求导法则及基本求导公式

合集下载

求导法则及基本求导公式

求导法则及基本求导公式

求导法则及基本求导公式求导法则是微积分中的重要内容,用于求解函数的导数。

通过求导法则,我们可以将复杂的函数求导问题转化为简单的计算问题。

本文将介绍常见的求导法则及基本求导公式。

1.基本求导公式:(1)常数函数求导公式:如果f(x)=C(C是常数),那么f'(x)=0。

(2)幂函数求导公式:如果f(x) = x^n (n是实数),那么f'(x) = nx^(n-1)。

其中,对于n不等于1的情况,需要注意一点:如果n是一个整数,那么求导过程中,指数函数仍然满足乘法法则,即令n作为常数处理;如果n是一个实数但不是整数,那么求导过程中,必须使用指数函数的导数公式。

(3)指数函数和对数函数求导公式:(a)指数函数求导公式:如果f(x) = a^x (a>0,且不等于1),那么f'(x) = ln(a) * a^x。

(b)自然对数函数求导公式:如果f(x) = ln(x),那么f'(x) = 1/x。

(4)三角函数求导公式:(a)正弦函数求导公式:如果f(x) = sin(x),那么f'(x) =cos(x)。

(b)余弦函数求导公式:如果f(x) = cos(x),那么f'(x) = -sin(x)。

(c)正切函数求导公式:如果f(x) = tan(x),那么f'(x) =sec^2(x)。

2.求导法则:(1)和差法则:如果f(x)=g(x)+h(x),那么f'(x)=g'(x)+h'(x)。

同样地,对于减法来说,如果f(x)=g(x)-h(x),那么f'(x)=g'(x)-h'(x)。

(2)乘法法则:如果f(x)=g(x)*h(x),那么f'(x)=g'(x)*h(x)+g(x)*h'(x)。

(3)除法法则:如果f(x)=g(x)/h(x),那么f'(x)=(g'(x)*h(x)-g(x)*h'(x))/(h(x))^2(4)复合函数求导法则(链式法则):如果f(x)=g(h(x)),那么f'(x)=g'(h(x))*h'(x)。

求导基本法则和公式

求导基本法则和公式

求导基本法则和公式导数是微积分中的重要概念,用来描述函数在其中一点的变化率。

求导是求函数的导数的过程,求导的基本法则和公式有很多,下面详细介绍一些常用的基本法则和公式。

1. 常数法则:对于任意常数c,其导数为0。

即 d(c)/dx = 0。

2. 幂函数法则:对于任意实数n,以及常数a大于0,其导数公式为d(ax^n)/dx = nax^(n-1)。

3. 和差法则:对于任意两个可导函数f(x)和g(x),其导数为两个函数的导数的和或差。

即d(f(x) ± g(x))/dx = f'(x) ± g'(x)。

4. 积法则:对于任意两个可导函数f(x)和g(x),其导数为第一个函数在x点的值与第二个函数在x点的导数的乘积再加上第一个函数在x点的导数与第二个函数在x点的值的乘积。

即 d(f(x)g(x))/dx = f'(x)g(x) + f(x)g'(x)。

5. 商法则:对于任意两个可导函数f(x)和g(x),其导数为第一个函数在x点的值与第二个函数在x点的导数的乘积再减去第一个函数在x点的导数与第二个函数在x点的值的乘积,然后除以第二个函数在x点的平方。

即 d(f(x)/g(x))/dx = [f'(x)g(x) - f(x)g'(x)] / [g(x)]^26.反函数法则:如果函数y=f(x)在其中一点x处可导,且其导数不为0,则其反函数x=g(y)在相应的点y处也可导,且其导数为1/f'(g(y))。

7. 求导乘积法:对于一组函数的乘积f(x) = f1(x)f2(x)...fn(x),其导数可以表示为 f'(x) = f1'(x)f2(x)...fn(x) +f1(x)f2'(x)...fn(x) + ... + f1(x)f2(x)...fn'(x)。

8.反函数求导法则:如果函数y=f(x)在其中一点x处可导,且其导数不为0,则其反函数x=g(y)在相应的点y处也可导,且其导数为1/f'(g(y))。

求导法则与导数公式

求导法则与导数公式
arccos x
f
11
x2 ,
( x0 )1
或 ,
dx
1
xdy (y 1y0, 1) ,dy
1 x2
dx x x0
arctan x
1
1 x2

arc cotx
1
1 x2

x (,
) .
4. 复合函数的导数
指导思想:“由外向内, 逐层求导”
(1) 求导法则(链式法则)
Thm 3 设 u g( x) 在点 x 可导,而 y f (u) 在 在对应点 u g( x) 可导,则 y f (g(x)) 在点 x 可导,且
dt
求三叶玫瑰线 r a sin 3 (a> 0) 在对应
4 的点处的切线方程.
a
o
r
6. 隐函数的导数
例 11 (1)
由显x函y 数 ex
e y 0 确定了隐函数 y 形如 y f ( x) 的函数.
f
(x)
,求
y .
(2) 隐函数 由 F ( x, y) 0确定的函数 y y( x) . 能显化, 不能显化.
若函数 x(t) 存在反函数 t 1( x) ,则
y f [1( x)]是由 y f (t) , t 1( x) 复合而成.
Thm 4
设有参数方程
x y
f
(t ), (t ),
t I ,若函数
x(t) , y f (t) 在区间I 上均可导且 (t)0 ,
又 x(t) 存在反函数 t 1( x) ,则
d ln f ( x)
dx
Thm 若函数 y f ( x) 在 x 可导 ,且 f (x)0 ,则
d ln f ( x) f ( x) , 即 ln f ( x) f ( x) .

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。

在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。

下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。

1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。

2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。

例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。

例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。

例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。

(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。

(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。

6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。

(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。

(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。

导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。

例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

求导法则与求导基本公式

求导法则与求导基本公式

对数函数的导数法则
总结词
对数函数的导数是求对数函数的导数的重要法则,它表明对数函数的导数等于对数函数 自身在自变量上的倒数。
详细描述
对数函数的导数是求对数函数的导数的关键法则。具体来说,如果对数函数$ln x$可导, 则$(ln x)'=frac{1}{x}$。其中,$frac{1}{x}$表示数函数的导数法则是求指数函数的导数的重要法则,它表明指数函数的导数等于底数乘以指数函数 自身在自变量上的导数。
详细描述
指数函数的导数法则是求指数函数的导数的关键法则。具体来说,如果指数函数$a^x(a>0,aneq1)$ 可导,则$(a^x)'=a^xln a$。其中,$ln a$表示以e为底的对数。
04
导数的应用
导数在几何中的应用
切线斜率
导数可以用来求曲线在某一点的切线斜率, 从而了解曲线在该点的变化趋势。
单调性分析
通过求导可以判断函数的单调性,进而研究 函数的增减性。
极值问题
导数可以用来研究函数的极值问题,确定函 数的最大值和最小值。
导数在物理中的应用
速度与加速度
01
在物理学中,导数可以用来描述物体的速度和加速度,例如自
商的导数法则
总结词
商的导数法则是求两个函数的商的导数的重要法则,它表明两个函数的商的导数 等于被除数的导数乘以除数减去被除数乘以除数的导数后再除以被除数的平方。
详细描述
商的导数法则是求两个函数的商的导数的关键法则。具体来说,如果两个可导函 数$u$和$v$满足$u/v$可导,则$left(frac{u}{v}right)'=frac{u'v-uv'}{v^2}$。其 中,$u'$和$v'$分别表示对$u$和$v$的导数。

求导法则及基本求导公式

求导法则及基本求导公式

求导法则及基本求导公式求导法则是微积分中常用的一些对函数进行求导的方法和规则。

在求导过程中,我们需要根据一些基本求导公式和特定的求导法则来计算。

下面是常用的求导法则:1.【常数法则】:若f(x)=C,其中C为常数,则f'(x)=0。

这是求导的最基本法则,即对常数求导的结果为0。

2. 【幂法则】:若f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

这是求导中最简单的法则之一,对于幂函数,求导后指数减1,并将指数与系数相乘。

3.【加法/减法法则】:若f(x)=g(x)±h(x),其中g(x)和h(x)是可导函数,则f'(x)=g'(x)±h'(x)。

加法法则和减法法则是同样的运用,可以将一个函数的求导拆分成两个函数分别求导后再相加或相减。

4.【乘法法则】:若f(x)=g(x)*h(x),其中g(x)和h(x)是可导函数,则f'(x)=g'(x)*h(x)+g(x)*h'(x)。

乘法法则可以用来求两个函数相乘的导数,根据公式,先求一个函数的导数再乘以另一个函数,在求第二个函数的导数再乘以第一个函数,并将两个乘积求和。

5.【除法法则】:若f(x)=g(x)/h(x),其中g(x)和h(x)是可导函数,并且h(x)≠0,则f'(x)=[g'(x)*h(x)-g(x)*h'(x)]/(h(x))^2除法法则是乘法法则的逆运算,先求分子的导数乘以分母再减去分子乘以分母的导数,最后除以分母的平方。

6.【链式法则】:若f(x)=g(h(x)),其中g(u)和h(x)是可导函数,则f'(x)=g'(h(x))*h'(x)。

链式法则适用于求复合函数的导数,先求外函数对内函数的导数,再乘以内函数对自变量的导数。

7.【反函数法则】:若y=f(x)在一些区间上是严格单调的连续函数,且在这个区间上有f'(x)≠0,则其反函数x=f^(-1)(y)在相应的区间上可导,并且有(f^(-1))'(y)=1/f'(x)。

一般常用求导公式

一般常用求导公式

一般常用求导公式在数学中,求导是一项非常重要的运算,它用于计算函数在某一点的导数。

为了方便计算,数学家们总结出了一系列常用的求导公式,能够帮助我们更快速地求出函数的导数。

本文将介绍一般常用的求导公式,并给出相应的解释和使用示例。

一、基本导数法则1. 常数函数导数公式若y = C(C为常数),则y' = 0。

解释:常数函数的导数恒为0,因为其图像是一条水平线,斜率为0。

例如:如果y = 5,那么y' = 0。

2. 幂函数导数公式若y = x^n(n为常数),则y' = nx^(n-1)。

解释:幂函数的导数可以通过将指数降低1并作为新的指数乘以原指数,得到幂函数的导数。

例如:如果y = x^3,那么y' = 3x^2。

3. 指数函数导数公式若y = a^x(a>0且a≠1),则y' = a^x * ln(a)。

解释:指数函数的导数等于函数的值乘以底数的自然对数。

例如:如果y = 2^x,那么y' = 2^x * ln(2)。

4. 对数函数导数公式若y = lo gₐ(x)(a>0且a≠1),则y' = 1 / (x * ln(a))。

解释:对数函数的导数等于1除以自变量乘以底数的自然对数。

例如:如果y = log₂(x),那么y' = 1 / (x * ln(2))。

5. 指数对数函数导数公式若y = a^(bx + c)(a>0且a≠1,b和c为常数),则y' = (b * ln(a)) * a^(bx + c)。

解释:指数对数函数的导数等于指数项的系数乘以底数的自然对数,再乘以函数本身。

例如:如果y = 3^(2x + 1),那么y' = (2 * ln(3)) * 3^(2x + 1)。

二、常用三角函数导数公式1. 正弦函数导数公式若y = sin(x),则y' = cos(x)。

2. 余弦函数导数公式若y = cos(x),则y' = -sin(x)。

§2.2 导数的运算法则与基本公式

§2.2 导数的运算法则与基本公式

§2.2 导数的运算法则与基本公式一、导数的和、差、积、商运算法则如果函数()u x 、()v x 在x 处都可导,则它们的和、差、积、商在x 处也可导;(1) [()()]()()u x v x u x v x '''±=±;(2) [()()]()()()()u x v x u x v x u x v x '''⋅=+;(3) 2()()()()()()[()]u x u x v x u x v x v x v x '''⎛⎫-= ⎪⎝⎭(()0)v x ≠;推广到多个函数情形:设有n 个函数1()u x 、2()u x 、…、()n u x 都可导,则:(1)1212[()()()]()()()n n u x u x u x u x u x u x ''''±±±=±±±(2)12121212[()()()]()()()()()()()()()n n n n u x u x u x u x u x u x u x u x u x u x u x u x ''''=+++(3)[()]()ku x ku x ''=(k 为常数)定理2.3 设函数1()x f y -=在某个开区间内单调可导,且1[()]0f y -'≠,则反函数()y f x =在对应区间内可导,且11()[()]f x f y -'='.证明:0001011()lim lim lim 11[()]lim x x x y y f x x xx y yx f y y∆→∆→∆→-∆→∆'===∆∆∆∆∆==∆'∆二、基本初等函数的求导公式1.常数的导数:()0c '= (c 为常数)证明:()f x c =00()()()limlim 0x x f x x f x f x xc c x∆→∆→+∆-'=∆-==∆2.幂函数的导数:1()n n x nx -'= (n 为常数)证明:()nf x x =,0()()lim nnx x x xf x x∆→+∆-'=∆110()lim nn n n nnn nx C x C x x C x xx-∆→+∆++∆-=∆ 112210lim[()]n n n n nnnx C xC xx C x ---∆→=+∆++∆ 1n nx -=例1 求4sin y x x =+的导数.解:4(sin )y x x ''=+4()(sin )x x ''=+.34cos x x =+.例2 求5cos y x x =的导数.解:5(cos )y x x ''=55()cos (cos )x x x x ''=+.455cos sin x x x x =-.例3 求2sin xy x =的导数.解:2sin ()xy x''=2222(sin )sin ()()x x x x x ''-=. 24cos 2sin x x x x x-=. 3cos 2sin x x x x-=.例4 求23313y x x=--的导数.解:2333y xx -=--233(3)y x x -''=--.233()()(3)x x -'''=--.134233x x --=--.例5 求232x y x -=的导数.解:312223232x y x x x--==- 3122(32)y x x -''=-.3122(3)(2)x x -''=-.31223()2()x x -''=-.312292x x -=+.例6 求21xy x=+的导数. 解:2()1xy x''=+2222()(1)(1)(1)x x x x x ''+-+=+. 22212(1)x x x x +-⋅=+. 2221(1)x x -=+.3.指数函数x y a =(0,1a a >≠)的导数:()ln x x a a a '=()x xe e '= 001lim lim x x x x y a y a x x∆∆→∆→∆-'==∆∆. 证明:(1)x x x x x y a a a a +∆∆∆=-=-令1xt a ∆=-,有log (1)a x t ∆=+ 当0x ∆→时,有0t →1001lim lim log (1)log (1)x x t t a a t t y a a t t →→'==++. 1011lim ln log log (1)t x x x t a a a a a a e t →===+.4.对数函数log a y x =(0,1a a >≠)的导数:1(log )ln a x x a '= 1(ln )x x'= 证明:log a y x =的反函数为y x a =(0,1a a >≠),由定理2.3可得111()ln ln y y y a a a x a'==='.例7 求33x xy x e =-+的导数. 解:3(3)x xy x e ''=-+3()(3)()x x x e '''=-+. 233ln3x xx e =-+.例8 求2x y x e =的导数. 解:2()x y xe ''= 22()()x x x e x e ''=+.22x x xe x e=+. (2)x xe x =+.例9 求ln x y x=的导数. 解:2ln (ln )ln ()x x x x x y x x''-⋅''== 122ln 1ln xx x x x x ⋅--==.例10 求22log y x x =的导数. 解:22(log )y x x ''= 2222()log (log )x x x x ''=+. 2212log ln 2x x x x =+. 22log ln 2x x x =+.5.三角函数的导数: 1.(sin )cos x x '=2.(cos )sin x x '=-3.221(tan )sec cos x x x '== 4.221(cot )csc sin x x x '=-=-5.(sec )sec tan x x x '=⋅6.(csc )csc cot x x x '=-⋅证明:1.(sin)cosx x'=2.(cos)sinx x'=-参考前面例题.3.sin(tan)()cosxxx''=2(sin)cos sin(cos)cosx x x xx''-=22222cos sin1seccos cosx xxx x+===.同理可证(请同学自己证明) 4.21(cot )csc sin x x x'=-=- 5.(sec )sec tan x x x '=⋅ 6.(csc )csc cot x x x '=-⋅例11 求sin cos y x x x =+的导数. 解:(sin cos )y x x x ''=+(sin )(cos )x x x ''=+. sin (sin )sin x x x x x ''=+-. sin cos sin x x x x =+-. cos x x =.6.反三角函数的导数: 1.21(sin )1arc x x '=-(11x -<<)2.21(cos )1arc x x '=--( 11x -<<) 3.21(tan )1arc x x'=+ 4.21(cot )1arc x x '=-+证明:sin y arc x =的反函数是sin x y =由定理2.3 1(sin )(sin )y arc x y ''==' (sin )cos ()22y y y ππ'=-<<. 而22cos 1sin 1y y x =-=- 所以21(sin )1arc x x '=-.其余反三角函数求导公式同理可证(请同学自己证明).例12 求2arctan 1x y x =+的导数. 解:22221(1)arctan 21(1)x x x x y x +-⋅+'=+ 2212arctan (1)x x x -=+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节求导法则及基本求导公式
1.导数的四则运算
若均为可导函数,则
,,.
2.复合函数求导法则
设函数在某一点有导数,而函数在对应点有导数,则复合函数在该点也有导数,并且它等于导数的乘积,

3.反函数求导法则
设函数在某一区间单调、连续,又在该区间内一点处导数存在且不为零,
则反函数在对应点处存在导数,且有
1.隐函数求导法则
设函数在点的某一邻域内具有连续偏导数,,
且,则存在着唯一一个函数,
它在点的某一邻域内单值连续,恒能满足方程=0,即
并且满足条件,在该领域内具有连续导数
2.基本求导公式
(1),;
(2),;
(3),;
(4),;,;
(5),;,;(6),;
(7),;
(8),;
(9),;
(10),;
(11),;
(12),;
(13),;
(14),;
(15),.。

相关文档
最新文档