备为纯手动操作,请学生勿动仪表调节参数。
三、数据处理记录实验原始数据于表1。
实验日期:实验人员:学号:装置号:离心泵型号:额定流量:额定扬程:额定功率:泵进出口测压点高度差:流体温度:1. 数据记录2. 数据处理:根据原理部分的公式,计算各流量下的泵扬程、轴功率和效率。
(2) 流体流动阻力测定实验一、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为: 2221u d l p p p h ff λρρ=-=∆=(1)即 22lu p d fρλ∆=(2)式中: λ —直管阻力摩擦系数,无因次;d —直管内径,m ;f p ∆—流体流经l 米直管的压力降,Pa ;f h —单位质量流体流经l 米直管的机械能损失,J/kg ; ρ —流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。
滞流(层流)时,Re 64=λ (3) μρdu =Re (4)式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。
l 、d 为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量(V ,m 3/h )。
2900dVu π=(5) f p ∆可用U 型管、倒置U 型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
(1)当采用倒置U 型管液柱压差计时gR p f ρ∆= (6) 式中:R -水柱高度,m 。
(2)当采用U 型管液柱压差计时()gR p f ρρ∆-=0 (7)式中:R -液柱高度,m ;0ρ-指示液密度,kg/m 3。
根据实验装置结构参数l 、d ,指示液密度0ρ,流体温度t 0(查流体物性ρ、μ)及实验时测定的流量V 、液柱压差计的读数R ,通过式(5)、(6)或(7)、(4)和式(2)求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。
2.局部阻力系数ξ 的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
(1) 当量长度法流体流过某管件或阀门时造成的机械能损失看作与某一长度为e l 的同直径的管道所产生的机械能损失相当,此折合的管道长度称为当量长度,用符号e l 表示。
这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,则流体在管路中流动时的总机械能损失∑fh为:22u d l l h e f ∑∑+=λ (8)(2) 阻力系数法流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
即:22u g p H ff ξρ='∆= (9) 故 22gup fρξ'∆=(10)式中:ξ —局部阻力系数,无因次;f p '∆ -局部阻力压强降,Pa ;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。
)ρ —流体密度,kg/m 3;g —重力加速度,9.81m/s 2;u —流体在小截面管中的平均流速,m /s 。
待测的管件和阀门由现场指定。
本实验采用阻力系数法表示管件或阀门的局部阻力损失。
根据连接管件或阀门两端管径中小管的直径d ,指示液密度0ρ,流体温度t 0(查流体物性ρ、μ),及实验时测定的流量V 、液柱压差计的读数R ,通过式(5)、(6)或(7)、(10)求取管件或阀门的局部阻力系数ξ。
二、实验步骤1.泵启动:关闭设备所有阀门,清洗水箱,并加装实验用水,打开离心泵进口阀Q101、开启J102给离心泵灌水,然后关闭出口阀J102,打开总电源,启动水泵,待电机转动平稳后,缓缓开启流量调节阀J101。
2. 实验管路选择:选择实验管路,把对应的进口阀打开(光滑管为Q103,粗糙管为Q104,阀门阻力为Q105),保持全流量流动1-2min,以排除管内空气。
3.流量调节:通过管路出口阀J101或者FI101上自带的流量调节阀调节实验所需的流量,待流动达到稳定后,记下对应的压差值,压差值可从压差传感器上读出,测量不同的管路需开启相对应的引压阀(Q106-Q111),测压时确认差压计进口阀Q116、118打开,小压差也可从U形管压差计测量。
4.计算:装置确定时,根据Δp和u的实验测定值,可计算λ和ξ,在等温条件下,雷诺数Re=duρ/μ=Au,其中A为常数,因此只要调节管路流量,即可得到一系列λ~Re的实验点,从而绘出λ~Re曲线。
5.实验结束:关闭离心泵出口阀,关闭水泵和仪表电源,清理装置。
注意事项(1)本设备为纯手动操作,请学生勿动仪表调节参数。
三、实验数据处理根据上述实验测得的数据填写于下表。
实验日期:实验人员:学号:温度:装置号:直管基本参数:光滑管径 10.0mm 管长:1260mm管径 10.0mm管长:1260mm 局部阻力管径 20mm1. 数据记录2. 数据处理(3)流量计性能测定实验一、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:式中:被测流体(水)的体积流量,m3/s;流量系数,无因次;流量计节流孔截面积,m2;流量计上、下游两取压口之间的压强差,Pa ;被测流体(水)的密度,kg/m3。