铅球掷远问题研究—数学建模竞赛优秀论文范文模板参考资料
对推铅球远度因素的生物力学分析

对推铅球远度因素的生物力学分析论文导读:前言:推铅球是一项古老的投掷项目,它的起源可追溯至远古时期,那是人们推掷沉重的石头进行比赛。
出手初速度是指铅球出手瞬间相对地面的速度。
出手高度是指铅球出手瞬间距地面的高度。
3.2在推铅球的出手初速度、出手角度和出手高度对推铅球的成绩都有影响。
关键词:铅球,出手初速度,出手高度,出手角度前言:推铅球是一项古老的投掷项目,它的起源可追溯至远古时期,那是人们推掷沉重的石头进行比赛。
在1896年的第一届现代奥运会上,就设有男子推铅球比赛。
正式的女子推铅球奥运会比赛始于1948年的第十四届奥运会,铅球的重量为4千克,一直沿用至今。
铅球也是我国体育院校的体育教学科目之一,它的特点是要动员全身肌肉的力量,用最大的工作距离和最快的速度把铅球投的更远。
由于铅球与其他投掷器械的构造和质量不同,与其他投掷项目相比,影响其远度的因素也存在一定的差异。
1. 研究对象与方法1.1 研究对象世界优秀的铅球运动员。
1.2 研究方法文献资料法,比较分析法。
2. 结果与分析2.1推铅球技术的发展推铅球运动从产生至今,虽然已经历了660多年的发展过程,但技术演进的最大变化是伴随着现代奥林匹克运动的发展,发生在进入20世纪至今的这100多年里。
具体来说,推铅球技术的发展大体上经历了侧向滑步推铅球阶段、半背向滑步推铅球阶段、背向滑步推铅球阶段和背向滑步与旋转推铅球技术并存四个阶段。
2.2 对推铅球初始条件的分析当其他因素不变时,推铅球的远度就主要由初始条件决定了,铅球一旦出手以后。
在不计空气阻力的情况下,在空中飞行的阶段就只受到重力的作用了。
论文参考网。
对于铅球的教学来说,运动训练的最终目的就是为了追求最大的远度,如果能把影响远度的各个因素发挥到最佳值的话,那么这个队员就达到了技术的最佳化。
他就能在现在的身体素质上发挥最高的水平,达到最大的远度。
2.2.1 器械出手初速度出手初速度是指铅球出手瞬间相对地面的速度。
铅球掷远问题的数学模型

铅球掷远问题的数学模型颜学友1,黄兰香1,黄旺林21.韶关学院2001级数学系数学与应用数学(1)班,广东韶关512005; 2. 韶关学院2002级计算机系本科(2)班,广东韶关512005[摘要]:本文综合考虑铅球的受力情况,抓住出手角度、出手速度、出手高度与投掷距离的关系,从解析几何角度考虑铅球的运动方程,进而得出了反映铅球掷远距离与三者函数关系的模型Ⅰ.为了得到更为合理的数学模型,我们进一步观察整个投掷过程,将整个过程分为滑步用力阶段和展臂脱手两个阶段.再对两个阶段分别进行合理的分析,进一步考虑推力、初速度、加速度、出手速度等因素之间的相互关系,对以上模型进行了改进,得到了更为合理的模型Ⅱ.在以上模型的基础上固定出手高度,求出了最佳出手角度为πθk 2±]4/,0(π∈,N k ∈,其中))/(arccos(2/12v gh gh +=θ.另外,运用数值极差法和图象分析法,得出了速度的灵敏性高于出手角度.关键词:出手速度;出手角度;出手高度;灵敏性1 问题的提出铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,如右图.综合分析铅球的运动过程建 立分别符合以下要求的两个数学模型:1.以出手速度、出手角度、出手高度为参数,建立铅球掷远的数学模型; 2.考虑运动员推铅球时用力展臂的动作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度4.比较掷远结果对出手速度和出手角度的灵敏性.2 模型的分析2.1 模型Ⅰ2.1.1 模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. 2.1.2 符号约定v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g =)2.1.3 问题的分析问题1要求我们以出手速度、出手角度、出手高度为参数,建立铅球掷远的数学模型.我们只需求出掷远的距离关于三者的函数关系式.这样,我们合理地简化其他影响因素,从物理、数学上得出关系式即可. 2.1.4 模型的建立与求解铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图(1).因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 2.1.5 模型的检验以下是我国两名优秀女运动员一次投掷的成绩: 从以上数据,我们可以看出由模型Ⅰ计算的结果与实际投掷距离是比较吻合的.但也有一定的误差,这是由于我们忽略了过多的因素,下面我们尽量考虑所涉及到的因素建立模型Ⅱ.2.2 模型Ⅱ2.2.1 模型的假设1 忽略空气阻力对铅球运动的影响.2 手对铅球的推力是一个恒力.3 在铅球脱手前,铅球的运动方向与出手角度一致.4 铅球从静止到运动期间运动的路径是直线的.5 不考虑运动员的身体素质和心理素质对投掷铅球的影响.6 铅球出手瞬间肩部恰在场地边界. 2.2.2 符号约定v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度g 地球的重力加速度(2/8.9s m g =) F 手对铅球的推力m 铅球的质量(m=7.257kg)'h 铅球出手瞬间肩部的高度L 铅球出手后运动的距离1L 手臂的长度 2L 铅球加速的距离S 铅球投掷的总成绩 2.2.3 问题的分析在模型Ⅰ中,我们假设出手速度和出手角度是相互独立的.事实上,整个投掷过程包括滑步用力阶段和展臂脱手阶段,(如图(2)).它们是相互联系的.所以,模型Ⅰ中假设出手速度和出手角度相互独立是不合理的.现在,我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.2.2.4 模型的建立与求解在投掷角度为θ上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=即为模型Ⅱ.一般情况下,129.1L L =.将2L 代入以上模型,得到S 关于F 和θ的函数关系式(手臂()θθ2sin sin 6.192756.051.0222L FL v L -+=长1L 是常数).为了了解S 对F 和θ的关系,我们令m L 8.01=,分别用数学软件MAPLE 作出S 对F (令θ=37.6)和S 对θ的图象(令F=350N)供参考:2.3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212v gh gh +=θθ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α. 2.4 参数灵敏性分析 2.4.1 数值极差法模型Ⅰ、Ⅱ是铅球掷远的数学模型,运动员最为关心是怎样才能有效地提高掷远成绩,也就是怎样从出手高度、出手角度、出手速度三个自变量中抓住其中的主要因素,提高掷远成绩.由于出手高度是没有多大变化的,所以,我们应该从出手角度和出手速度着手找出其中对掷远成绩影响较大的变量.也就是比较出手速度和出手角度的灵敏性.这里,我们引入数值分析中的极差来比较两者的灵敏性.根据我国优秀铅球运动员三个因素的具体情况,我们令0.2=h 米,出手速度在10m/s ─15m/s 之间变化,出手角度在37─43变化.用数学软件MA TLAB 编程得到下表:从上表可以看出,出手角度在其可能范围内所引起的成绩的最大改变量在0.06─0.42m 之间;出手速度在其可能范围内所引起的成绩的最大改变量在12.48─12.88m .这表明,出手速度是影响成绩的主要因素,即出手速度的灵敏性高于出手角度的灵敏性. 2.4.2 图象分析法极差法从数值上分析了出手角度和出手速度的灵敏性,图象法是从得到的模型出发,观察L 关于速度的图象(4)和L 关于角度的图象(5).分析:图(4)和图(5)是根据我国优秀运动员正常情况下投掷时作出的, 图(4)是s m v m h /10,2==时,θ在一个周期内的图象;图(5)是 37,2==θm h 时,v 在s m s m /15/10-时的图象.图(4)的曲线明显比图(5)的曲线递增要快,几乎任意一点的斜率都要比图(5)中的任意点的斜率要大.也就是说,改变等量的L,θ的变化量比v 的变化量要更大.换言之,改变少量的v 则可以使得L 变化较大.所以,v 的灵敏性较高.3 模型的优缺点模型Ⅰ以出手速度、出手角度以及出手高度为参数建立的数学模型,通过假设出手速度和出手角度是相互独立的,较为简单地描述了掷远距离与三者的关系.缺点是忽略了过多的因素,该模型相对简单且与实际问题有一定距离,不适合精确的计算和要求较高的铅球运动员训练参考.模型Ⅱ综合考虑铅球从静止到脱手整个运动过程,将整个过程分成滑步用力阶段和展臂脱手阶段.合理地假设铅球脱手前作直线运动,利用出手速度与初速度和出手角度的关系,得出的结果更为合理和精确.给定出手高度,对于不同的出手速度,解出了最佳出手角度,这样铅球运动员可以根据不同的出手速度确定最佳出手角度,使投掷距离最远.在模型Ⅰ的基础上,对出手速度和出手角度的灵敏性进行了分析,确定了出手速度的灵敏性高于出手角度.所以,运动员要提高成绩,应该抓住出手速度这一主要矛盾.缺点是数值分析法只能从数值上进行比较,图象分析法是观察图象比较的,较为粗糙.参考文献:[1] 姜启源.数学模型(第三版)[M].北京:高等教育出版社,2003.8 [2] 刘来福.数学模型与数学建模[M].北京:北京师范大学出版社,1997.9 [3] 王庚.实用计算机数学建模[M].安徽:安徽大学出版社,2000.7 [4] 郑永令.力学[M].上海:复旦大学出版社,1989.10 [5] 程稼夫.力学[M].北京:中国科学技术大学出版社,1996.3The mathematics model of the shot putYAN Xue-you 1, HUANG Lan-xiang 1, HUANG Wang-lin 2(1. Department of Mathematics, Shaoguan University, Shaoguan 512005 Guangdong China; 2. Department of Computer, Shaoguan University, Shaoguan 512005 Guangdong China)Abstract: This text synthesizes the consideration shot put suffers the dint circumstance, holding tight the handangle,out the hand speed and out the hand the high degree with the relation that throw the distance, consider the square distance in sport of the shot put from the analytic geometry angle, then have to out to reflect the shot put distance with three equation the model Ⅰ that function relation. For getting more reasonable mathematics model, we are further to observe whole foundation for throwing process,Whole process is divided into slipping a correlation for making an effort stage with exhibition arm selling two stages. Again to two stages distinguishing reasonable analysis in proceeding, further considering pushing dint, beginning speed, acceleration, outing hand speed etc. Bases the above model proceeding improvement, getting more reasonable model Ⅱ. In the above model is last fix out hand high degree, beg a the best out hand angle is N k k ∈∈±],4/,0(2ππθ,thereinto ))/(arccos(2/12v gh gh +=θ.In addition,the number ofapplication differs the method very to analyze the method with portrait, get flat-out and intelligent higher than out hand angle.Key wrods: Out the hand the speed;Out the hand angle;Out the hand the high degree; Intelligent。
铅球掷远问题研究—数学建模竞赛优秀论文范文模板参考资料

铅球掷远研究目录一、问题的提出 (3)二、问题分析 (3)三、模型假设 (4)四、符号定义 (4)五、模型建立与求解 (4)六、模型的评价 (10)七、参考文献 (10)八、附录 (10)摘要:本文研究了铅球掷远的问题,分析了掷远距离和出手速度、出手角度、出手高度的关系。
得出了对于不同的出手速度,确定的了最佳出手角度,比较了掷远结果对出手速度和出手角度的灵敏度。
铅球投掷作为田径比赛的一个重要组成项目,投掷距离s(米)的远近是教练员和运动,员最关心的问题。
由投掷常识知道,影响投掷距离远近的因素主要有三个: 铅球出手时的初、速度v(米/秒)、出手角度A(度) 和出手高度h(米)。
迄今为止,利用物理中运动学知识研究铅球投掷运动现象比较多, 而且在研究时很少考虑出手高度的影响[2, 3]。
通过建立模型,寻求初速度v、出手角度A和出手高度h三个因素对投掷距离s的影响度的大小,从而在训练和比赛中对运动员和教练员有一定的理论指导意义.关键词:铅球掷远投掷距离出手角度灵敏度一、问题提出球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg (男子)的铅球投掷在45的扇形区域内,如图1所示。
观察运动员比赛的录像发现,他们的投掷角度变化较大,一般在38°- 45°,有的高达55°,建立模型讨论以下问题 :1.以出手速度、出手角度、出手高度为参数,建立铅球掷远的数学模型。
2.在此基础上,给定出手高度,对于不同的出手速度,确定最佳出手角度。
比较掷远结果对出手速度和出手角度的灵敏性。
二、问题分析针对如何使铅球掷得最远,只需求得铅球在空中停留时间以及铅球在水平方向的速度即可,铅球投掷后在空中停留的时间可以凭借铅球投掷后在垂直方向上先以向上的速度运动到静止,再做自由落体运动落到地面求出。
【1】三、模型假设1、 人的高度h 和铅球投掷初速度v 是一定的,当投掷出时间1t 后,铅球到达最高点,当时间在2t 时刻时铅球落地,重力加速度28.9s m g =,速度方向与投掷的水平方向所成角为θ时)900(︒≤≤θ,此情况下铅球落地点与人的距离是S 。
数学建模铅球掷远

数学建模铅球掷远一、引言铅球掷远是田径项目中的一项,它要求选手将铅球尽可能远地抛掷出去。
而在数学建模中,我们可以通过一系列的分析和计算,来研究铅球掷远所需的最佳策略。
本文将从数学角度出发,探讨铅球掷远的建模方法和优化策略。
二、问题分析铅球掷远的关键在于角度和速度的选择。
我们首先假设铅球在空中的运动符合平抛运动模型,并不考虑空气阻力和风力的影响。
那么,我们可以将铅球的运动轨迹分解为水平和竖直方向的运动。
三、数学建模1. 铅球的水平方向运动模型在水平方向上,铅球的运动速度恒定且不受外界因素的影响。
设铅球的水平速度为v_x, 则铅球在x方向上的运动可以用以下公式表示:x = v_x * t其中,x为铅球的水平位移,t为时间。
2. 铅球的竖直方向运动模型在竖直方向上,铅球的运动受到重力的影响。
设铅球在竖直方向上的初速度为v_y,重力加速度为g,那么铅球在y方向上的运动可以用以下公式表示:y = v_y * t - (1/2) * g * t^2其中,y为铅球的竖直位移。
3. 最佳投掷角度的计算为了将铅球掷得更远,我们需要确定最佳的投掷角度。
根据上述的数学模型,我们可以列出铅球在水平和竖直方向上的运动方程。
然后,通过对这两个方程进行求解,可以得到最佳投掷角度的表达式。
首先,根据水平方向的运动方程x = v_x * t,可以得到时间t与水平速度v_x的关系:t = x / v_x将t代入竖直方向的运动方程y = v_y * t - (1/2) * g * t^2,可以得到铅球的竖直位移y与水平位移x、竖直初速度v_y和重力加速度g的关系:y = (x / v_x) * v_y - (1/2) * g * (x / v_x)^2接下来,我们需要求解这个关系式的极大值点,从而确定最佳的投掷角度。
通过对上述关系式进行求导和求解极值的过程,可以得到最佳投掷角度的表达式。
四、优化策略1. 初始速度的选择除了求解最佳投掷角度外,我们还需考虑初始速度的选择。
01.2-铅球投掷模型

6
mx t Ft 0 cos v 0 my t Ft 0 sin mgt 0
上式表明了在 F 作用下,铅球在水平与垂直方向上的运动速度,可由此得 到合速度 v ,可以看到它是一个与 有关系的量。
2 F2 2F 2F 2 2 2 2 v xt y t t 0 v0 m t 0 v0 cos ④ m 2 g m g sin
2
因此模型 I 中假设 3 是不恰当的。 实际上模型 I 只是刻画了铅球出手时与出手后的情形,而要刻画出手速度 与出手角度之间的依赖关系,我们必须对铅球出手前的运动情况进行研究。也 就是分析在投掷圆中的运动过程。我们将投掷过程大致分为滑步和用力阶段。 假设: ⑴滑步运动为水平运动,铅球随人的身体产生一个水平的初速度 v0 。 ⑵在用力阶段,运动员从开始用力推铅球到铅球出手有一段时间,记为 0 到 t0 。 ⑶在运动员用力的时间内,运动员作用在铅球上的推力大小 F 是不变的, 力的方向与铅球的出手角度 相同。 现在用这三个假设代替模型 I 的假设⑶,运动轨迹如图二,进一步建立模 型 II——投掷模型。
将②与④合并就得到模型 II——铅球的投掷模型
v 2 sin 2 v v 2 sin 2 4 gh cos 2 s 2g 2 F2 2F 2F 2 2 v t 0 v0 m t 0 v0 cos m 2 g m g sin
1
y
v
h
t
O
x
A
s
图一
由普通物理学的知识可以得到铅球运动方程:
x v cos t y v sin t h 1 gt 2 2
投掷铅球的数学模型

分 析表 中 数据变 化 规 律 可 以 发 现 ¹ 初 速 度 V 是 影 响投 掷 距 离 的 最 主
要 因 素 初 速 度提 高 1 米 / 秒
,
:
½ 表
测量
,
1
可 为 运 动 员 寻 找个 人差 距
。
、
改
进 投掷 技 术 提 供 参 照 均值
h
;
。
铅 球 出手 高 度 易 于
,
,
则投 掷 距 离
.
或 4 o 0 则 投 掷 距离 均不 高 于 3 4’
, ,
若 实 际 投距 与 表
。
6 2 米
2
厘米 的差 距 离 对 于 高水 平 的
,
中 的 距 离 有 较大 差 距
,
,
则很 可 能是 由 于 出
,
运动 员 来 说 是 极 其 宝 贵 的
往往决定 能否
球 角度 不 佳 所致 运动 员 应 调 整 出 球 角度
0
.
’
41 47
0
.
’
42 0 6
0
.
’
4 2 14
0
.
,
42 25
0
.
’
42 35
0
.
’
42 46
0
.
’
42 53
0
.
’
43 59
0
.
’
(1 3 9 4 ) (1 5 0 9 ) ( 1 6 3 1 ) (1 7
4 1 20
0
.
,
1 75
.
4 1 42
0
.
’
5 6 ) (1 8 8 6 ) ( 2 0 2 3 ) ( 2 1 6 3 ) ( 2 3 0 9 ) ( 2 4 6 0 ) 0 0 , 0 , 0 ’ 0 , 0 , 0 ’ 4 1 59” 42 0 8 4 2 21 42 32 42 42 42 50 42 58
数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。
有关铅球出手角度的数学建模探究

有关铅球出手角度的数学建模探究储思哲高一(8)班【关键词】铅球 出手角 射程一、研究目的掷铅球是一项广为人知的体育运动,而铅球以何种角度出手才能掷得最远呢?对这一方面本人想进行一些探究。
二、研究方法数学建模分析三、分析与讨论1.简单分析抛出角度与射程的数学关系忽略次要条件,只考虑铅球从地面直接斜抛,没有空气阻力,设抛出速度为V 0,铅球质量为m ,抛起时与水平面角度为θ,落点距起点位移为S 。
则有202cos sin V S=g θθ⋅⋅,不妨设V 0=13 m /s ,g 取9.8m/s 2,求得函数图像为 ,当且仅当θ=4π时取到最大值S=17.24 m ,而这个数据与男子铅球的最高纪录23.12m 相差较多,所以需要添加条件进一步运算。
2.更靠近现实的模型分析现实中,运动员的身高因素必须要进行考虑。
由于投掷时运动员将铅球放于肩膀和脖颈之间的位置,我国男子平均身高约为170㎝,所以不妨设铅球掷出时离地有155㎝。
此时0S=cos Vθ⋅,设V0=13 m/s,g取9.8m/s2,取得函数图像为在B点取到最大值S=23.55 m,此时θ=0.83≈47.56度,这一数值与世界纪录相当,但是掷铅球的最佳角度为40度左右,θ明显大于此角度,能否添加条件使得模型更加精确呢?3.能否进行更精确的模型建立开始,我们将空气阻力这一相对次要的条件略去了,而在精确的分析中它可能是必不可少的。
同时,运动员出手之时,在铅球还没有离开运动员手中的时候,球随着手的斜向上运动进行了一段加速,实际离开手的位置较肩部要高,约为1.7米。
根据流体力学知识,流体对物体的作用力可用20f A αρυ=来表达。
α为一系数,A 为物体的截面积,0ρ为流体的密度,υ为物体相对于流体的速度。
在地球表面处α=0.45,男子铅球的半径约为120㎜,则A =0.045㎡,空气的密度0ρ=1.25 kg/m 3,得2f 0.0253υ=。
根据V 0=13 m/s ,算出抛出时f=4.276 N ,则a 0 = f m =0.59 m/s 2,根据测量,铅球在空中飞行的时间平均约为1.5秒,空气阻力对于速度的总改变量的大小不足1 m/s ,而相对于g 对于速度的改变量,更是远远不到,所以,在这一研究中,不妨设V 0=12.7 m/s ,以抵消空气阻力的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铅球掷远研究目录一、问题的提出 (3)二、问题分析 (3)三、模型假设 (4)四、符号定义 (4)五、模型建立与求解 (4)六、模型的评价 (10)七、参考文献 (10)八、附录 (10)摘要:本文研究了铅球掷远的问题,分析了掷远距离和出手速度、出手角度、出手高度的关系。
得出了对于不同的出手速度,确定的了最佳出手角度,比较了掷远结果对出手速度和出手角度的灵敏度。
铅球投掷作为田径比赛的一个重要组成项目,投掷距离s(米)的远近是教练员和运动,员最关心的问题。
由投掷常识知道,影响投掷距离远近的因素主要有三个: 铅球出手时的初、速度v(米/秒)、出手角度A(度) 和出手高度h(米)。
迄今为止,利用物理中运动学知识研究铅球投掷运动现象比较多, 而且在研究时很少考虑出手高度的影响[2, 3]。
通过建立模型,寻求初速度v、出手角度A和出手高度h三个因素对投掷距离s的影响度的大小,从而在训练和比赛中对运动员和教练员有一定的理论指导意义.关键词:铅球掷远投掷距离出手角度灵敏度一、问题提出球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg (男子)的铅球投掷在45的扇形区域内,如图1所示。
观察运动员比赛的录像发现,他们的投掷角度变化较大,一般在38°- 45°,有的高达55°,建立模型讨论以下问题 :1.以出手速度、出手角度、出手高度为参数,建立铅球掷远的数学模型。
2.在此基础上,给定出手高度,对于不同的出手速度,确定最佳出手角度。
比较掷远结果对出手速度和出手角度的灵敏性。
二、问题分析针对如何使铅球掷得最远,只需求得铅球在空中停留时间以及铅球在水平方向的速度即可,铅球投掷后在空中停留的时间可以凭借铅球投掷后在垂直方向上先以向上的速度运动到静止,再做自由落体运动落到地面求出。
【1】三、模型假设1、 人的高度h 和铅球投掷初速度v 是一定的,当投掷出时间1t 后,铅球到达最高点,当时间在2t 时刻时铅球落地,重力加速度28.9s m g =,速度方向与投掷的水平方向所成角为θ时)900(︒≤≤θ,此情况下铅球落地点与人的距离是S 。
2、 由于空气阻力对铅球运动的影响非常小,故忽略空气阻力对投掷铅球的影响。
【2】四、符号定义:h : 人的高度,假设为1.7mv :铅球投掷初速度θ:速度方向与投掷的水平方向所成角 S :下铅球落地点与人的距离g :重力加速度28.9s m g =1t :当投掷出时间1t 后,铅球到达最高点 2t :当时间在2t 时刻时铅球落地五、模型建立与求解:5-1.铅球运动轨迹图形图2:铅球运动轨迹图形(t H h o125-2.铅球运动轨迹图形示意可求 S :由模拟铅球运动轨迹图形可知,在1t 时刻铅球到达最高点,此时竖直方向上的速度为0。
【3】∴1sin gt v =θ 即gv t θsin 1=∴最高点gv h gt h t H 2sin 21)(22211θ+=+=可设该抛物线的方程为gv h g v t a t H 2sin )sin ()(222θθ++-= ∵hg v h g v a H =++=2sin sin )0(22222θθ ∴2ga -= ∴gv h g v t g t H 2sin )sin (2)(222θθ++--=又0)(2=t H ∴g v g v g h t θθsin sin 22222++=又∵2cos t v S =可得给定出手高度下,下铅球落地点与人的距离Sg v g v g hv S 22sin )22sin (cos 222222θθθ++=5-3.最大S 相对应的θ的求解由最终式子可以看出,一个人投掷铅球,在能力(即初速度)一定时,所投距离S 只与投掷角度有关θ有关,要看S 是否有最大值,即要看S 关于θ的函数式是否有最大值。
(因为0≥S ,当然求最小值无意义,故S 有极值且为极大值就为S 的最大值) 式子00='⇔=S d dSθ)2sin cos 82cos 2sin 22cos 2sin (2sin cos 82cos 2sin cos 812sin 22cos 2sin 2cos 22sin cos 22cos 2sin )sin (cos 222124222242222242222422222222=++-+=++-=+⎪⎪⎭⎫⎝⎛+⋅+-⋅⋅='θθθθθθθθθθθθθθθθθθθθθv ghv gh v v ghv g v g v v ghv g g hv g v g v g v g hv g v g v g hv S即02sin 22sin cos 82cos 2cos 2sin 24222=-++θθθθθθgh v ghv vθθθθ2sin cos 8)2sin 2tan 2(242222v ghv v gh +=-⇒ θθθθ222222cos 82sin 2tan 42tan 4ghv ghv h g =-⇒ θθθθ2222cos 22sin 2tan 2tan v v gh =-⇒θθθθθ2cos )12(cos 2cos 2sin 2sin 22222+=-⇒v v gh ]2cos 2cos 2cos )2cos 1[(2sin 32222θθθθθ++-=⇒v gh θθθ2cos )2cos 1()2cos 1(22+=-⇒v gh θθ2cos )2cos 1(2v gh =-⇒ 22cos v gh gh+=⇒θ可得: 当2arccos 21vgh gh +=θ时投掷距离最远。
5-4.模型结果的图形表示速度v 对应的θ的函数由2arccos 21v gh gh +=θ可得速度v 对应的θ的函数图像。
由图可知,不同的出手速度对应不同的最佳角度,速度不断增加的时候,角度趋于45°。
5-4. 较掷远结果对出手速度和出手角度的灵敏性研究(1).不同速度不同角度下对应的投掷距离(2).不同速度不同角度下的S对V的求导(3).不同速度不同角度下的S对角度的求导由以上三幅图可以很直观的看出掷远结果对出手速度和出手角度的灵敏性之间的关系。
可以看出初速度v、出手角度A因素对投掷距离s的影响度的大小,从而在训练和比赛中对运动员和教练员有一定的理论指导意义.(4).结论和建议结论:通过上述模型分析, 可得出如下结论: 在最佳出手角度的容差范围内, 对于同一个运动员而言, 滑步速度是影响投掷距离的最重要的外界因素, 其次是出手高度, 故在训练中应注意加强滑步运动和出手速度的练习; 运动员应根据各自的具体情况, 确定与自身相适应的最佳抛射角度, 而不必过分追求最佳理论抛射角。
建议:( 1) 选拔投掷铅球的运动员时, 要选身高体壮、爆发力强的运动员, 这是因为当出手角度、出手速度一定时, 身高者其出手高度必然高, 故有助于增加投掷距离。
( 2) 加强爆发力和出手速度的训练, 有利于提高投掷距离。
( 3) 为了更好的利用上述结论作为指导, 在日常的投掷训练中应注意以下要领: 滑步时应低、平、快;过渡阶段随着左腿低而快地直抵趾板下沿, 推髋侧移, 使铅球低而远的远离出手点; 最后发力阶段突出向前性。
六、模型的评价(1)上面的模型忽略了铅球在空气中运动时受到的空气阻力的影响,重力加速度随地域不同的变化,出手高度因运动员个体差异引起的不同等,如果加上以上因素,得出的公式将会更加准确,但处理过程会变得很复杂;(2)铅球投掷问题的数学模型,可以应用于铁饼、标枪或篮球投篮等投掷问题;(3)该模型可以得出初速度v、出手角度A因素对投掷距离s的影响度的大小,从而在训练和比赛中对运动员和教练员有一定的理论指导意义.七、参考文献【1】萧树铁:《数学实验》,高等教育出版社【2】李美霞, 严波涛, 吴廷禧. 铅球投掷最佳出手角度的假设检验[J]. 西安体育学院学报【3】刘来福, 曾文艺数学模型与数学建模[M] 北京: 北京师范大学出版社七、附录Matlab程序:%由角度a和初速度v求最大投掷距离%function f = fun_s(a,v)f =(2.*1.7.*v.*v.*cos(a).*cos(a)./9.8+(v.*v.*sin(2.*a)./2/9.8).^2).^0.5+v.*v.*sin(2*a)./2./9.8;%不同速度不同角度下的S 对角度的求导函数文件%function f = fun_da(a, v)h=1.7;f= .^4.*sin(2*a).*cos(2*a)/9.8/9.8-2.*h.*v.*v.*sin(2*a)./9.8)./9.8./sqrt(8*9.8*h.*v.*v.*cos(a).^2+v.^4.*sin(2*a).^2)+v.^2.*cos(2*a)./9.8;%f不同速度不同角度下的S 对速度的求导函数文件%function f = fun_dv(v, a)w = 4.*1.7.*v.*cos(a).*cos(a)./9.8+v.*v.*v.*sin(2.*a).*sin(2.*a)./9.8./9.8;q = (2.*1.7.*v.*v.*cos(a).*cos(a)./9.8+(v.*v.*sin(2.*a)./2/9.8).^2).^0.5;f = 1/2.*w./q +v.*sin(2*a)./2./9.8;%在给定速度V下,投掷距离S最大时,对应的角度f%function f = fun_sv(v)f = 1/2*acos(1.7*9.8/(1.7*9.8+v*v))/pi*180;%在假设运动员的身高H为1.7M,重力G为9.8。
的情况下,%%可得不同速度V时,达到投掷距离S最大时对应的角度a。
%fplot('fun_sv',[0,100]);xlabel('速度V m/s');ylabel('角度°');title('不同速度下得到最大投掷速度对应的角度值') ;axis([0 100 0 60 ]);%-----------------------%%figure%v = linspace(0,20,100);a = linspace(0,pi/2,100);[A,V]=meshgrid(a,v);S = fun_s(A,V);surf(A,V,S)ylabel('速度V m/s');xlabel('角度°');zlabel('投掷距离');title('不同速度不同角度下的距离') ;axis([0 pi/2 0 20 0 50]);shading flat%---------------------dv = fun_dv(V,A)surf(A/3.14*180,V,dv)10xlabel('角度°');ylabel('速度V m/s');zlabel('不同角度下的dv');title('不同速度不同角度下的S对V的求导') ;axis([0 90 0 20 0 3]);shading flat%figureda = fun_da(A,V);surf(A/3.14*180,V,da);xlabel('角度°');ylabel('速度V m/s');zlabel('不同角度下的da');title('不同速度不同角度下的S对角度的求导') ; axis([0 90 0 20 -45 45]);shading flat%作者:炘炘之火%11。