霍尔传感器 测转速
霍尔转速传感器测速实验

实验九霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。
圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。
此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。
三、需用器件与单元霍尔转速传感器、转速测量控制仪。
四、实验步骤1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。
3、将霍尔传感器输出端(黄线)接示波器或者频率计。
4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化),或用频率计观察输出频率的变化。
五、实验结果分析与处理1、记录频率计六组输出频率数值如下:由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。
随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
1。
霍尔传感器测转速报告

霍尔传感器测转速报告一、引言转速测量是许多工业应用中的重要环节,可以用于监控机械设备的状态、调整设备的运行参数以及判断设备是否正常工作。
为了实现转速测量,人们通常使用霍尔传感器这样的设备。
本文将介绍霍尔传感器的原理、测量转速的方法以及该方法的优势。
二、霍尔传感器的原理霍尔传感器是一种基于霍尔效应的传感器,通过测量磁场的变化来感知物体的位置、运动或者其他相关信息。
其工作原理如下:1.当电流通过霍尔元件时,会产生一个与电流方向垂直的磁场。
2.当磁场通过霍尔元件时,会在其两端产生电势差。
3.电势差的大小与磁场的强度成正比,可以被测量。
三、转速测量方法基于霍尔传感器的转速测量方法如下:1.将霍尔传感器安装在待测转动物体的表面上,使其与物体的运动轨迹保持一定的距离。
2.通过霍尔传感器采集到的电势差数据,可以计算出物体的转速。
3.可以通过采集连续的电势差数据,求取其平均值,从而提高测量精度。
4.如果转速过高,可以通过减小采样间隔或者使用更高精度的霍尔传感器来提高测量精度。
四、优势与其他传统的转速测量方法相比,基于霍尔传感器的转速测量具有以下优势:1.霍尔传感器可以非接触地测量转速,不会对待测物体产生摩擦和测量误差。
2.霍尔传感器体积小巧、重量轻,易于安装和使用。
3.霍尔传感器的响应速度快,可以实时获取转速数据。
4.霍尔传感器的测量范围广,可以适用于不同转速的测量需求。
五、总结霍尔传感器是一种基于霍尔效应的传感器,可以用于测量转速。
本文介绍了霍尔传感器的工作原理、转速测量方法以及其优势。
相比传统的转速测量方法,基于霍尔传感器的转速测量具有非接触、高精度和快速响应的特点,适用于许多工业应用中的转速监测和控制。
霍尔式传感器转速测量系统的设计课件

设计时应考虑选择合适的算 法,以准确提取转速信息。
还需要考虑如何将转速值进行 显示或输出,以满足用户的需
求。
05
系统测试与验证
测试环境搭建
01Biblioteka 0203测试设备霍尔式传感器、转速计、 信号发生器、示波器、数 据采集卡等。
测试环境
搭建一个封闭的测试环境 ,模拟实际工作条件,包 括温度、湿度、振动等环 境因素。
要根据传感器的输出信号特性和系统要求, 选择合适的放大器和反馈回路,以保证信号 放大的效果和稳定性。
信号处理电路设计
01
信号处理电路的作用
对放大后的信号进行进一步的处理,如滤波、整形等,以便得到准确的
转速信息。
02
信号处理电路的组成
主要包括比较器、滤波器、触发器等部分。
03
信号处理电路的设计要点
要根据系统的测量精度和抗干扰能力要求,选择合适的比较器和滤波器
霍尔元件
利用霍尔效应制成的半导体元件, 能够将磁场信号转换为电信号。
霍尔元件工作原理
当磁铁靠近霍尔元件时,由于磁场 的作用,霍尔元件内部产生霍尔电 动势,从而输出相应的电压信号。
霍尔式传感器的应用
转速测量
利用霍尔式传感器测量旋转物 体的转速,通过测量磁铁的旋
转速度来计算转速。
磁场检测
霍尔式传感器可用于检测磁场 强度、方向和变化,广泛应用 于电机控制、磁记录等领域。
位置检测
通过检测磁场的变化,霍尔式 传感器还可以用于检测物体的 位置和位移,如接近开关、位 移传感器等。
电流检测
在电力系统中,霍尔式传感器 可用于测量电流大小和方向, 具有测量精度高、线性度好等
优点。
03
系统硬件设计
(精品)霍尔传感器测量电机转速(整理)

霍尔传感器测量电机转速一、背景随着单片机的不断推陈出新,特别是高性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。
本文介绍了一种由单片机C8051F060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。
二、工作原理1、转速测量原理转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。
由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。
根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。
脉冲信号的周期与电机的转速有以下关系:式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期根据式(1)即可计算出直流电机的转速。
霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的2个侧面之间产生霍尔电势。
其大小和外磁场及电流大小成比例。
霍尔开关传感器由于其体积小、无触点、动态特性好、使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。
在这里选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3013,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单<输出电平可与各种数字电路兼容等特点。
2、转速控制原理直流电机的转速与施加于电机两端的电压大小有关,可以采用C8051F060片内的D/A转换器DAC0的输出控制直流电机的电压从而控制电机的转速。
在这里采用简单的比例调节器算法(简单的加一、减一法)。
简述霍尔式转速传感器的检测方法

简述霍尔式转速传感器的检测方法
霍尔式转速传感器是一种常用的转速传感器,通过检测霍尔效应
来实现对转速的测量。
以下是霍尔式转速传感器的检测方法:
1. 校准:霍尔式转速传感器需要经过校准才能准确测量转速。
校准方法一般为将传感器固定在一个已知转速的电机上,观察传感器输
出的脉冲数或电压值是否与电机转速相匹配,如果不匹配则需要进行
校准。
2. 测量输出电压:霍尔式转速传感器通常输出一个霍尔电压,这
个电压与电机转速成正比。
可以通过测量输出电压来估算电机转速。
3. 测量输出脉冲数:霍尔式转速传感器也输出一个脉冲数,这个
脉冲数与电机转速成反比。
可以通过测量输出脉冲数来估算电机转速。
4. 使用比较器:可以使用比较器来比较传感器输出脉冲数和电
机转速,从而估算电机转速。
需要注意的是,霍尔式转速传感器的输出精度受到霍尔元件本身
的影响,同时也受到机械损耗和电流误差等因素的影响,因此需要进
行校准和不断优化,以提高测量精度和稳定性。
霍尔传感器测量转速原理

霍尔传感器测量转速原理
霍尔传感器是一种基于霍尔效应原理的传感器,可以用于测量转速、位置、磁场等物
理量。
在测量转速时,霍尔传感器被安装在旋转物体的表面上,当旋转物体通过传感器时,会产生磁场变化,霍尔传感器可以测量出这种磁场变化,并从中计算出旋转物体的转速。
在霍尔传感器测量转速时,需要注意以下几个方面:
1.传感器的安装位置:传感器的位置应该尽可能靠近旋转轴心,保持与旋转轴心间的
距离尽量小,这样可以最大程度地提高测量的精度。
2.磁场变化的探测:传感器需要探测旋转物体所产生的磁场变化,因此需要使用磁铁
或者其他磁性材料来产生磁场。
磁铁应该与传感器保持一定的距离,以避免磁场过强影响
传感器的工作。
3.霍尔元件的特性:霍尔元件在磁场变化时会产生电压信号,这个信号的大小与磁场
变化的大小成正比。
不同的霍尔元件具有不同的灵敏度和线性度,因此需要选择合适的元件,以保证测量的精度和可靠性。
4.信号处理和计算:传感器采集到的信号需要进行放大、滤波、A/D转换等处理,最
终计算出旋转物体的转速。
为了提高测量精度和稳定性,可以采用多种信号处理技术,如
数字滤波、PID调节等。
霍尔传感器测量转速

测试技术应用案例(霍尔传感器测量转速)
班级:
学号:
姓名:
霍尔传感器测量转速
一.霍尔传感器的优点
1.测量范围广:霍尔传感器可以测量任意波形的
电流和电压,如:直流、交流、脉冲波形等。
2.精度高:在工作温度区内精度优于1%,该精度
适合于任何波形的测
3.线性度好:优于
金属导体、半导
物理现象。
当电
的方向施加磁场,。
利用霍尔效应
差U H的基本关系
为:
U H=K H IB K H =1/nq(金属)
式中K H――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;
B――垂直于I的磁感应强度;
利用霍尔效应表达式:U H=K H IB , 当被测物体上装上N只磁性体时,物体每转一周磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
三.测量设备
本案例以实验室霍尔元件测量
实验设备:CSY2000系列传感器与
位半数显表。
(可调)
5V直流源、转速
转速显示部分。
电源输入端。
)插入数显单元
Fin端。
4.将转速调节中的2V-24V转速电源引入到台面上
转动单元中转动电源2-24VK插孔。
5.将数显单元上的转速/频率表波段开关拨到转
速档,此时数显表指示转速。
6.调节转速调节电压使转动速度变化。
观察数显
表转速显示的变化。
五.实验结果计算
磁体经过霍尔元件,霍尔元件就会发出就会发出一个信号,经放大整形得到脉冲信号,两个脉冲的间隔时间即为周期,通过周期就。
霍尔传感器 测转速

HAL3144高灵敏度单极性霍尔开关
• HAL3144E是一款采用 双极性工艺技术的单 极性霍尔效应传感器 IC,响应速度快,灵 敏度高,具有略高的 工作温度范围及可靠 性,它由反向电压器 、电压调整器、霍尔 电压发生器、信号放 大器、施密特触发器 和集电极开路的输出 级组成。
HAL3144霍尔开关的接口图
/*--------------------向LCD1602写数据--------------------*/
void write_data(uchar data0) { rs=1; //选着写数据 rw=0; P0=data0; //向LCD写数据 lcdcs=1; //信号使能端高电平 lcdcs=0; //信号使能端低电平 } /*-------------------------------------------------------*/
/*-----------------------数据处理------------------------*/ void disp_count() { display[7]=(zhuan/1000+'0'); //转换转速的千位 display[8]=(zhuan/100%10+'0'); //转换转速的百位 display[9]=(zhuan/10%10+'0'); //转换转速的十位 display[10]=(zhuan%10+'0'); //转换转速的个位 } /*-------------------------------------------------------*/
液晶显示部分: 显示部分有两个功能,在正常情况下,通过液晶 显示当前转速值,当电机的转速超过设定值通过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
msec++;
if(msec==20) //50*20=1S
{
displaytolcd();
msec=0;
zhuan=z;
z=0;
}
}
.
/*----------------------端口初始化-----------------------*/ void int_all() { warning=0; //关蜂鸣器 z=0; //初始化z的值 count=0; //初始化count的值 zhuan=0; //初始化转的值 rw=0; //选择LCD写数据指令 delay(15); //延时15ms write_command(0x38); //向LCD1602写命令38H delay(5); //延时5ms write_command(0x08); //向LCD1602写命令0EH delay(5); //延时5ms write_command(0x06); delay(5); write_command(0x0c); TMOD=0x01; //内部中断定时器选择 TH0=(65536-50000)/256; //50ms定时 TL0=(65536-50000)%256;
霍尔传感器测速
.
实拍视频演示
.
一、霍尔传感器测速电路总体设计
1、总体硬件设计 使用单片机测量电机转速原理框图如
下图2-1所示
电机
霍尔传感 器
液晶 显示 转速
单片机
STC89S52
超速 报警
电源
.
霍尔传感器测. 速原理图
其测量过程大致是:测量转速的霍尔 传感器和电机轴同轴相连,并在机轴上安 装一个小磁铁,机轴每转一圈,与霍尔传 感器就接触一次,霍尔传感器感应磁场的 变化通过上拉电阻在输出口会产生一个低 电平,并送给单片机,相应的发光二极管 就会发亮,单片机IO口检测到下降沿触发 中断,通过控制计数的时间,即可实现计 数器的计数值对应机轴的转速值。单片机 将该值处理后,在液晶显示器显示出来。 一旦超速,单片机就会同过蜂鸣器发出报 警。总体硬件电路图和PCB图如下图所示 :
.
/*------------------------LCD显示------------------------*/
void displaytolcd()
{
write_command(0x80); //向LCD1602写命令80H
for (i=0;i<sizeof(display)-1;i++) //循环要传输的字符个数次,每一次传输一个字符
{
write_data(display[i]);
delay(5);
}
} /*-----------------内部中断0计时计数程序-----------------*/
void Timer_0(void) interrupt 1
{
TH0=(65536-50000)/256; //50ms定时
TL0=(65536-50000)%256;
/*-------------------外部中断0计数程序-------------------*/ void counter(void) interrupt 0 { EX1=0; //关外部中断 count++; //转圈计数加1 z++; //计数+1 EX1=1; //开外部中断0 return; } /*-------------------------------------------------------*/
.
.
2、系统各部分电路
(1)传感器部分 霍尔传感器由电压调整电路、反相电源保护
电路、霍尔元件、温度补偿电路、微信号放大器、 施密特触发器和OC门构成,通过上拉电阻可以将 其输出接入CMOS逻辑电路。该传感器具有尺寸小 、稳定性好、灵敏度高等特点。其在电路中的作用 是利用霍尔传感器将电机转速转化为脉冲信号。其 封装和连线如下图所示:
; //延时第二循环 } /*-------------------------------------------------------*/
/*--------------------向LCD1602写命令--------------------*/ void write_command(uchar command) { rs=0; //选择写命令 rw=0; P0=command; //向LCD写命令 lcdcs=1; //信号使能端高电平 lcdcs=0; //信号使能端低电平 } /*-------------------------------------------------------*/
.
霍尔测转速的应用
•
日常生活中,我
们可以用在测量自行
车、转轮等各种运动
的速度大小。利用
V=2RN
• 即可得出结果。 其中
R为自行车轮子的半径
,N为所测转速的大小
。
.
附录
void delay(uint ms) { uint i,j; //为延时引入i,j两参数 for (j=0;j<ms;j++) //延时第一循环 for (i=0;i<120;i++)
.
.
HAL3144高灵敏度单极性霍尔开关
• HAL3144E是一款采用 双极性工艺技术的单 极性霍尔效应传感器 IC,响应速度快,灵 敏度高,具有略高的 工作温度范围及可靠 性,它由反向电压器 、电压调整器、霍尔 电压发生器、信号放 大器、施密特触发器 和集电极开路的输出 级组成。
.
HAL3144霍尔开关的接口图
.
液晶显示部分: 显示部分有两个功能,在正常情况下,通过液晶 显示当前转速值,当电机的转速超过设定值通过
蜂鸣器进行报警。其硬件和连线显示图如下图:
.
(3)处理器部分 处理器采用的是单片机,对霍尔传感器
的脉冲进行处理,并将结果送给显示器。 其程序如附录。 (4)报警部分
报警部分采用蜂鸣器,当电机转速超过 设定值时,处理器就会将蜂鸣器驱动发出 警报。
/*--------------------向LCD1602写数据----------.----------*/
void write_data(uchar data0) { rs=1; //选着写数据 rw=0; P0=data0; //向LCD写数据 lcdcs=1; //信号使能端高电平 lcdcs=0; //信号使能端低电平 } /*-------------------------------------------------------*/