概率论总复习

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计总复习

概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。

随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。

2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。

6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。

例:从甲、乙两班各选一个代表。

②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。

概率论与数理统计总复习参考

概率论与数理统计总复习参考
运算的优先次序: 逆,积,和,差
定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.

概率论复习知识点总结

概率论复习知识点总结
?贝叶斯公式:
? P( Ai B) ?
P(Ai )P( B Ai ) ?
n
P(Ai )P( B Ai )
P(Ai )P( B Ai ) ? P(B)
,i
? 1,2,?
,n
i?1
?例1.16,1.17,作业:三、14,15
第1章要点
七、事件的相互独立性
P(AB)= P(A)P(B)
?注意几对概念的区别: ?互不相容与互逆 ?互不相容与相互独立 ?相互独立与两两相互独立 ?作业:一、8;二、8,9; 三、17,19
P(A∪B) = P(A) + P(B)–P(AB).
例1.4;作业: 一、4,11 ; 二、3,5,6
第1章要点
四、古典概型与几何概型 ?古典概型概率计算公式:
P( A) ? 事件A中所包含样本点的个数 ? k
? 中所有样本点的个数 n
作业:三、6,8
第1章要点
五、条件概率与乘法公式 ?若P(A)>0
p
p(1? p)
np
np(1 ? p)
?
?
( a ? b) 2 (b ? a )2 12
θ
θ2
μ
σ2
第4章要点
四、协方差及相关系数 ?定义式:Cov( X,Y) ? E[(X ? EX)(Y ? EY)]
? XY ?
Cov( X ,Y) ( D( X ) ? 0, D(Y ) ? 0) D( X ) D(Y)
第1章要点
二、事件运算满足的定律 ?事件的运算性质和集合的运算性质相同,设 A,B,C为 事件,则有 ?交换律:A? B ? B ? A, AB ? BA ?结合律:( A ? B ) ? C ? A ? (B ? C ), ( AB)C ? A(BC ) ?分配律:( A ? B)C ? ( AC) ? (BC ),

概率论期末总复习必考题型

概率论期末总复习必考题型

复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。

第三章p58 例2、例5、p61 例5、p63 例1、习题三5。

第四章习题四13、14、15、16。

第七章P139 例4、P148 例2、习题七P157 1、P159 13。

第八章例4、例5、习题八3、6。

例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。

解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。

所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。

校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。

问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。

求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。

概率论与数理统计_知识点总复习

概率论与数理统计_知识点总复习

随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m −=从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m−=从m 个人中挑出n 个人进行组合的可能数。

(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(4)一些常见排列1特殊排列相邻彼此隔开顺序一定和不可分辨2重复排列和非重复排列(有序)3对立事件4顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有B A ⊂,A B ⊃,则称事件A 与事件B 等价,或称A 等于B :A=B 。

A、B 中至少有一个发生的事件:A ∪B ,或者A +B 。

属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者B A ,它表示A 发生而B 不发生的事件。

A、B 同时发生:A ∩B ,或者AB 。

A ∩B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。

基本事件是互不相容的。

Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。

它表示A 不发生的事件。

互斥未必对立。

②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:∪∩∞=∞==11i ii i AA B A B A ∩∪=,BA B A ∪∩=3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P ∪常称为可列(完全)可加性。

高中数学概率论复习(全)PPT

高中数学概率论复习(全)PPT
(2)有界性:对任意实数 x ,有 0 F(x) 1,且
F() lim F(x) 0 x
F() lim F(x) 1 x
(3)右连续性:F(x) 是右连续的函数,即对任
意实数 x ,有 F(x 0) F(x) . (4)对任意实数 x1, x2 (x1 x2 ) ,有 P{x1 X x2} P{X x2} P{X x1}
F (x2 ) F (x1)
【注】满足单调性、有界性和右连续性这三个性质的 函数,一定可以作为某个随机变量的分布函数.
离散型随机变量
离散型随机变量 X 的概率分布满足以下两个基本性质:
(1)非负性: pi 0 , i 1, 2, ;
(2)规范性: pi 1 . i 1
【注】满足非负性和规范性的数组 pi (i 1, 2, ) ,一 定是某个离散型随机变量的概率分布.
pij
( xi , y j )G
(4)
P{X xi} pij , i 1, 2, j 1
P{Y y j} pij , j 1, 2, i 1
二维连续型随机变量
(1)非负性 p(x, y) 0 ;
(2)规范性 p(x, y)dxdy F (, ) 1.
【注】若二元函数 p(x, y) 具有非负性和规范性,则 p(x, y) 一定是某个二维连续型随机变量的联合概率 密度函数.
定理 设随机变量 X 具有数学期望
E( X ) μ,方差 D( X ) σ 2,则对于任
(3)右连续性 F( x, y ) 分别对 x , y 右连续,即
F(x 0, y) lim F(x , y) F(x, y) 0
F(x, y 0) lim F(x, y ) F(x, y) 0
(4)非负性 对于任意的实数 x1 x2 , y1 y2 ,有

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/7
二. 样本空间与随机事件
1. 样本空间 实验E的所有可能结果构成的集合,称为E的样
本空间,用S表示. 样本空间的元素,即E的每个结果,称为样本点.
2020/6/7
2. 随机事件
定义
一般将样本空间的子集称为随机事件。
随机事件用大写字母A,B,C表示.
事件的发 生
在一次试验中,事件A发生的含义是,当 且仅当A中一个样本点(或基本事件)发生
S {( x, y) T1 x y T2}
无限样本空间
2020/6其/7 中T1,T2分别是该地区的最低与最高温度
§1-2 事件的概率
一.古典概型
定义1 若随机试验满足下述两个条件: (1) 它的样本空间只有有限多个样本点; (2) 每个样本点出现的可能性相同.
称这种试验为古典型试验,简称古典概型.
解 令 A 灯泡能用到1000小时, B 灯泡能用到 1500小时
所求概率为
PB
A
P( AB) P( A)
P(B) P( A)
0.4 0.8
1 2
2020/6/7
B A
三.全概率公式
定义
若事件组B1,…Bn,满足:
(1) (2)
B1,…Bn互不相容且P(Bi)>0,i=1,…,n
n
Bi S
P( A1A2 An ) P( A1)P( A2 ) P( An )
常由实际问题的意义 判断事件的独立性
2020/6/7
第二章 随机变量及其分布
为了更好的揭示随机现象的规律性并利用数学工 具描述其规律,引入随机变量来描述随机试验的不同 结果.
例 电话总机某段时间内接到的电话次数,可用一个 变量 X 来描述
例2:从同一型号同一批次的反坦克弹中任抽一发反 坦克弹射击目标,观测命中情况。设A代表“命中” 这一事件,求P(A)?
1 . 事件的频率 在一组不变的条件下,重复作n次试验,记
m是n次试验中事件A发生的次数。 频率 f = m/n
2. 频率的稳定性
掷一枚均匀硬币,记录前400次掷硬币试验中 频率P*的波动情况。
(或出现)。事件A发生也称为事件A出现。
2020/6/7
例 给出一组随机试验及相应的样本空间
E1 : 投一枚硬币3次,观察正面出现的次数
S {0,1,2,3}
有限样本空间
E2 :观察总机每天9:00~10:00接到的电话次数
S {0,1,2,3, , N }
可列样本空间
E3 : 观察某地区每天的最高温度与最低温度
概率论与数理统计复习
引言
2020/6/7
第一章 随机事件与概率 §1.1 样本空间与随机事件
一 .随机试验:
对随机现象进行一次观察和实验,统称为随机试验。
随机实验简称为实验,用E 表示
特点:(1)实验可以在相同的条件下重复进行;(2) 实验的全部可能结果不止一个,并且在实验之前能够明 确知道所有的可能结果;(3)每次实验必发生全部可能 结果中的一个且仅发生一个
2020/6/7
§1.3 条件概率 定义 设A、B为两事件, P ( A ) > 0 , 则
PB A P(AB)
P( A)
称为事件 A 发生的条件下事件 B 发生的条件 概率.
2020/6/7
例3 某厂生产的灯泡能用1000小时的概率为 0.8, 能用1500小时的概率为0.4 , 求已用1000小 时的灯泡能用到1500小时的概率
可视为事件A1与A2相互独立
P(A1A2 ) (3/ 8)2 P(A1)P(A2 A1) P(A2 )
定义
设 A , B 为两事件,若
P( AB) P( A)P(B)
则称事件 A 与事件 B 相互独立
2020/6/7
定义
三事件 A, B, C 相互独立 是指下面的关系式同时成立:
P( AB) P( A)P(B)
例 抛掷一枚硬币可能出现的两个结果,也可以用一 个变量来描述
2020/6/7
X
(
)
1, 0,
正面向上 反面向上
这种对应关系在数学上理解为定义了一种实值函数.
e.
s
X(e) R
这种实值函数与在高等数学中大家接触到的函数 不一样。
2020/6/7
二、引入随机变量的意义
有了随机变量,随机试验中的各种事件,就 可以通过随机变量的取值来表达.
2020/6/7(正面出现频率的趋势,横轴为对数尺度)
3.概率的频率定义
在一组不变的条件下,重复作n次试验,记m是n 次试验中事件A发生的次数。当试验次数n很大 时,如果频率m/n稳定地在某数值p附近摆动, 而且一般地说,随着试验次数的增加,这种摆动 的幅度越来越小,称数值p为事件A在这一组不 变的条件下发生的概率,记作P(A)=p.
2020/6/7
定义2 设试验E是古典概型, 其样本空间S由n个样 本点组成 , 事件A由k个样本点组成 . 则定义事件A的 概率为:
A包含的样本点数
P(A)=k/n=
S中的样本点总数
称此概率为古典概率. 这种确定概率的方法称为古 典方法 .
排列组合是计算古典概率的重要工具 .
2020/6/7
三.概率的频率定义
求 P(A1) , P(A2), P(A2 A1), P( A2 A1) ,
解 P(A1) 3/ 8 P(A2),
P(A2 A1) 3 / 8,
2020/6/7
P(A2 A1) 3/ 8, P( A2 A1) P( A2 ) P( A2 A1)
事件 A1 发生与否对 A2 发生的概率没有影响
P( AC) P( A)P(C)
(1)
P(BC) P(B)P(C)
P( ABC) P( A)P(B)P(C) (2, …, An 相互独立 是指下面的关系式同时成立
P( Ai Aj ) P( Ai )P( Aj ), 1 i j n P(Ai Aj Ak ) P(Ai )P(Aj )P(Ak ), 1 i j k n
i 1
则称事件B1,…Bn为样本空间的一个划分
2020/6/7
三.全概率公式
定理 事件B1,…Bn,为样本空间的一个划分则对任 何事件A,均有
n
P( A) P(Bi )P( A | Bi )
i 1
上式称为全概率公式.
2020/6/7
§1.4 事件的独立性
一.事件的独立性
例 已知袋中有5只红球, 3只白球.从袋中有放回地取 球两次,设第 i 次取得白球为事件 Ai ( i =1, 2 ) .
相关文档
最新文档