最大流问题的增广路算法概要

合集下载

最大流问题的求解方法及应用

最大流问题的求解方法及应用

最大流问题的求解方法及应用
最大流问题,是指在一个有向图中,从源点 s 到汇点 t 的最大
流量。

在实际应用中,最大流问题往往用于描述网络传输、油管输送等流量分配问题。

求解最大流问题的方法包括以下几种:
1. 网络流算法:这是一种基于图论和线性规划的算法。

通过构建网络流图,将最大流问题转化为最小割问题,再利用线性规划求解最小割问题的对偶问题来求解最大流问题。

2. 增广路算法:这是一种经典的最大流算法,其基本思想是不断找到增广路径,即从源点 s 到汇点 t 的一条路径,沿途边权
均有剩余容量,使得该路径上的边的剩余容量中的最小值最大化,最终得到最大流。

3. 矩阵树定理:这是一种基于图论和矩阵运算的算法,适用于有向图和无向图。

通过计算图的拉普拉斯矩阵的行列式等方法,求得图的生成树个数,从而计算最大流。

4. Dinic算法:是对增广路算法的改进。

在增广路算法中,每
次查找增广路径的过程需要遍历整个图,为了提高效率,
Dinic算法引入了分层图的概念,将图分层之后只在图的一层
中查找增广路径,最终求得最大流。

这些方法在实际应用中常常被用来解决路由选择、网络流量优化、模拟电路分析等问题。

例如,最大流可以被用来优化数据传输、流水线设计、流量管道的运营和管理,提高资源利用率和数据传输速度。

最大流问题解题步骤

最大流问题解题步骤

最大流问题解题步骤一、什么是最大流问题?最大流问题是指在一个有向图中,给定源点和汇点,每条边都有一个容量限制,求从源点到汇点的最大流量。

该问题可以用于网络传输、电力调度等实际应用中。

二、最大流问题的解法1. 增广路算法增广路算法是最基本的解决最大流问题的方法。

其基本思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

2. Dinic算法Dinic算法是一种改进型的增广路算法,其核心思想是通过层次分析和分层图来减少搜索次数,进而提高效率。

具体步骤如下:(1)构建分层图;(2)在分层图上进行BFS搜索寻找增广路径;(3)计算路径上可行流量并更新残留网络;(4)重复步骤2和步骤3,直到不存在增广路。

3. Ford-Fulkerson算法Ford-Fulkerson算法是一种基于增广路的算法,其核心思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

三、最大流问题解题步骤1. 确定源点和汇点首先需要确定问题中的源点和汇点,这是解决最大流问题的前提条件。

2. 构建残留网络在有向图中,每条边都有一个容量限制。

我们可以将这些边看作管道,容量看作管道的宽度。

在实际传输过程中,某些管道可能已经被占用了一部分宽度。

因此,在求解最大流问题时,需要构建一个残留网络来表示哪些管道还能够继续传输数据。

具体方法是:对于每条边(u,v),分别构造两条边(u,v)和(v,u),容量分别为c(u,v)-f(u,v)和f(u,v),其中c(u,v)表示边的容量,f(u,v)表示当前流量。

最大流问题的增广路算法概要上课讲义

最大流问题的增广路算法概要上课讲义
6
Consequence
• The Ford-Fulkerson method is partially correct, i.e., if it terminates it produces the flow with the maximum value.
7
Local search checklist
• But we can’t give irrational capacities as inputs to digital computers anyway.
• In case of floating point capacities, who knows?
11
Integrality Theorem (26.11)
The integrality theorem is often extremely important when “programming” and modeling using the max flow formalism.
12
Reduction: Maximum Matching ! Max Flow
What is the maximum cardinality matching in G?
13
G
14
s
t
G’ All capacities are 1 15
Finding a balanced set of Representatives
(Ahuja, Application 6.2)
• A city has clubs C1, C2,…,Cn and parties P1, P2,…,Pm. A citizen may be a member of several clubs but may only be a member of one party.

最大流算法小结

最大流算法小结

网络最大流的算法网络最大流的算法分类:一、Ford-Fulkerson增广路方法1、Ford-Fulkerson标号算法(最简单的实现)分别记录这一轮扩展过程中的每个点的前驱与到该节点的增广最大流量,从源点开始扩展,每次选择一个点(必须保证已经扩展到这个点),检查与它连接的所有边,并进行扩展,直到扩展到t。

2、最大容量增广路算法每次找一条容量最大的增广路来增广,找的过程类似Dijkstra,实现起来相当简单。

3、Edmonds-Karp,最短路增广算法的BFS实现每次找一条最短的增广路,BFS是一个可以很方便的实现思想。

4、距离标号算法最短路增广的O(n)寻找实现,使用距离函数d:d[t]=0;d<=d[j]+1若存在(i,j)∈E;只有路径上满足d=d[i+1]+1的增广路才为满足要求的,一开始我们初始化使标号恰好满足要求,之后不断更改标号使其可以使增广继续。

5、Dinic,分层思想对网络分层(按照距t的距离),保留相邻层之间的边,然后运用一次类似于距离标号的方法(其实质是DFS)进行增广。

二、预留与推进算法1、一般性算法随便找个点,要么将他的盈余推出去,要么对他进行重标记,直至无活跃点为止。

2、重标记与前移算法维护一个队列,对一个点不断进行推进与重标记操作,直至其盈余为0,若过程中他没有被重标记过,则可出列,否则加入队头,继续等待检查。

3、最高标号预留与推进算法记录d值,然后优先处理d值较高的,直至没有盈余。

网络最大流的算法实现一、Edmonds-Karp(EK)算法就是用广度优先搜索来实现Ford-Fulkerson方法中对增广路径的计算,时间复杂度为O(VE2),Shortest Augmenting Path (SAP) 是每次寻找最短增广路的一类算法,Edmonds - Karp 算法以及后来著名的Dinic 算法都属于此。

SAP 类算法可统一描述如下:Shortest Augmenting Path{ x <-- 0while 在残量网络Gx 中存在增广路s ~> t do{ 找一条最短的增广路径Pdelta <-- min{rij:(i,j) 属于P}沿P 增广delta 大小的流量更新残量网络Gx}return x}在无权边的有向图中寻找最短路,最简单的方法就是广度优先搜索(BFS),E-K 算法就直接来源于此。

最大流问题的最短增广路径算法

最大流问题的最短增广路径算法
11
5
4
3
s
2
23
1
45
0
t
4
2
51
3
11
2
42
s23
41 2
1
1
2
2
312
1
0t
继续从它离开的地方的路径
如果路径达到了 t, 那么发送流且更新剩余网络.
12
5
4
3
s
2
23
1
45
0
t
3
2
2 1
1
51
11
1
2
42
s23
41 2
0t
1
1
2
2
312
这是更新后的残留容量.
13
5
4
3
s
2
23
1
45
0
t
3
一条可进入弧的 s-t 路径是最短路径.
可进入弧将表示成粗线.
4
4
5
2
51
3
11
1
4
3
2
s2
4
41
0t
2
2s
1
345
0
t
3
2
1
31
使用可进入弧从 s 开始进行深度优先搜索.
下一步. 发送流并更新残留容量.
5
4
5
2
51
3
11
1
4
3
2
42
s2
41 2
0t
2
2s
3
2
1
1
345
0
t
31
这里是更新后的残留容量.

网络流(二)最大流的增广路算法

网络流(二)最大流的增广路算法

⽹络流(⼆)最⼤流的增⼴路算法传送门:⽹络流的相关定义:源点:有n个点,有m条有向边,有⼀个点很特殊,只出不进,叫做源点。

汇点:另⼀个点也很特殊,只进不出,叫做汇点。

容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常⽤c[i,j]表⽰,流量则通常是f[i,j].通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最⼤的车流量。

很显然的,流量<=容量。

⽽对于每个不是源点和汇点的点来说,可以类⽐的想象成没有存储功能的货物的中转站,所有“进⼊”他们的流量和等于所有从他本⾝“出去”的流量。

最⼤流:把源点⽐作⼯⼚的话,问题就是求从⼯⼚最⼤可以发出多少货物,是不⾄于超过道路的容量限制,也就是,最⼤流。

求解思路:⾸先,假如所有边上的流量都没有超过容量(不⼤于容量),那么就把这⼀组流量,或者说,这个流,称为⼀个可⾏流。

⼀个最简单的例⼦就是,零流,即所有的流量都是0的流。

(1).我们就从这个零流开始考虑,假如有这么⼀条路,这条路从源点开始⼀直⼀段⼀段的连到了汇点,并且,这条路上的每⼀段都满⾜流量<容量,注意,是严格的<,⽽不是<=。

(2).那么,我们⼀定能找到这条路上的每⼀段的(容量-流量)的值当中的最⼩值delta。

我们把这条路上每⼀段的流量都加上这个delta,⼀定可以保证这个流依然是可⾏流,这是显然的。

(3).这样我们就得到了⼀个更⼤的流,他的流量是之前的流量+delta,⽽这条路就叫做增⼴路。

我们不断地从起点开始寻找增⼴路,每次都对其进⾏增⼴,直到源点和汇点不连通,也就是找不到增⼴路为⽌。

(4).当找不到增⼴路的时候,当前的流量就是最⼤流,这个结论⾮常重要。

补充:(1).寻找增⼴路的时候我们可以简单的从源点开始做BFS,并不断修改这条路上的delta 量,直到找到源点或者找不到增⼴路。

(2).在程序实现的时候,我们通常只是⽤⼀个c 数组来记录容量,⽽不记录流量,当流量+delta 的时候,我们可以通过容量-delta 来实现,以⽅便程序的实现。

最大容量增广路算法

最大容量增广路算法

➢如果i1是一个汇点, 则找到了从源点指向汇点的一条有向路.
➢否则从i1出发重复上述过程,直到找到一个汇点或再次遇到前 面经过的某个顶点时为止, 即直到下列两种情况之一出现为止8 :
(a)找到一条从一个源点i0指向一个汇点ik的有向路P. 定义
v(P) min di0 ,dik , min xij | (i, j) P
然后,找到一个至少有一条出弧上的流量为正的顶点, 继续重复 上述过程, 这时只有情形(b)会出现, 即一定获得一个非零圈流. 重复上述过程, 直到重新定义的流x成为零流为止.
称为弧(i,j) 的容量上界,或直接称为容量(capacity);
(3)D:V R为顶点上的权函数,节点i对应的权D(i)记为di ,
称为顶点i的供需量(supply/demand);
此时网络可称为流网络(Flow Network,一般仍简称为网络),记
为 N=(V,A,L,U,D).
di >0:供应点(supply node)或源(source)、起始点或发货点 di <0:需求点(demand node)或汇(sink) 、终止点或吸收点
arc);如果某条弧(i,j)上的流量为0( xij 0 ),则称该弧为
空弧(void arc).
如果所有弧均为空弧,即
xij 0, (i, j) A,
则称x为零流,否则为非零流.
2
1,1 1,0
1,1
S 1 1,1 3 1,1 5 t
2,2 3,0
3,2
4
6
网络中的流
定义6.4 对于给定流网络N=(V,A,U,D)中的流 x:A R ,如果N中存在一条 有向路P,使得
(i, j) A \ W

求解最大流问题的算法和模型

求解最大流问题的算法和模型

求解最大流问题的算法和模型最大流问题是图论中的一个基本问题,涉及到网络流的计算和优化。

在实际应用中,最大流问题的求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic算法、最小割定理等。

本文将从这些方面进行论述。

1. 增广路径算法增广路径算法是求解最大流问题的经典算法,其基本思想是不断地寻找增广路径,通过增加路径上的流量来增加整个网络的流量。

具体来说,首先通过深度优先搜索或广度优先搜索找到一条从源点到汇点的增广路径,然后确定路径上的最小流量d,将当前流量增加d,将反向边的流量减少d,同时计算当前网络的流量。

2. Ford-Fulkerson算法Ford-Fulkerson算法是一种经典的增广路径算法,其基本理念与增广路径算法相同,但采用不同的策略来确定增广路径。

具体来说,Ford-Fulkerson算法采用贪心策略,在每次迭代中选择路径上的最小容量,从而确定增加的流量。

此外,Ford-Fulkerson算法还引入了残量图的概念,用于计算增广路径的容量。

3. Dinic算法Dinic算法是一种高效的增广路径算法,其主要优点是采用了分层图的策略来确定增广路径,使得每次迭代的搜索范围大为缩小。

具体来说,Dinic算法首先利用BFS算法确定每个节点的分层,然后在分层图上通过DFS算法查找增广路径,在路径上增加流量,更新分层图,重复此过程直至求解最大流。

4. 最小割定理最小割定理是求解最大流问题的重要定理,其核心思想是将网络分成两个不相交部分,并将其最小的割称为最小割。

最小割定理指出,在任意网络中,最大流等于最小割。

因此,求解最大流可以转化为求最小割问题,即在网络中寻找一组最小割,使得所有的割中容量最小的一组割。

总之,求解最大流问题是图论中的一个重要问题,其求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic 算法、最小割定理等。

在实际应用中,不同情况下可能需要采用不同的算法和模型来求解,需要灵活应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design: • How do we find the first feasible solution? • Neighborhood design? • Which neighbor to choose? Analysis: • Partial correctness? (termination )correctness) • Termination? • Complexity?
• In case of floating point capacities, who knows?
12
Integrality Theorem (26.11)
If a flow network has integer valued capacities, there is a maximum flow with an integer value on every edge. The FordFulkerson method will yield such a maximum flow. The integrality theorem is often extremely important when “programming” and modeling using the max flow formalism.
• A balanced city council must be formed by including exactly one member from each club and at most uk members from party Pk.
17
18
Local search checklist
S
T c(S,T)=26
3
Lemma 26.5 + Corollary 26.6
• Let f be a flow in G and let (S,T) be a cut in G. Then |f| = f(S,T). • Let f be a flow in G and let (S,T) be a cut in G. Then |f| · c(S,T). This is a weak duality theorem.
5
Max Flow – Min Cut Theorem
• The value of the maximum flow in G is equal to the capacity of the minimum cut in G.
• This is a strong duality theorem.
6
٧٧٧ຫໍສະໝຸດ 9Termination
• Suppose all capacities are integers. • We start with a flow of value 0.
• In each iteration, we get a new flow with higher integer value.
• In this course: Polynomial ¼ Fast Exponential ¼ Slow
23
How to encode max flow instance?
java MaxFlow ??????????
24
How to encode max flow instance?
java MaxFlow 6#0|16|13|0|0|0#0|0|10|12|0|0 #0|4|0|0|14|0#0|0|9|0|0|20 #0|0|0|7|0|4|#0|0|0|0|0|0
4
Max Flow – Min Cut Theorem
Let f be a flow in G. The following three conditions are equivalent: 1. f is a maximum flow 2. Gf contains no augmenting path 3. There is a cut (S,T) so that |f|=c(S,T)
28
Edmonds-Karp
Edmonds-Karp algorithm for Max Flow:
Implement Ford-Fulkerson by always choosing the shortest possible augmenting path, i.e., the one with fewest possible edges.
Design: • How do we find the first feasible solution? • Neighborhood design? • Which neighbor to choose? Analysis: • Partial correctness? (termination )correctness) • Termination? • Complexity?
(Ahuja, Application 6.2)
• A city has clubs C1, C2,…,Cn and parties P1, P2,…,Pm. A citizen may be a member of several clubs but may only be a member of one party.
22
Polynomial time algorithms
• Defintion: A polynomial time algorithm is an algorithm than runs in time polynomial in n, where n is the number of bits of the input. • How we intend to encode the input influences if we have a polynomial algorithm or not. Usually, some “standard encoding” is implied.
٧
٧
٧
٧
19
Complexity of Ford-Fulkerson
• We have at most |f| improvement steps (iterations of the while-loop). • Is this the best possible bound?
20
Complexity
25
Complexity of Ford-Fulkerson
• With standard (decimal or binary) representation of integers, Ford-Fulkerson is an exponential time algorithm.
26
java MaxFlow 111111 #|1111111111111111|1111111111111||| #||1111111111|111111111111|| #|1111|||11111111111111| #||111111111|||11111111111111111111 #|||1111111||1111 #|||||
21
Complexity
• Assume |V|-1 · |E|. Otherwise the graph is not connected. • Then, Ford-Fulkerson can be implemented to run in time at most O(|E| |f|).
• Is this fast?
• We always have a legal flow, i.e., one of value at most |f|. • Hence we can have at most |f| iterations.
10
Correctness of Ford-Fulkerson
• Since Ford-Fulkerson is partially correct and it terminates if capacities are integers it is a correct algorithm for finding the maximum flow if capacities are integers.
Remarks
• The solution values agree, not the solutions themselves – flows and cuts are completely different objects.
• Given a max flow we can easily find a min cut (follows from proof of max flow-min cut theorem). Going the other way is less obvious.
27
Complexity of Ford-Fulkerson
• With unary (4 ~ 1111) representation of integers, FordFulkerson is a polynomial time algorithm. • Intuition: When the input is longer it is easier to be polynomial time as a function of the input length. • An algorithm which is polynomial if integer inputs are represented in unary is called a pseudo-polynomial algorithm. • Intuitively, a pseudo-polynomial algorithm is an algorithm which is fast if all numbers in the input are small.
相关文档
最新文档