Ansys电磁场分析经典教程

合集下载

ANSYS电磁场分析指南第11-17章

ANSYS电磁场分析指南第11-17章

ANSYS电磁场分析指南第十一章磁宏11.1 什么是电磁宏电磁宏是ANSYS宏命令,其主要功能是帮助用户方便地建立分析模型、方便地获取想要观察的分析结果。

目前,ANSYS提供了下列宏命令,可用于电磁场分析:·CMATRIX:计算导体间自有和共有电容系数·CURR2D:计算二维导电体内电流·EMAGERR:计算在静电或电磁场分析中的相对误差·EMF:沿预定路径计算电动力(emf)或电压降·FLUXV:计算通过闭合回路的通量·FMAGBC:对一个单元组件加力边界条件·FMAGSUM:对单元组件进行电磁力求和计算·FOR2D:计算一个体上的磁力·HFSWEEP:在一个频率范围内对高频电磁波导进行时谐响应分析,并进行相应的后处理计算·HMAGSOLV:定义2-D谐波电磁求解选项并进行谐波求解·IMPD:计算同轴电磁设备在一个特定参考面上的阻抗·LMATRIX:计算任意一组导体间的电感矩阵·MAGSOLV:对静态分析定义磁分析选项并开始求解·MMF:沿一条路径计算磁动力·PERBC2D:对2—D平面分析施加周期性约束·PLF2D:生成等势的等值线图·PMGTRAN:对瞬态分析的电磁结果求和·POWERH:在导体内计算均方根(RMS)能量损失·QFACT:根据高频模态分析结果计算高频电磁谐振器件的品质因子·RACE:定义一个“跑道形”电流源·REFLCOEF:计算同轴电磁设备的电压反射系数、驻波比、和回波损失·SENERGY:计算单元中储存的磁能或共能·SPARM:计算同轴波导或TE10模式矩形波导两个端口间的反射参数·TORQ2D:计算在磁场中物体上的力矩·TORQC2D:基于一个圆形环路计算在磁场中物体上的力矩·TORQSUM:对2-D平面问题中单元部件上的Maxwell力矩和虚功力矩求和本章对这些宏有详细描述。

ANSYS电磁场分析指南-第六章3-D静态磁场分析(棱边单元方法)

ANSYS电磁场分析指南-第六章3-D静态磁场分析(棱边单元方法)

第六章3-D静态磁场分析(棱边单元方法)6.1何时使用棱边元方法在理论上,当存在非均匀介质时,用基于节点的连续矢量位A来进行有限元计算会产生不精确的解,这种理论上的缺陷可通过使用棱边元方法予以消除。

这种方法不但适用于静态分析,还适用于谐波和瞬态磁场分析。

在大多数实际3-D分析中,推荐使用这种方法。

在棱边元方法中,电流源是整个网格的一个部分,虽然建模比较困难,但对导体的形状没有控制,更少约束。

另外也正因为对电流源也要划分网格,所以可以计算焦耳热和洛伦兹力。

用棱边元方法分析的典型使用情况有:·电机·变压器·感应加热·螺线管电磁铁·强场磁体·非破坏性试验·磁搅动·电解装置·粒子加速器·医疗和地球物理仪器《ANSYS理论手册》不同章节中讨论了棱边单元的公式。

这些章节包括棱边分析方法的概述、矩阵列式的讨论、棱边方法型函数的信息。

对于ANSYS的SOLID117棱边单元,自由度是矢量位A沿单元边切向分量的积分。

物理解释为:沿闭合环路对边自由度(通量)求和,得到通过封闭环路的磁通量。

正的通量值表示单元边矢量是由较低节点号指向较高节点号(由单元边连接)。

磁通量方向由封闭环路的方向根据右手法则来判定。

在ANSYS中,AZ表示边通量自由度,它在MKS单位制中的单位是韦伯(Volt·Secs),SOLID117是20节点六面体单元,它的12个边节点(每条边的中间节点)上持有边通量自由度AZ。

单元边矢量是由较低节点号指向较高节点号。

在动态问题中,8个角节点上持有时间积分电势自由度VOLT。

ANSYS程序可用棱边元方法分析3-D静态、谐波和瞬态磁场问题。

(实体模型与其它分析类型一样,只是边界条件不同),具体参见第7章,第8章。

6.2单元边方法中用到的单元表 1三维实体单元6.3物理模型区域的特性与设置对于包括空气、铁、永磁体、源电流的静态磁场分析模型,可以通过设置不同区域不同材料特性来完成。

ANSYS电磁场分析指南

ANSYS电磁场分析指南

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩·S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

ANSYS电磁场分析指南

ANSYS电磁场分析指南

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章 2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章 3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

ANSYS电磁场分析指南-2D

ANSYS电磁场分析指南-2D

ANSYS电磁场分析指南第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

1.2ANSYS如何完成电磁场分析计算ANSYS以Maxwell方程组作为电磁场分析的出发点。

有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。

根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。

1.3静态、谐波、瞬态磁场分析利用ANSYS可以完成下列磁场分析:·2-D静态磁场分析,分析直流电(DC)或永磁体所产生的磁场,用矢量位方程。

参见本书“二维静态磁场分析”·2-D谐波磁场分析,分析低频交流电流(AC)或交流电压所产生的磁场,用矢量位方程。

参见本书“二维谐波磁场分析”·2-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包含永磁体的效应,用矢量位方程。

参见本书“二维瞬态磁场分析”·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。

参见本书“三维静态磁场分析(标量位方法)”·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。

ansys有限元电磁场仿真分析教程

ansys有限元电磁场仿真分析教程
• 按Pick All
现在这些平面被连接了,因此当 生成单元时,各区域将共享区域 边界上节点
这种操作后,原先平面被删除, 而新的平面被重新编号
1-19
• 这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas
• 用鼠标点取衔铁平面 • 选择OK (在选取框内) • 材料号窗口输入2
1-31
• 下面窗口输入面积的参数名,用于后面电流密度输入
去掉面号(如果有的话) 这相应于几何面积总和 • 选择 OK
1-32
• 把电流密度加到平面上 Preprocessor>Loads>Apply>Excitation>On Areas
• (因为只激活了线圈平面,可在选取框内选择Pick All)
• 选择 OK
1-37
第二章 第2节
二维静磁学
1-38
EMAG 模拟的概念
• 模型边界条件有:
– 磁通量垂直
– 磁通量平行
– 周期性对称 *
• 偶对称
B
• 奇对称
• 根据单元方程式施加– 标量 (3D)
– 基于单元边 (3D)
铁芯
A A 空气
*在第2章来讨论
简单励磁的平面模型
有限元网格
1-6
• 进行模拟 • 观察结果
– 某指定时刻 – 整个时间历程 • 后处理 – 磁力线 –力 – 力矩 – 损耗 – MMF(磁动势) – 电感 – 特定需要
1-7
• 模拟由3个区域组成 • 衔铁区: 导磁材料 导磁率为常数(
即线性材料)
• 线圈区: 线圈可视为均匀材料. • 空气区:自由空间 (μr = 1) .

ANSYS电磁场分析指南磁宏

ANSYS电磁场分析指南磁宏

ANSYS电磁场分析指南磁宏磁宏分析是ANSYS中的一种电磁场分析方法,用于模拟磁场中的行为。

它基于麦克斯韦方程组和磁性材料的本质特性,可以用来研究磁场的分布、场强和磁通量等。

以下是使用ANSYS进行磁宏分析的一般步骤:1.创建几何模型:使用ANSYS的几何建模工具创建您要分析的几何体。

您可以使用ANSYS的二维或三维建模功能,根据您的需求选择适当的几何形状。

2.设置材料属性:在进行磁宏分析之前,您需要为模型中的材料定义磁性属性。

这包括磁导率、磁饱和和磁滞等。

可以通过库中的材料属性进行选择,或者根据实际材料的特性手动输入。

如果您使用的是标准材料,可以轻松从ANSYS材料库中选择。

3.设置边界条件:确定分析的边界条件非常重要。

根据您的应用场景,您可以设置边界条件为固定零磁场、非磁性条件或具有特定磁场分布的条件。

对于二维问题,您可以设置边界上的磁通量。

这些边界条件将在后续计算中起作用。

4.生成网格:ANSYS使用有限元方法进行分析,因此需要生成适当的网格。

您可以选择不同的网格生成技术,例如自动网格细化、手动加密和剖面网格。

网格的质量对分析结果的准确性和计算时间都有重要影响。

5.定义分析类型和求解器:在ANSYS中,您可以选择不同的分析类型和求解器来求解磁场问题。

例如,您可以选择求解静态磁场、谐振频率或非线性磁场等。

根据您的需求选择适当的求解器,以获得准确的结果。

6.运行计算:在设置了适当的材料属性、边界条件和网格后,您可以运行计算。

ANSYS将使用选择的求解器进行计算,并在计算结束后生成结果。

7.分析结果:计算完成后,您可以查看和分析生成的结果。

这包括磁场分布图、场强、感应电流和磁通量等。

ANSYS提供了丰富的后处理工具,可以帮助您更好地理解分析结果。

除了这些基本步骤,在进行磁宏分析时还有一些注意事项和技巧:1.材料特性选择:选择适当的磁性材料特性对分析结果至关重要。

根据实际材料数据进行选择,并注意磁导率的非线性特性。

Ansys电磁场分析经典教程

Ansys电磁场分析经典教程
目录
第一章
电磁场仿真简介……………………………………….... …….... …….... …….... …….... 1-4 第二章
二维静态分析
第三章
第1节……………………………………………………………………………..… 第2节……………………………………………………………….……….……… 第3节…………………………………………………………………….….……… 第4节…………………………………………………………………………..…… 第5节……………………………………………………………………………..…
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
1-14
• 定义衔铁为2号材料
• 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
1-15
• 定义线圈为3号材料 (自由空间导磁率,MURX=1)
• 选择 OK
• 选择 OK (退出材料数据输入菜单)
1-16
• 建立衔铁面 Preprocessor>Create>Rectangle>By Dimensions
• 一旦衔铁已选好,选择OK (在选取框内)
1-25
• 选择与已选平面相对应的单元
用“面”
• 选择 OK • 图示衔铁单元
Utility>plot>elements
衔铁单元
1-26
• 使单元与衔铁组件联系起来 Utility>Select>Comp/Assembly>Create Component
• 为每个物理区定义材料 – 导磁率(常数或非线性) – 电阻率 – 矫顽磁力,剩余磁感应
衔铁 线圈 锭子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 阶跃电压
• PWM(脉宽调制) (Pulse Width Modulation) • 任意
1-3

利用轴对称衔铁和平面定子设计 致动器的一个实例 – 衔铁旋转 – 衔铁气隙可变化

完整模型由2个独立部件组成 – 衔铁模块 – 定子模块
执行: solen3d.avi看动画
1-4
模拟过程概述
• 利用如下方式观察装置 – 2D与3D – 平面与轴对称 – 利用轴对称平面简化模型 定义物理区域 – 空气,铁,永磁体等等 – 绞线圈,块导体 – 短路,开路 为每个物理区定义材料 – 导磁率(常数或非线性) – 电阻率 – 矫顽磁力,剩余磁感应 衔铁
现在这些平面被连接了,因此当 生成单元时,各区域将共享区域 边界上节点
这种操作后,原先平面被删除, 而新的平面被重新编号
1-19
• 这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas • 用鼠标点取衔铁平面 • 选择OK (在选取框内) • 材料号窗口输入2
B
励磁体1/4对称模型
B
1-44

单元plane13 and plane53 用于模拟2D磁 场 – Plane13: 4 节点四边形 • 耦合场自由度:温度,结构,磁 • 电源为Z方向 • B 为线性变化 • 适用于:
• 选择 OK
1-37
第二章 第2节
二维静磁学
1-38
EMAG 模拟的概念
A
• 模型边界条件有: – 磁通量垂直 – 磁通量平行 – 周期性对称 * • 偶对称 • 奇对称 • 根据单元方程式施加边界条件 – 矢量(2D 或3D) – 标量 (3D) – 基于单元边 (3D)
B
B
铁芯
A
空气
*在第2章来讨论
目录
第一章 电磁场仿真简介……………………………………….... …….... …….... …….... …….... 第二章 二维静态分析 第1节……………………………………………………………………………..… 第2节……………………………………………………………….……….……… 第3节…………………………………………………………………….….……… 第4节…………………………………………………………………………..…… 第5节……………………………………………………………………………..… 第三章 二维谐波和瞬态分析 第1节…………………………………………………………………………….…. 第2节…………………………………………………………………...………….. 第四章 三维电磁场分析 第1节…………………………………………………………………………...….… 第2节…………………………………………………………………….……….... 第3节………………………………………………………………….…..…….…. 第4节………………………………………………………………….……...……. 第5节…………………………………………………………………….…...……. 第五章 耦合场分析概况……………………………………………………………………………..
选择OK
• 打开绘制单元的材料属性 Utility>PlotCtrls>Numbering
• 选择 OK
1-24
• 力边界条件标志需要单元部件,即一组具有 “名称”的单元 • 把衔铁定义为一个单元组件 – 选择衔铁平面 Utility>select>entities
用此选项在图形窗 口中选择平面
再次选择用APPLY
1-4
2.1-1 2.2-1 2.3-1 2.4-1 2.5-1
3.1-1 3.2-1
4.1-1 4.2-1 4.3-1 4.4-1 4.5-1 5-1
1-1
第一章
教程综述
1-2
• • •
ANSYS/EMAG能用于模拟工业电磁装 置 电磁装置当然是3维,但可简化 为2维模 型。 模拟可考虑为: – 稳态 – 交流(谐波) – 时变瞬态
• 选择 OK
1-29
• 给线圈平面施加电流密度 • 选择线圈平面 Utility>Select>Entity
• 选择OK ( 实体选择框) • 选择线圈平面 • 选择 OK (选取框内)
1-30
• 激励线圈要求电流密度,故要得到线圈截面积. Preprocessor>Operate>Calc Geometric Items>Of Areas • 选择OK • 要用线圈面积来计算电流密度,将线圈面积赋予参数CAREA Utility>Parameter>Get Scalar Data
B
B
1-41
• 半对称模型与全模型比较: – 磁通量密度是相同的 – 线圈上Lorentz 力是相同的 – 贮能为 1/2 – 极面上力为 1/2
– 加载电流密度与全模型相同
简单导磁体的半对称模型
线圈 (象征性的)
1-42
• 沿B-B磁通量垂直边条件需满足 – B-B线上下两边如下参数是相同的 • 几何形状 • 材料性质 – B-B线上下两边励磁相同
• 选择 OK
1-33

进行计算 Solu>-solve-electromagnet>Opt & Solve
• 选择OK
这些适用于用BH 数据来进行的分析,本题将忽略
1-34
• 生成磁力线圈 Postproc>plot results>2D flux lines • 选择 OK
使用缺省设置,选择OK, (在通常情 况下,可这样做)
Y
材料号 2
衔铁 长度=35
材料号3
线圈励磁为直流电流: 2 安 培
Coil
模型 轴对称 单位 (mm)
X
1-9

建模
– 设置电磁学预选项(过滤器) – 对各物理区定义单元类型 – 定义材料性质 – 对每个物理区定义实体模型 • 铁芯 • 线圈
• 空气
– 给各物理区赋材料属性 – 加边界条件
1-10
• 模拟模型的轴对称形状 • 选择Options(选项) • Element behavior(单元行为) • 选择 Axisymmetric(轴对称) • 选择OK
1-13

定义材料 Preprocessor>Material Props>Isotropic

定义空气为1号材料(MURX = 1)
单元边缘围绕的一个红色输廓表示该 区域为同类材料号
1-35
• 计算力 Postproc>Elec&Mag Calc>Comp. Force
必须用鼠标选取
• 选择 OK
衔铁上力是在总体坐标 系下表示的,此力的方 向为使气隙缩小
1-36
•显示总磁通密度值 (BSUM) Postproc>Plot Results>Nodal Solution
– Neumann 条件(自然边界条件):磁通量垂直于模型边界
1-40
• 沿A-A 通量平行边界条件需满足:
A
Pole Face
– 模型中A-A 的左边和右边是相同 的
• 几何形状相同
• 材料属性相同
– 左边和右边励磁相位差180度( 即方向相反) • 对称平面边界条件 – 沿A-A必须加约束
A
(1/2)对称模型
B B
Quarter symmetry model of the simple magnetizer
• 对称面 (B-B)边界条件 – 2D磁矢量势(MVP)方式,无须处理
– 加载电流与全模型相同
1-43
• 1/4模型与全模型比较 – 磁通密度分布相同 – 贮能为1/4 – 所示线圈上的Lorentz力 1/2 – 作用在极面上力为1/2
利用TAB 键移动输 入窗口
• 选择Apply (重复显示和输入) • 建立线圈面
• 选择 Apply
1-17
• 建立空气面
• 选择 OK
到了这步,建立了全部平 面,但它们还没有连接起 来.
衔铁 线圈
1-18
• 用Overlap迫使全部平面连接在一起 Preprocessor>Operate> Overlap>Areas • 按Pick All

线圈
锭子 实体模型

1-5

建实体模型


给模型赋予属性以模拟物理区
赋予边界条件 – 线圈激励 – 外部边界 – 开放边界
• •
实体模型划分网格 加补充约束条件(如果有必要) – 周期性边界条件 – 连接不同网格 有限元网格
1-6
• •
进行模拟 观察结果
– 某指定时刻
– 整个时间历程 • 后处理 – 磁力线 – 力 – 力矩 – 损耗
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
1-14
• 定义衔铁为2号材料
• 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
1-15
• 定义线圈为3号材料 (自由空间导磁率,MURX=1)
• 选择 OK
• 选择 OK (退出材料数据输入菜单)
1-16
• 建立衔铁面 Preprocessor>Create>Rectangle>By Dimensions
• 选择 OK
1-27
• 加力边界条件标志 Preprocessor>Loads>Apply>-Magnetic-Flag>Comp Force
相关文档
最新文档