2016年云南省高考理科数学试题与答案

合集下载

2016高考理科数学试题及答案

2016高考理科数学试题及答案

2016高考理科数学试题及答案[注意:此文章为模拟,非实际高考试题及答案]第一部分:选择题(共30题,每题4分,共120分)1. 在坐标平面内,已知A(4,0),B(0,6),C(-4,0),则△ABC的面积为()。

A. 12B. 6C. 24D. 482. 函数y=|x-2|的图象是()。

A. 一条过点A(2,0)的直线B. x轴上的一段直线C. 一段抛物线D. 一条过点B(2,-2)和C(2,2)的直线3. 若A,B是集合{1,2,3}的子集,则A∪B是()。

A. {1,2,3}B. {1,2}C. {2,3}D. { }4. 一船从A港顺流而下,2小时到达B港;又向上游驶回A港,需3小时。

静水中船以每小时10千米速度行驶,则A,B港间的距离为()。

A. 50千米B. 40千米C. 30千米D. 20千米......第二部分:填空题(共8题,每题5分,共40分)11. 已知过点A(2,-1)和点B(5,3)的直线的斜率为k,则k=____。

12. 若2x-3y=1,则7x-10y=____。

13. 已知集合A={2,4,6},B={2,3,5},则A∩B=____。

14. 若a:b=3:4,b:c=5:7,则a:b:c=____。

......第三部分:解答题(共2题,每题20分,共40分)21. 已知△ABC中,∠B=90°,AB=3,BC=4。

求∠A和AC的长度。

解:由勾股定理可得,AC^2 = AB^2 + BC^2即AC^2 = 3^2 + 4^2 = 9 + 16 = 25所以AC = √25 = 5又∠A + ∠B + ∠C = 180°,代入已知条件,得∠A + 90° + ∠C = 180°即∠A + ∠C = 90°由三角函数中的余弦定理可得:cosA = AC/AB = 5/3所以∠A = arccos(5/3) ≈ 53.13°所以∠A ≈ 53.13°,AC = 5.22. 解方程:2x^2 - 5x - 3 = 0解:根据二次方程求根公式,x = (-b ± √(b^2 -4ac))/(2a)代入 a=2, b=-5, c=-3,得x = (-(-5) ± √((-5)^2 - 4*2*(-3)))/(2*2)= (5 ± √(25 + 24))/4= (5 ± √49)/4所以 x1 = (5 + 7)/4 = 3x2 = (5 - 7)/4 = -1/2所以方程的解为 x = 3 和 x = -1/2.第四部分:答案选择题答案:1. C2. D3. B4. A填空题答案:11. 2/312. 213. {2}14. 15:20:28......解答题答案:21. ∠A ≈ 53.13°,AC = 5.22. x = 3 和 x = -1/2.总结:本文对2016年高考理科数学试题进行了整理和解答。

2016年云南省高考理科数学试题及答案

2016年云南省高考理科数学试题及答案

2016年云南省高考理科数学试题及答案2016年云南省高考理科数学试题及答案。

本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,满分150分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知 $Z=(m+3)+(m-1)i$ 在复平面内对应的点在第四象限,则实数 $m$ 的取值范围是()A。

$(-3,1)$B。

$(-1,3)$C。

$(1,+\infty)$D。

$(-\infty,-3)$2.已知集合$A=\{1,2,3\}$,$B=\{x|(x+1)(x-2)<0,x\in Z\}$,则 $A\cup B=$()A。

$\{1\}$B。

$\{1,2\}$C。

$\{0,1,2,3\}$D。

$\{-1,0,1,2,3\}$3.已知向量 $a=(1,m)$,$b=(3,-2)$,且 $(a+b)\perp b$,则$m=$()A。

$-8$B。

$-6$C。

$6$D。

$8$4.圆 $x+y-2x-8y+13=0$ 的圆心到直线 $ax+y-1=0$ 的距离为1,则 $a=$()A。

$-\frac{22}{43}$B。

$-\frac{3}{4}$C。

$3$D。

$\frac{2}{3}$5.如图,XXX从街道的 $E$ 处出发,先到 $F$ 处与XXX 会合,再一起到位于 $G$ 处的老年公寓参加志愿者活动,则XXX到老年公寓可以选择的最短路径条数为()A。

$24$B。

$18$XXXD。

$9$6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A。

$20\pi$B。

$24\pi$C。

$28\pi$D。

$32\pi$7.若将函数 $y=2\sin^2 x$ 的图像向左平移 $\pi$ 个单位长度,则平移后的图像对称轴为()A。

$x=-\frac{1}{2}+\frac{k\pi}{6}$,$k\in Z$B。

2016年全国各省市高考数学(理)试题及答案全套备考资料

2016年全国各省市高考数学(理)试题及答案全套备考资料

2016年全国各省市高考数学(理)试题及答案试题类型:2016年普通高等学校招生全国统一考试卷3 理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10 (C )10- (D )310-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年高考理科数学(全国新课标卷1)(含解析)

2016年高考理科数学(全国新课标卷1)(含解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。

(完整word版)2016年全国高考理科数学试题及答案,推荐文档

(完整word版)2016年全国高考理科数学试题及答案,推荐文档

2016年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。

5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257- (10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。

2016年云南省高考理科数学试题及答案(云南考生使用)【精选】

2016年云南省高考理科数学试题及答案(云南考生使用)【精选】

问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动 为等比数列, 养美德步、做“坚
ln(1)x x
+-【解析】选B
()ln(1)()1x
g x x x g x x
'=+-⇒=-
+,险时候”中奋,牢固树立党稳定实践中建功立个必须”等重要论述,和政治规矩,带头牢固树责任。

三、主要措施 (一)以党支部为单位开展一次主题党日谈信念,对照入党誓词找标准、找差温入党志愿和入党誓词,交流思想体会。

组形式,定期组织集中学习,每次确定1织一次党员集中学习。

支部每季度召开一坚持根本宗旨,敢于担当作为”、“坚守讨论不得少于1天。

(三)开展“四个开展党组班子成员到联系区县X X 局邀请党校教师、专家学者给党员,做合格党员”学习教育党员”学习教育(以下规、学系列讲话,在全市党员中),结合,基实
由图象关于



超过1000小时的概率为
3 那么该部件的使用寿命超过)数列方法中的马情怀道路、“五位一方面的深刻内涵和要展、科学发展、和新要求,坚持以知促有品行,讲奉献、有时处处体现为行动的认真贯彻省委、市人民的普通一员,存廉洁从政、从严治牢终保持干事创业、开五”规划开局起步党员要坚持学做党的宗旨意干部要求

思克情

),准线为,已知以直线处教材纳委决,扬拓的步、稳定必
f 如图,ABC 内涵发德危险
l fxlby :不等式选讲
普通从。

2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2。

答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3。

全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。

解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。

(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。

考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。

高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。

(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。

2016年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2016年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.23.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5 分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n 的最大值为.16.(5 分)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5 个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3 个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900 元.该企业现有甲材料150kg,乙材料90kg,则在不超过600 个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y 的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|= ,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y 的值是解决本题的关键.3.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9 项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10 分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y 在7:50 至8:00,或8:20 至8:30 时,小明等车时间不超过10 分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n 的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x 轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1 表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n 的取值范围是:(﹣1,3).当焦点在y 轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5 分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2 时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0 有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A 错误;函数f(x)=x c﹣1 在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B 错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C 正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C 的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n 所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω 的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω 的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2 .r +1【考点】9O :平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A :平面向量及应用. 【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m ,1),=(1,2),可得 m +2=0,解得 m=﹣2. 故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5 分)(2x +)5 的展开式中,x 3 的系数是 10 .(用数字填写答案)【考点】DA :二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P :二项式定理. 【分析】利用二项展开式的通项公式求出第 r +1 项,令 x 的指数为 3,求出 r ,即可求出展开式中 x 3 的系数. 【解答】解:(2x +)5 的展开式中,通项公式为:T = =25﹣r,令 5﹣=3,解得 r=4 ∴x 3 的系数 2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5 分)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为 64 .1 2 n 1 【考点】87:等比数列的性质;8I :数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列. 【分析】求出数列的等比与首项,化简 a 1a 2…a n ,然后求解最值. 【解答】解:等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,可得 q (a 1+a 3)=5,解得 q=. a 1+q 2a 1=10,解得 a 1=8.则 a a …a =a n •q1+2+3+…+(n ﹣1)=8n • = = ,当 n=3 或 4 时,表达式取得最大值: =26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5 分)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品 A 的利润为 2100元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 216000元.【考点】7C :简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设 A 、B 两种产品分别是 x 件和 y 件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设 A 、B 两种产品分别是 x 件和 y 件,获利为 z 元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000 元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC 不为0 求出cosC 的值,即可确定出出C 的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b 的值,即可求△ABC 的周长.【解答】解:(Ⅰ)∵在△ABC 中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC 的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,求出平面BEC、平面ABC 的法向量,代入向量夹角公式可得二面角E﹣BC﹣A 的余弦值.【解答】(Ⅰ)证明:∵ABEF 为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE 为二面角D﹣AF﹣E 的平面角;由ABEF 为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF 为二面角C﹣BE﹣F 的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB✪平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC 为等腰梯形.以E 为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC 的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC 的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A 的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A 的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X 的分布列.(II)由X 的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5 中n 的最小值.(III)法一:由X 的分布列得P(X≤19)=.求出买19 个所需费用期望EX1和买20 个所需费用期望EX2,由此能求出买19 个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19 时,费用的期望和当n=20时,费用的期望,从而得到买19 个更合适.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,P (X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)= =,P(X=20)= ==,P(X=21)= =,P(X=22)= ,∴X 的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19 时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20 时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19 个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E 的轨迹为以A,B 为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E 的轨迹为以A,B 为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E 的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•= •=12•,A 到PQ 的距离为d==,|PQ|=2 =2=,则四边形MPNQ 面积为S= |PQ|•|MN|= ••12•=24•=24,当m=0 时,S 取得最小值12,又>0,可得S<24•=8 ,即有四边形MPNQ 面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a 进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2 是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0 恒成立,当x<1 时,f′(x)<0,此时函数为减函数;当x>1 时,f′(x)>0,此时函数为增函数;此时当x=1 时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1 存在一个零点;当x<1 时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t1,t2,且t1<t2,则当x<t1,或x>t2 时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1 存在一个零点;即函数f(x)在R 是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当ln(﹣2a)<x<1 时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0 得:函数f(x)在R 上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故函数f(x)在R 上单调递增,函数f(x)在R 上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1 时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=1 时,函数取极大值,由f(1)=﹣e<0 得:函数f(x)在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2 是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1 时,g′(x)<0,g(x)单调递减;当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)= ,m>0,则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K 为AB 中点,连结OK.根据等腰三角形AOB 的性质知OK⊥ AB,∠A=30°,OK=OAsin30°=OA,则AB 是圆O 的切线.(Ⅱ)设圆心为T,证明OT 为AB 的中垂线,OT 为CD 的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K 为AB 中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB 与⊙O 相切;(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设T 是A,B,C,D 四点所在圆的圆心.∵OA=OB,TA=TB,∴OT 为AB 的中垂线,同理,OC=OD,TC=TD,∴OT 为CD 的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1 的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1 是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ 化为极坐标方程;(Ⅱ)化曲线C2、C3 的极坐标方程为直角坐标方程,由条件可知y=x 为圆C1 与C2 的公共弦所在直线方程,把C1 与C2 的方程作差,结合公共弦所在直线方程为y=2x 可得1﹣a2=0,则a 值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足tanα0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1 时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)= ,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1 时,|x﹣4|>1,解得x>5 或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1 或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5 或x<3,即有x>5 或≤x<3.综上可得,x<或1<x<3 或x>5.则|f(x)|>1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年云南省高考理科数学试题与答案(满分150分,时间120分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共5页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知Z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(-3,1) (B )(-1,3) (C )()1,+∞ (D )(),3-∞-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则AB =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=(1,m ),b=(3,-2),且(a+b )⊥b ,则m=(A )-8 (B )-6 (C )6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小明回合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数2sin 2y x = 的图像向左平移12π个单位长度,则平移后的图像对称轴为 (A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。

执行该程序框图,若输入的 x=2,n=2,依次输入的a 为2,2,5,则输入的s=(A )7 (B )12 (C )17 (D )34 (9)若cos (4π-α)=35,则sin2α= (A )725 (B )15 (C )-15 (D )-725(10)从区间[]0,1随机抽取2n 个数12,,...,nx x x , 12,,...,n y y y 构成n 个数对11,x (y ),22,x (y ),…,,n n x (y ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11 1F ,2F 是双曲线E :22221a x y b+=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,121sin 3MF F ∠=,则E 的离心率为(A (B )32(C (D )2(12)已知函数f x ∈()(R )满足f x =f x (-)2-(),若函数x 1y=x+与y=f x ()图像的x 1y=f x x +()交点为(1x ,1y );(2x ,2y ),…,(m x ,m y ),则1()mi i i x y =+=∑ (A )0 (B)m (C)2m (D)4m第II 卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答。

第22~24题为选考题,考生根据要求作答。

二、填空题:本题共4小题,每小题5分。

(13)△ABC 的内角A ,B ,C 的对边分别为a,b,c 若cosA=45,cosC=513,a=1,则b= 。

(14)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n//β,那么α⊥β. ②如果m ⊥α,n//α,那么m ⊥n. ③如果α//β,m ⊂α,那么m//β④如果m//n ,α//β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 ___________ (填写所有正确的命题序号)。

(15)有三张卡片,分别写有1和2,1和3,2和3。

甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_____________。

(16)若直线y=kx b +的曲线,y=1nx+2的切线,也是曲线y=1n(x+1)的切线,则b=_________ 三、解答题:解答应写出文字说明、证明过程或演算步骤。

(17)(本小题满分12分)n S 为等差数列{}n a 的的前n 项和,且1a =1,7S =28,记n b =[]lg n a ,其中[x]表示不超过显得最大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{n b }的前1000项和. (18)(本小题满分12分)某种保险的基本保费为a (单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD ,CD 上,AE=CF=,EF 交于BD 于点H ,将DEF 沿EF 折到 D ′EF 的位置,OD ’=.(Ⅰ)证明:D ′H ⊥平面ABCD; (Ⅱ)求二面角B- D ′A-C 的正弦值。

(20)(本小题满分12分)已知椭圆E :2x t+23y =1的焦点在X 轴上,A 是E 的左顶点,斜率为K (K>0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (Ⅰ)当t=4,|AM|=|AN|时,求△AMN 的面积; (Ⅱ)当2|AM|=|AN|时,求K 的取值范围。

(21)(本小题满分12分)(Ⅰ)讨论函数f(X)=且f(X)>0,并证明当x>0时,(x-2)+ x+2>0;(Ⅱ)证明:当a [0,1)时,函数g(X)=(x>0)有最小值。

设g(X)的最小值为h(a),求函数h(a)的值域。

请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,AB =求l 的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅱ)证明:当a ,bM 时,1a b ab +<+.答案:一、1.A 2.C 3.D 4.A 5.B 6.C 7.B 8.C 9.D 10.C 11.A 12.C 二、13.132114. ② ③ ④ 15.1和3 16.1-1n2 三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.(Ⅰ)nan =,[lg ][lg ]n n b a n ==,10b =,11[lg11]1b ==,101[lg101]2b ==.(Ⅱ)因为lg10=,lg101=,lg1002=,lg10003=.所以19n ≤≤时,[lg ]0n =. 当100999n ≤≤时,[lg ]2n =.当999n =时,[lg ]3n =. 所以数列{}nb 的前1000项和1000121000[lg1][lg2][lg3][lg1000]0901900231893T b b b =+++=++++=+⨯+⨯+=.18.(Ⅰ)设一续保人本年度的保费高于基本保费的概率为1p ,则10.200.200.100.050.55p =+++=.(Ⅱ)设所求概率为2p ,则20.100.050.1530.200.200.100.050.5511p+===+++.(Ⅲ)续保人本年度的平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=, 所以续保人本年度的平均保费1.23a 与基本保费a 的比值为1.23 1.23a a=.19.(Ⅰ)略..20.(Ⅰ)当||||AM AN =时,1k =,直线:2l y x =+.代入椭圆方程整理得271640x x ++=.因为直线l 与椭圆E 的交点为(2,0)A -,0(,)M x y ,所以01627x-+=-,得027x=-,所以点212(,)77M -,又212(,)77N --,所以△AMN 的面积1242144(2)27749S =⨯⨯-+=.(Ⅱ)令2t a =,则直线AM 方程()y k x a =+. 联立椭圆直线方程,消去y 整理得22223222(3)2(3)0a k xk a x a a k +++-=.于是2302223k a a xa k -+=-+,所以232322222333k a a k a xa a k a k -=-=++,所以226||3a AM a k +,222266||133a ak AN k a a k++.因为2||||AM AN =,所以22226633a aka k k a ++,即232(2)63a kk k-=-.所以23632kk t k -=-,因为3t >,所以236332kkk ->-,整理得3202k k ->-2k k <,所以k 的取值范围是.21.(Ⅰ)对2()e 2xx f x x -=+求导,得22()e (2)x x f x x '=+.当(0,)x ∈+∞时,()0f x '>,函数()f x 在区间(0,)+∞内单调递增, 所以()(0)f x >. 因为(0)1f =-,所以2e12xx x ->-+,所以(2)e 20xx x -++>.(Ⅱ)对2e ()x ax a g x x --=求导,得332(2)[e ]e (2)(2)2()xxx x a x a x x g x xx -++-+++'==,0x >.记2()e 2xx x a x ϕ-=++,0x >.由(Ⅰ)知函数()x ϕ区间(0,)+∞内单调递增,所以()(0)x ϕϕ>, 又(0)10a ϕ=-+<,(2)0a ϕ=>,所以存在唯一正实数0x ,使得002()e 02x xx a x ϕ-=+=+.于是,当0(0,)x x ∈时,()0x ϕ<,()0g x '<,函数()g x 在区间0(0,)x 内单调递减;当0(,)x x ∈+∞时,()0x ϕ>,()0g x '>,函数()g x 在区间0(,)x +∞内单调递增.所以()g x 在(0,)+∞内有最小值00020e()x ax ag x x --=,由题设0020e ()x ax a h a x --=.又因为002e 2x xa x --=+.所以001()e 2x g x x =+.根据(Ⅰ)知,()f x 在(0,)+∞内单调递增,002e (1,0]2x x a x -=-∈-+, 所以002x <≤.令1()e (02)2xu x x x =<≤+,则1()e2xx u x x +'=>+,函数()u x 在区间(0,2)内单调递增,所以(0)()(2)u u x u <≤, 即函数()h a 的值域为21e (,]24.22.(Ⅰ)在Rt △DEC 中,因为DF EC ⊥, 所以90FDC DCE FCB ∠=︒-∠=∠,且DF CF DEDC=,因为DE DG =,BC CD =,所以DF FC DGCB=,所以△DFG ∽△CFB .所以DGF CBF ∠=∠.所以180FGC CBF ∠+∠=︒. 所以B ,C ,G ,F 四点共圆.(Ⅱ)因为12DE AD =,DG DE =,所以12DG DC =.因为B ,C ,G ,F 四点共圆,所以90GFB GCB ∠=∠=︒. 所以△GFB ≌△GCB .所以△GCB 的面积1111224S =⨯⨯=.23.(Ⅰ)由圆C 的标准方程22(6)25x y ++=,得221290x y x +++=,所以圆C 的极坐标方程为212cos 90ρρθ++=.(Ⅱ)将cos ,sin x t y t αα=⎧⎨=⎩代入22(6)25x y ++=,整理得212cos 110tt α++=.设A ,B 两点对应参数值分别为1t ,2t ,则1212cos t tα+=-,1211t t=.所以12||||AB tt =-23cos 8α=,解得cos α=,所以tan α或tan α=.24.(Ⅰ)函数12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩,则不等式()2f x <可化为1,222,x x ⎧≤-⎪⎨⎪-<⎩或11,2212,x ⎧-<<⎪⎨⎪<⎩或 1,222,x x ⎧≥⎪⎨⎪<⎩解得11x -<<.所以不等式()2f x <的解集为(1,1)-. (Ⅱ)由(Ⅰ)可知(1,1)a ∈-,(1,1)b ∈-,所 以210a->,210b ->,于是22(1)(1)0a b -->,即22(1)()0ab a b +-+>,所以|1|||ab a b +>+.。

相关文档
最新文档