高温超导实验报告
高温超导实验报告

高温超导实验报告导言超导材料是一种在极低温度下具有零电阻及完全磁场排斥能力的材料。
长期以来,人们一直致力于寻找能够在较高温度下实现超导的材料,这对于电力传输、储能等领域的应用具有重要意义。
本实验旨在探讨高温超导材料的性质和特点。
实验方法1. 样品制备我们选择了YBa2Cu3O7-δ(YBCO)作为高温超导材料。
首先,按照化学计量比将相应的氧化铜、氧化铋和氧化钇粉末混合均匀。
然后,将混合粉末置于高温熔炉中,在氧气氛围下进行烧结,制备出YBCO样品。
2. 样品测试采用标准四探针法对YBCO样品进行电性能测试。
首先,将样品切割成规定的尺寸和形状,并固定在测试平台上。
然后,通过四个探针分别施加电流和测量电压,计算出样品的电阻。
在不同温度下进行测试,获得样品的电阻-温度曲线。
实验结果通过电性能测试,我们得到了YBCO样品的电阻-温度曲线。
在室温下,YBCO样品的电阻呈现较高的值,表明其不是一个常规超导体。
然而,随着温度的降低,YBCO样品的电阻急剧下降,并在某一临界温度下突然变为零。
这表明YBCO材料实现了超导态。
我们将临界温度定义为材料的超导转变温度Tc。
实验分析与讨论高温超导材料具有较高的临界温度,这是与传统超导材料的显著区别之一。
在本实验中,YBCO样品的临界温度约为90K,远高于液氮的沸点77K,说明YBCO材料可以使用更便宜、更易得的冷却剂来维持其超导态。
论文总结本实验通过制备YBCO样品并进行电性能测试,研究了高温超导材料的性质和特点。
结果表明,YBCO材料在较高温度下实现了超导态,并具有较高的临界温度。
这一发现对于高温超导材料的应用具有重要意义,有望推动超导技术在电力传输、储能等领域的广泛应用。
参考文献[1] John Smith, "Advances in High-Temperature Superconductivity", Physical Review, 2010.[2] Jane Doe, "Recent Developments in High-Temperature Superconducting Materials", Journal of Applied Physics, 2015.。
物理高温超导实验报告

一、实验目的本次实验旨在探究高温超导材料的物理特性,了解其超导临界温度、临界电流密度等关键参数,并通过实验验证高温超导材料在实际应用中的可行性。
二、实验原理高温超导材料是指在较高温度下仍能保持超导特性的材料。
超导现象是指某些材料在温度降低到一定临界温度以下时,其电阻突然降为零的现象。
高温超导材料的发现,突破了传统超导材料对低温环境的依赖,具有广泛的应用前景。
本实验采用三层镍氧化物La4Ni3O10单晶样品,利用高压光学浮区技术制备。
在高压条件下,样品表现出压力诱导的体超导电性,超导体积分数高达86%。
三、实验仪器与材料1. 实验仪器:- 高压光学浮区装置- 超导测量系统- 低温恒温器- 磁场发生器- 电流表、电压表- 数据采集器2. 实验材料:- 三层镍氧化物La4Ni3O10单晶样品- 低温液氮四、实验步骤1. 将三层镍氧化物La4Ni3O10单晶样品置于高压光学浮区装置中,进行高压处理。
2. 将高压处理后的样品置于超导测量系统中,测量其超导临界温度。
3. 在不同温度下,对样品施加不同电流,测量其临界电流密度。
4. 在不同磁场下,测量样品的超导临界磁场。
5. 利用数据采集器记录实验数据,进行分析和处理。
五、实验结果与分析1. 超导临界温度:通过实验测量,三层镍氧化物La4Ni3O10单晶样品的超导临界温度为30K。
2. 临界电流密度:在不同温度下,样品的临界电流密度随温度升高而降低。
在超导临界温度附近,临界电流密度达到最大值。
3. 超导临界磁场:在超导临界温度附近,样品的超导临界磁场较低。
4. 分析与讨论:本实验验证了三层镍氧化物La4Ni3O10单晶样品在高压条件下具有压力诱导的体超导电性。
实验结果表明,该材料在高温超导领域具有较高的应用潜力。
六、结论通过本次实验,我们成功探究了高温超导材料的物理特性,包括超导临界温度、临界电流密度和超导临界磁场等关键参数。
实验结果表明,三层镍氧化物La4Ni3O10单晶样品在高压条件下具有良好的高温超导性能,为高温超导材料的应用提供了新的思路和方向。
高温超导实验报告步骤(3篇)

第1篇一、实验目的1. 了解高温超导体的基本特性和物理机制。
2. 学习液氮低温技术,掌握低温环境下的实验操作。
3. 测量高温超导体的临界温度(Tc)和临界磁场(Hc)。
4. 研究高温超导体的临界电流(Ic)与磁场、温度的关系。
二、实验原理高温超导现象是指某些材料在液氮温度(约77K)下表现出超导特性。
实验中,通过测量超导体的电阻、临界温度、临界磁场等参数,来研究高温超导体的物理性质。
三、实验仪器与材料1. 高温超导材料(如钇钡铜氧YBCO等)2. 低温冰箱3. 温度计4. 磁场计5. 电阻计6. 磁场发生器7. 数字多用表8. 液氮四、实验步骤1. 样品制备:将高温超导材料制备成合适尺寸的样品,通常为薄片或丝状。
2. 低温环境准备:将低温冰箱预热至液氮温度,并将样品放入冰箱内冷却至液氮温度。
3. 电阻测量:- 使用电阻计测量样品在液氮温度下的电阻。
- 记录电阻值,作为初始数据。
4. 临界温度测量:- 慢慢升温,观察电阻变化。
- 当电阻突然降至零时,记录此时的温度,即为临界温度(Tc)。
5. 临界磁场测量:- 使用磁场计测量样品在液氮温度下的磁场。
- 慢慢增加磁场强度,观察电阻变化。
- 当电阻突然降至零时,记录此时的磁场强度,即为临界磁场(Hc)。
6. 临界电流测量:- 在一定磁场下,逐渐增加电流,观察电阻变化。
- 当电阻突然降至零时,记录此时的电流,即为临界电流(Ic)。
7. 温度与磁场关系研究:- 在不同温度下,重复步骤4和5,研究临界温度(Tc)和临界磁场(Hc)与温度的关系。
- 在不同磁场下,重复步骤6,研究临界电流(Ic)与磁场的关系。
8. 数据整理与分析:- 将实验数据整理成表格,分析高温超导体的物理性质。
- 对比不同高温超导材料的物理性质,总结实验结果。
五、实验注意事项1. 实验过程中,务必保持低温环境,避免样品受热。
2. 在测量电阻、临界温度、临界磁场等参数时,要确保仪器精度。
3. 注意实验安全,防止低温伤害。
实验报告模板

高温超导材料临界转变温度的测定一、实验目的1.通过对氧化物超导材料的临界温度TC 两种方法的测定, 加深理解超导体的两个基本特性2.了解低温技术在实验中的应用3.了解几种低温温度计的性能及Si 二极管温度计的校正方法4.了解一种确定液氮液面位置的方法二、实验原理1.超导现象及临界参数 1)零电阻现象电阻率与温度的关系: 。
式中, 是时的电阻率, 称剩余电阻率。
即使温度趋于绝对零度时, 也总是存在。
超导材料包括金属元素、合金和化合物等。
发生超导转变的温度称为临界温度。
用电阻法测定领结温度时, 把降温过程中电阻率-温度曲线开始从直线偏离处的温度称起始转变温度, 电阻率从10%到90%对应的温度间隔定义为转变宽度, 的大小一般反映了材料品质的好坏, 均匀单相的样品较窄。
临界温度C T 定义为02ρρ=时对应的温度。
2)完全抗磁性当把超导体置于外加磁场中时, 磁通不能穿透超导体, 超导体内的磁感应强度始终保持为0, 超导体的这个特性称为迈斯纳效应。
表示为M=(B/4(。
利用迈斯纳效应, 测量电感线圈中的一个样品在降温时内部磁通被排出的情况, 也可确定样品的超导临界温度, 称电感法。
用电阻法测TC 较简单, 只能测出其中能形成超导通路的临界温度最高的一个超导相的TC 。
用电感法测TC 则可以把不同的超导相同时测出。
3)临界磁场致使超导体有超导态变为正常态的磁场称为超导体的临界磁场, 通常把相应的磁场叫做临界磁场。
第Ⅰ类超导体, 也称软导体。
其与的关系: ;式中, 是时的临界磁场。
当时, 的典型数值为100Gs 。
第Ⅱ类超导体, 也称硬导体。
它存在两个临界磁场和, 的状态为混合类, 磁场进入超导体, 但仍具有零电阻的特性。
高温超导体, 其与的关系不满足。
4)临界电流密度当电流达到某一临界值IC后, 超导体将恢复到正常态。
大多数金属为突变, 超导合金、化合物及高温超导体为渐变。
2.温度的测量1)铂电阻温度计2)温差电偶温度计3)半导体Si二极管温度计3.温度的控制1)恒温器控温法: 定点测量法, 均匀, 精度高2)温度梯度法:连续测量法, 简单易行4.液体位置的确定采用温差电偶的测温差原理来判断液面位置。
液氮高温超导实验报告

一、实验目的1. 了解高温超导材料的基本特性;2. 掌握液氮冷却方法,实现对高温超导材料的低温处理;3. 通过测量电阻温度曲线,确定超导转变温度;4. 通过超导磁悬浮实验,验证超导材料的超导特性。
二、实验原理超导现象是指某些材料在温度降低到某一临界值以下时,电阻突然消失的现象。
这种材料被称为超导体,具有完全抗磁性和宏观量子隧穿效应。
高温超导材料是指在相对较高的温度下(通常低于液氮温度77K)表现出超导特性的材料。
本实验采用液氮冷却方法,将高温超导材料降至超导转变温度以下,通过测量电阻和温度的关系,确定超导转变温度。
同时,通过超导磁悬浮实验,验证超导材料的超导特性。
三、实验材料与仪器1. 实验材料:高温超导材料YBaCuO;2. 实验仪器:液氮罐、铂电阻温度计、电压表、实验台、磁悬浮装置等。
四、实验步骤1. 准备实验装置,将高温超导材料YBaCuO放置在实验台上;2. 使用液氮罐对高温超导材料进行冷却,使其温度降至超导转变温度以下;3. 使用铂电阻温度计测量温度,并记录温度变化;4. 使用电压表测量超导材料的电阻,并记录电阻随温度的变化;5. 进行超导磁悬浮实验,验证超导材料的超导特性;6. 对实验数据进行处理和分析。
五、实验结果与分析1. 电阻温度曲线实验得到的高温超导材料YBaCuO的电阻温度曲线如图1所示。
从图中可以看出,当温度降低至93.75K时,超导材料的电阻突然下降至接近零,表明此时超导材料已进入超导态。
图1 电阻温度曲线2. 超导磁悬浮实验通过超导磁悬浮实验,验证了高温超导材料YBaCuO的超导特性。
实验中,将超导材料放置在磁悬浮装置上,施加一定的磁场,超导材料在磁场中悬浮,证明了其具有完全抗磁性。
六、实验总结1. 通过本实验,成功实现了高温超导材料YBaCuO的液氮冷却,并测量了其电阻温度曲线;2. 确定了高温超导材料YBaCuO的超导转变温度为93.75K;3. 通过超导磁悬浮实验,验证了高温超导材料YBaCuO的超导特性;4. 本实验为高温超导材料的研究和应用提供了实验依据。
超导机理进展实验报告

超导现象是指某些材料在低于一定温度时,其电阻突然降至零的现象。
自从1911年荷兰物理学家海克·卡末林·昂内斯发现超导现象以来,超导机理一直是物理学领域的重要研究方向。
近年来,随着材料科学和实验技术的不断发展,超导机理研究取得了显著进展。
本文将对超导机理的最新实验进展进行综述。
二、超导机理研究进展1.高温超导机理高温超导材料的发现打破了传统超导材料临界温度的限制,引起了广泛关注。
目前,高温超导机理的研究主要集中在以下几个方面:(1)铜氧化物高温超导材料铜氧化物高温超导材料是目前研究最为广泛的超导材料。
我国科学家在高温超导机理研究中取得了重要突破,如:- 清华大学物理系张定/薛其坤研究团队利用范德瓦尔斯堆垛技术制备出原子级平整、角度精确可控的转角铜氧化物约瑟夫森结,开展了直接判定超导配对波函数相位部分的实验。
- 复旦大学物理学系团队成功合成了高质量的三层镍氧化物La4Ni3O10单晶样品,并证实了其在高压下具有体超导电性,超导体积分数达到了86%。
(2)铁基高温超导材料铁基高温超导材料是另一种重要的高温超导材料。
近年来,我国科学家在铁基高温超导机理研究中取得了以下进展:- 我国科学家在铁基高温超导材料中发现了马约纳拉零能模,为理解高温超导机理提供了新视角。
2.非常规超导机理非常规超导材料是指除了铜氧化物和铁基高温超导材料之外的其他超导材料。
近年来,我国科学家在非常规超导机理研究中取得了以下进展:- 浙江大学研究团队成功合成了新型铬基笼目晶格反铁磁体CsCr3Sb5,该材料在压力调控下显示出超导电性,为探索非常规超导机理提供了新方向。
超导机理实验研究主要采用以下方法:1. 约瑟夫森结实验:通过制备超导约瑟夫森结,研究超导配对波函数的性质。
2. 比热容测量:通过测量超导材料的比热容,研究超导材料的临界温度和超导态性质。
3. 磁化率测量:通过测量超导材料的磁化率,研究超导材料的磁性质。
高温超导

大学物理仿真实验报告项目名称:高温超导院系名称:理学院专业班级: 应物1202姓名:胡小兵学号:201221020217一、试验目的1.了解高临界温度超导材料的基本特性及其测试方法。
2.学习三种低温温度计的工作原理和使用以及进行比对的方法。
3.了解液氮的使用和低温温度控制的一些简单方法。
二、实验原理高临界温度超导性1911年,卡麦林翁钠斯(H,Kamerlingh Ornes, 1853-1926)用液氮冷却水银并通以几毫安的电流,在测量其端电压时发现,当温度稍低于液氮的正常沸点时,水银线的电阻突然跌落到零,这就是所谓的零电阻现象或超导电现象。
通常把具有这种超导电性的物体,称为超导体;而把超导体电阻突然变为零的温度,称为超导转变温度。
如果维持外磁场、电流和应力等在足够低的值,则样品在这一定外部条件下的超导转变温度,称为超导临界温度,用表示。
在一般的实际测量中,地磁场并没有被屏蔽,样品中通过的电流也并不太小,而且超导转变往往发生在并不很窄的温度范围内,因此通常引起转变温度零电阻温度和超导转、变(中点)温度等来描写高温超导体的特性,如图所示。
通常所说的超导转变温度是指。
图1由于数字电压表的灵敏度的迅速提高,用伏安法直接判定零电阻现象已成为实验中常用的方法。
然而,为了确定超导态的电阻确实为零,或者说,为了用实验确定超导态电阻的上限,这种方法的精度不够高。
我们知道,当电感L一定时,如果LR串联回路中的电流衰减得越慢,即回路的时间常数τ=L/R越大,则表明该回路中的电阻R越小。
实验发现,一旦在超导回路中建立起了电流,则无需外电源就能持续几年仍观测不到衰减,这就是所谓的持续电流。
现代超导重力仪的观测表明,超导态即使有电阻,其电阻也必定小于Ωm。
这个值远远小于正常金属迄今所能达到的电阻率Ωm,因此可以认为超导态的电阻率确实为零。
1933年,迈斯纳(W.F.Meissner, 1882-1974)和奥克森尔德(R.Ochsenfeld)把锡和铅样品放在外磁场中冷却到其转变温度以下,测量了样片外部的磁场分布。
高温超导实验报告

高温超导实验报告高温超导实验报告引言:高温超导是一项引人注目的科学研究领域,其在能源传输、磁共振成像、电子器件等方面具有巨大的应用潜力。
本实验旨在探索高温超导的特性和应用,并通过实验验证其超导性质。
一、实验背景超导现象的发现可以追溯到1911年,当时荷兰物理学家海克·卡末林发现在低温下某些金属材料的电阻会突然消失。
然而,这些材料只在极低温下才能表现出超导性,限制了其应用范围。
直到1986年,高温超导材料的发现才引起了科学界的广泛关注。
二、实验目的1. 研究高温超导材料的特性,包括临界温度、超导电流等。
2. 探索高温超导材料在能源传输、磁共振成像等领域的应用潜力。
三、实验原理高温超导的原理基于电子对的库伦相互作用和晶格振动。
在高温下,晶格振动增强了电子对的结合能,使其能够在较高温度下形成超导态。
四、实验步骤1. 准备高温超导材料样品,并确定其临界温度。
2. 制备超导电路,并将样品与电路连接。
3. 测量样品在不同温度下的电阻,以确定其临界温度。
4. 测量样品在超导态下的电流传输性能。
5. 研究样品在外加磁场下的超导性质。
五、实验结果与分析1. 样品的临界温度为XK,表明该材料在较高温度下仍能表现出超导性。
2. 样品在超导态下的电流传输性能良好,电阻几乎为零。
3. 样品在外加磁场下的超导性质受到一定程度的影响,磁场强度增加会使超导电流减小。
六、实验讨论1. 高温超导材料的发现为超导技术的应用提供了新的可能性,尤其是在能源传输领域。
2. 高温超导材料的制备和性能研究仍面临一些挑战,如材料稳定性和制备成本等问题。
3. 进一步研究高温超导材料的特性和机制,有助于推动其应用的发展和改进。
七、实验结论本实验通过测量高温超导材料的电阻和电流传输性能,验证了其超导性质。
高温超导材料具有较高的临界温度和良好的电流传输性能,为其在能源传输、磁共振成像等领域的应用提供了潜力。
八、实验总结本实验通过对高温超导材料的研究,深入了解了其特性和应用潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
122.1 118.6 115.5 112.9 110.5 108.5 106.8 105.4 104.1 103.1 102.1 101.4 100.0 96.7 96.2 96.0 95.7 95.5 95.3 94.9 94.6 93.8 92.6 92.4 92.1 91.8 91.6 91.3 77.4
⑴铂电阻温度计: 铂电阻温度关系如下图所示
1
R(T)=AT+B 在液氮沸点到正常室温温度范围内, 其电阻与温度近似成正比: 或 T(R)=aR+b,其中 a,b 都是常数。 ⑵半导体硅电阻温度计: 在较大的温度范围内,半导体具有负的电阻温度系数,这一特性正好弥补 了金属电阻温度计在低温下灵敏度明显降低的缺点。低温物理实验中,常用半 导体温度计。 在小电流下,近似有: U 正向 KT U g 0 。其中 K=-2.3mV/K;硅材料 U g 0 约为 1.20eV ⑶温差电偶温度计: 如果将两种金属材料制成的导线联成回路,并使其两个接触点维持在不同 的温度,则在该闭合回路中就会有温差电动势存在,如果将回路的一个接触点 固定在一个已知的温度,例如液氮的正常沸点 77.4 K,则可以由所测量得到的 温差电动势确定回路的另一接触点的温度,从而构成了温差电偶温度计。这种 温度计十分简便,特别是作为温度敏感部分的接触点体积很小,常用来测量小 样品的温度以及样品各部分之间的温差。 应该注意到,硅二极管 PN 结的正向电压 U 和温差电动势 E 随温度 T 的变化 都不是线性的,因此在用内插方法计算中间温度时,必须采用相应温度范围内 的灵敏度值。
〖实验二十三〗
高温超导材料特性测试和低温温度计
〖目的要求〗
1、了解高临界温度超导材料的基本特性及其测试方法; 2、了解金属和半导体 P-N 结的伏安特性随温度的变化以及温差电效应; 3、 学习几种低温温度计的比对和使用方法, 以及低温温度控制的简便方法。
〖仪器用具〗
PZ158 型直流数字电压表 低温恒温器, 不锈钢杜瓦容器和支架, (5+1/2 位) , BW2 型高温超导材料特性测试装置, 带有 19 芯插头的装置连接电缆, 若干根两 头带有香蕉插头的面板连接导线。
2
4、乱真电动势及零电阻的判断
直流测量电路中固有乱真电动势,不随电流的电流方向的反向而改变。在 测量值非常小时,可能会产生较大误差。故增设电流反向开关,若拨动此开关, 样品电压均为一个固定的小值,则可判断超导样品的电阻达到零。
〖实验内容〗
1、测量前的准备
⑴连接电路,打开吵到测试仪及数字电压表开关。 ⑵做室温检测,将铂、硅温度计中的转换开关放置于电流位置,利用微调 将铂电流调至 1mA(100mV),硅电流调至 100μA(1V),记录铂,硅及样 品的电流、电压。 ⑶测量液氮面,将低温恒温器放入杜瓦瓶中。
5
4、液氮点测量数据记录
Pt 标准电阻值 标准电阻上 电压 电流 电压 电阻 100Ω 100.02mV 1.0002mA 20.34mV 20.34Ω Si 10kΩ 1.0005V 0.10005mA 1.0696V 10691Ω 温差电偶 / / / 0.000mV / 样品 10Ω 99.682mV 9.9682mA 0V 0Ω
0.131 0.128 0.124 0.122 0.120 0.118 0.116 0.114 0.113 0.111 0.110 0.109 0.107 0.100 0.099 0.098 0.097 0.097 0.096 0.094 0.094 0.086 0.041 0.007 0.003 0.002 0.001 0.000 0.000
0.9650 0.9737 0.9811 0.9875 0.9932 0.9980 1.0020 1.0053 1.0083 1.0108 1.0131 1.0148 1.0183 1.0259 1.0269 1.0276 1.0281 1.0286 1.0291 1.0300 1.0308 1.0330 1.0356 / 1.0378 / / / 1.0696
3
· Tc 0 (零电阻的确定)记录:铂电压,硅电压,温差电偶,样品电压、电 流 ·液氮点温度,恒温器全部放入液氮中。记录:铂电压、电流,硅电压、 电流,温差电偶,样品电压、电流,液面计指示
〖数据记录〗
1、铂电阻温度系数
对 T(R)=aR+b,a=2.3656K/Ω,b=29.322K
2、室温检测
则:R(T)=0.000098T+0.0011
6
2、铂电阻随温度的变化关系
3、半导体(Si)电阻随温度的变化关系
7
4、温差电偶端电压随温度的变化关系
8
Pt 标准电阻值 标准电阻上 电压 电流 电压 电阻 100Ω 100.00mV 1mA 110.23mV 110.23Ω Si 10kΩ 1.0000V 0.1mA 0.5173V 5173Ω 温差电偶 / / / 5.665mV / 样品 10Ω 99.666mV 9.9666mA / /
3、降温过程记录
39.22 37.72 36.43 35.31 34.31 33.46 32.74 32.17 31.62 31.17 30.76 30.45 29.88 28.48 28.28 28.18 28.08 27.98 27.88 27.71 27.58 27.27 26.76 26.66 26.53 26.42 26.33 26.21 20.34
〖实验原理〗
1、高临界温度超导电性
超导体的电阻随温度的变化规律如图, 其中 Tc ,onset 是超导转变温度,Tc 0 是零 电阻温度,和超导转变(中点)温度 Tcm 。 迈纳斯效应表明超导体有完全抗磁性,这是超导体具有的独立于零电阻现 象的另一个基本性质。
2、铂、硅、温差电偶三种温度计的温度特性
110.23 0.5173 96.41 84.37 66.53 55.12 49.94 46.12 43.15 41.01 0.6133 0.6837 0.8014 0.8681 0.9005 0.9239 0.9418 0.9545
4
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 L(N2)
0.0131 0.0128 0.0124 0.0122 0.012 0.0118 0.0116 0.0114 0.0113 0.0111 0.011 0.0109 0.0107 0.01 0.0099 0.0098 0.0097 0.0097 0.0096 0.0094 0.0094 0.0086 0.0041 0.0007 0.0003 0.0002 0.0001 0 0
3、四引线测量法
由于低温物理实验装置的原则之一是必须尽可能减小室温漏热,因此测量 引线通常是又细又长,其阻值有可能远远超过待测样品(如超导样品)的阻值为 了减小引线和接触电阻对测量的影响,通常采用国际上通用的标准测量方法— —“四引线测量法”,即每个电阻元件都采用四根引线,其中两根为电流引线, 两根为电压引线。 恒流源通过两根电流引线将测量电流 i 提供给待测样品,而数字电压表则 是通过两根电压引线来测量电流 i 在样品上所形成的电势差 U。 由于两根电压引 线与样品的接点处在两根电流引线的接点之间,因此排除了电流引线与样品之 间的接触电阻对测量的影响;又由于数字电压表的输人阻抗很高,电压引线的 引线电阻以及它们与样品之间的接触电阻对测量的影响可以忽略不计。 四引线测量电路如图:
39.22 37.72 36.43 35.31 34.31 33.46 32.74 32.17 31.62 31.17 30.76 30.45 29.88 28.48 28.28 28.18 28.08 27.98 27.88 27.71 27.58 27.27 26.76 26.66 26.53 26.42 26.33 26.2测量开关放在液面计) 在测量过程中要时刻关注液面计的电压,若有上升(因为液氮不断气化的 缘故),则需手动将低温恒温器下调,确保温度下降的速度 ⑵记录测量数据 ①低温温度计的对比:室温——液氮点。记录:铂电压,硅电压,温差电 偶(五分钟记录一次) ②超导转变曲线的测量:130K——液氮点。 · T Tc (130K,43mV)记录:铂电压,硅电压,温差电偶(五分钟记录 一次) · T Tc (26mV-27mV)记录:铂电压,温差电偶,样品电压(半分钟或 者更快记录一次)
U mV Pt 室温 1 2 3 4 5 6 7 8 U V Si U mV 温差 电偶 5.665 4.723 3.830 2.345 1.662 1.358 1.145 0.987 0.875 U mV 样品 / / / / / / / 0.139 0.134 R Ω Pt 110.23 96.41 84.37 66.53 55.12 49.94 46.12 43.15 41.01 290.1 257.4 228.9 186.7 159.7 147.5 138.4 131.4 126.3 T K R Ω Si 5173 6133 6837 8014 8681 9005 9239 9418 9545 R Ω 样品 / / / / / / / 0.0139 0.0134
9650 9737 9811 9875 9932 9980 10020 10053 10083 10108 10131 10148 10183 10259 10269 10276 10281 10286 10291 10300 10308 10330 10356 / 10378 / / / 10696
0.787 0.715 0.654 0.601 0.556 0.518 0.486 0.461 0.438 0.418 0.400 0.387 0.357 0.300 0.290 0.287 0.284 0.280 0.277 0.276 0.264 0.246 0.225 0.221 0.219 0.217 0.215 0.207 0.000