热水冷却器的设计

合集下载

循环水冷却器设计

循环水冷却器设计

循环水冷却器设计循环水冷却器是一种常用的热交换设备,用于将过热的水或其他液体冷却至一定温度,以保持设备的正常运行温度。

它由水箱、循环泵、换热器和其他配管及控制装置组成。

设计循环水冷却器需要考虑多个因素,包括制冷负荷、温度要求、冷却介质、材料选择、循环水流量、泵的选择及系统布局等。

下面将详细介绍循环水冷却器的设计要点。

首先,设计循环水冷却器需要明确制冷负荷。

制冷负荷是指待冷却液体需要散热的总能量。

根据制冷负荷计算冷却器的面积和换热器的尺寸,以确保足够的散热面积满足散热需求。

其次,确定冷却介质和温度要求。

不同的工艺过程所需的冷却介质和温度要求不同,因此在设计循环水冷却器时需要明确这些参数。

冷却介质可以是水、油、气体等,每种介质都有不同的物性参数,包括热容量、导热系数等,这些参数将直接影响到冷却器的设计和工作效果。

温度要求是指待冷却液体的出口温度,必须确保循环水冷却器能够将待冷却液体冷却至所需的温度。

其三,选择合适的换热器材料。

换热器是循环水冷却器的核心部件,直接参与散热过程。

因此,换热器材料的选择非常重要。

一般来说,常用的换热器材料有不锈钢、钛合金、铜等。

根据冷却介质的特性和工艺要求,选择合适的材料以提供优秀的导热性能和耐腐蚀能力。

其四,确定循环水流量和泵的选择。

循环水流量是冷却器设计过程中的另一个重要参数。

通常根据制冷负荷和冷却介质的流速来确定合适的流量范围。

泵的选择应根据循环水流量和散热系统的阻力来进行,确保循环水能够稳定地流动并提供足够的冷却效果。

最后,设计循环水冷却器的系统布局。

系统布局是指循环水冷却器的部件安装和管道连接方式。

在设计过程中,应考虑到设备的布局及周围环境,确保各部件的正常运行和维护。

另外,还需要合理规划冷却器的进出口位置,以便更好地实现冷却效果。

综上所述,设计循环水冷却器需要从制冷负荷、温度要求、冷却介质、材料选择、循环水流量、泵的选择及系统布局等多个方面进行综合考虑。

正确合理地设计循环水冷却器将能够提供稳定有效的散热效果,确保设备运行在正常温度范围内。

热水冷却器的设计

热水冷却器的设计

化工原理课程设计热水冷却器的设计姓名:***学号:**********班级:化学工程与工艺112班一、设计题目: (4)二、设计目的: (4)三、设计任务及操作条件: (4)四、设计内容: (5)五、课程设计说明书的内容 (5)四、参考书目: (5)前言 (6)一、设计方案简介: (6)1.1换热器的选择: (6)一、方案简介 (7)二、方案设计 (8)1.确定设计方案 (8)2、确定物性数据 (9)3.初选换热器规格 (9)(2)冷却水用量 (9)5.工艺结构尺寸 (10)5.1管径和管内流速及管长 (10)5.2管程数和传热管数 (10)5.3平均传热温差校正及壳程数 (11)5.4传热管排列和分程方法 (11)5.5壳体内径 (11)5.6折流板 (12)5.7接管 (12)6换热器核算 (13)6.1热量核算 (13)6.2换热器内流体的压力降 (15)三、设计结果一览 (17)任务书一、设计题目:热水冷却器的设计二、设计目的:通过对热水冷却的列管式换热器设计,达到让学生了解该换热器的结构 特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

三、设计任务及操作条件 :1.处理量5105.2⨯吨/年热水2.设备型式列管换热器3.操作条件 :(1)热水:入口温度 80 ℃,出口温度 60 ℃(2)冷却介质:循环水,入口温度 25 ℃,出口温度 35 ℃(3)允许压降:≦105Pa(4)水在定性温度70℃下的物性数据:3/7.995m Kg h =ρ S Pa h ⋅⨯=-410061.4μ)/(187.4C Kg KJ C ph ⋅=)/(6676.0C m W h ︒⋅=λ(5)水在定性温度70℃下的物性数据:)/(6176.0)/(147.410007.8/7.99543C m W C Kg KJ C SPa m Kg c pc c c ︒⋅=︒⋅=⋅⨯==-λμρ(4)每年按300天计,每天24小时连续运行。

循环水冷却器.

循环水冷却器.

化工原理课程设计设计题目: 循环水冷却器设计设计时间:2013.6.23-2013.7.1设计班级:食安班设计者:学号: 2010指导教师:设计成绩:目录1 设计任务书 (3)2 设计摘要 (4)3 主要物性参数表 (5)3.1循环水 (5)3.2冷却水 (5)4 估算传热面积 (5)4.1 换热器的热负荷 (5)4.2 平均传热温差 (5)4.3 冷却水用量 (6)4.4 传热面积 (6)5 工程结构尺寸 (6)5.1 管径和管程流速 (4)5.3 平均传热温差校正及壳程数 (5)5.4传热管排列和分程方法 (5)5.5 壳体内径 (5)5.6 折流板 (6)5.7 附件 (8)5.8 接管 (8)6 换热器的核算 (9)6.1传热能力核算 (9)6.1.1管城传热膜系数 (9)6.1.2污垢热阻和管壁热阻 (9)6.1.3壳程对流传热膜系数 (10)6.1.4总传热系数K (10)6.1.5传热面积 (11)6.2换热器内流动的流动阻力 (11)6.2.1管程流动阻力 (11)6.2.2壳程阻力 (12)7换热器主要结构尺寸和计算结果表 (12)8 设备参数计算 (14)8.1壳体壁厚 (14)8.2接管法兰 (14)8.3设备法兰 (14)8.4封头管箱 (14)8.5设备法兰垫片 (14)8.6管法兰用垫片 (14)8.7管板 (15)8.8支垫 (15)8.9设备参数总表 (15)9 学习心得 (16)10参考文献 (17)11重要符号说明 (18)化工原理课程设计任务书1.设计任务书设计题目:循环水冷却器设计设计条件:1.设备处理量:74T/h。

2.循环水:入口:55℃,出口:40℃。

3.冷却水:入口:20℃,出口:30℃。

4.常压冷却,热损失:5%。

5.两侧污垢热阻0.00017m2·℃/w。

6.初设K=900w/m2·℃。

设计要求:1. 设计满足以上条件的换热器并写出设计说明书。

化工原理课程设计-列管式换热器(热水冷却器)

化工原理课程设计-列管式换热器(热水冷却器)

化工原理课程设计-列管式换热器(热水冷却器)化工原理课程设计任务书课题名称列管式换热器(热水冷却器)课题性质工程设计类班级应用化学(一)班学生姓名 XXXXXX学号 20090810030117指导教师 XXXXXX目录目录 ------------------------------------------------------ 2 任务书---------------------------------------------------- 4一(设计题目 ------------------------------------------ 4二(设计的目的 ---------------------------------------- 4三(设计任务及操作条件 -------------------------------- 4四(设计内容 ------------------------------------------ 5 符号说明 -------------------------------------------------- 5 确定设计方案---------------------------------------------- 61.选择换热器类的 -------------------------------------- 62.流程的安排 ------------------------------------------ 6 确定物性数据---------------------------------------------- 6估算换热面积 ------------------------------------------ 81. 热流量 ----------------------------------------- 8 工艺结构尺寸---------------------------------------------- 91. 管径和管内流速 ------------------------------------ 92. 管程数和传热管数 ---------------------------------- 93.平均传热温差校正及壳程数 ---------------------------- 94.传热管排列和分程方法 ------------------------------- 105.壳体内径 ------------------------------------------- 106.折流板---------------------------------------------- 117.其它附件 ------------------------------------------- 118.接管------------------------------------------------ 11 换热器核算----------------------------------------------- 121.热流量核算 ----------------------------------------- 12(1)壳程表面传热系数 ----------------------------- 12(2)关内表面传热系数 ------------------------------- 13(3)污垢热阻和管壁热阻 --------------------------- 13(4)传热系数Kc ------------------------------------- 14(5) 传热面积裕度 -------------------------------- 142.壁温核算 ------------------------------------------- 15换热器内流体的流动阻力 ------------------------------- 16(1)管程流体阻力 --------------------------------- 16(2)壳程阻力 ------------------------------------- 17 换热器主要结构尺寸和计算结果表 -------------------------- 18 参考文献 ------------------------------------------------- 19 设计结果评价--------------------------------------------- 20 总结 ----------------------------------------------------- 22任务书一(设计题目热水冷却器的设计二(设计的目的通过对热水冷却器的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择合适的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

冷却器设计方案

冷却器设计方案

冷却器设计方案哎呀,说起冷却器设计方案,这可真是个有趣又有点复杂的事儿。

我先给您讲讲我之前遇到的一个情况。

有一次,我去一家工厂参观,正好看到他们在为一个新的生产设备安装冷却器。

那场面,真是热火朝天。

工人们忙前忙后,技术人员拿着图纸指指点点。

我凑过去一看,发现他们正在为冷却器的安装位置争论不休。

咱先来说说冷却器设计的基本原理。

这就好比大热天您想让自己凉快下来,得有个有效的办法不是?冷却器就是要把热量带走,让设备保持在合适的温度。

冷却器的类型那也是五花八门。

比如说风冷式冷却器,就像是吹风扇,靠空气流动来散热。

还有水冷式冷却器,这就好比您热了泡在水里,水把热量带走。

风冷式冷却器呢,结构相对简单,维护也容易,但是散热效果可能没有水冷式那么厉害。

水冷式冷却器散热效果好,可系统复杂点,还得注意防止漏水啥的。

在设计冷却器的时候,得考虑好多因素。

首先就是热负荷,这就好比您知道自己有多热,才能决定用多大的风扇或者多少水来降温。

然后是冷却介质的选择,是用空气还是水,或者其他特殊的介质,这得根据具体情况来。

还有传热系数,这可是个关键指标,它决定了冷却器的效率。

再说冷却器的结构设计。

您得考虑管子的排列方式,是顺排还是叉排?这可影响着空气或者水流的流动,进而影响散热效果。

还有管子的直径和长度,太粗太长不行,太细太短也不行,得恰到好处。

另外,散热片的形状和间距也很重要,就像窗户的格子,间距合适才能通风良好。

还有啊,密封问题也不能忽视。

要是密封不好,漏风漏水,那这冷却器可就没法好好工作了。

而且,材料的选择也得讲究。

要能耐高温、耐腐蚀,还得有良好的导热性能。

回到我开头说的那个工厂,最后他们经过一番讨论,综合考虑了各种因素,终于确定了一个满意的设计方案。

看着他们完成安装,调试成功,设备正常运转,那感觉真不错。

总之,冷却器设计方案可不是一拍脑袋就能决定的,得综合考虑各种因素,精心设计,才能让冷却器发挥出最佳效果,保证设备的正常运行。

冷却器设计方案-18页精选文档

冷却器设计方案-18页精选文档
• t2= t1 +Q/(C水*m)
=30+2.13*106/(4.186*103*30÷3.6)=30+60 =90℃
4.计算出冷却管的温差
• tm=[(T1 - t2)-( T2 - t1)]/㏑[(T1 - t2)÷(T2 -
t1)]=24.85℃
5.计算冷却器的面积
A=Q/(K*Δtm)=2.13*106/(400*24.85) 0℃降至 80℃需要被冷却水带走的热量:
• Q=C*M*(T1-T2)=3.65*100*1.05*103* (100-80)/3.6=2.13*106 W
2.计算水的流量
• W=¼πvd2*3600=¼*3.14*1.5*0.082*36 00≈30m3/h
3.计算当前条件下物料从100℃降至 80℃所需要的出水温度
首先计算所需要的冷却水流量
• W=Q/[(t2 - t1)* C水 ÷3.6]=2.13*106 /[30*4.186*103 ÷3.6] ≈61m3/h
第二步算出达到61m3/h所需要的冷 却水管径
• D2=W/(¼πv*3600)= 2.13*106 /(0.785*1.5*3600) ≈0.0144
计算冷却器冷却面积
• 水的比热容为4.18kj/kg • 玉米的比热容为2.01kj/kg • 配料罐投粉量为15t,补水定容至60m³ • 计算出玉米浆的比热容为 • C=(C水 *45*103 *t + C玉米 *15*103 *t)/
(60*103 *t)=3.64kj/kg • 玉米浆中玉米含量为25%,比重为1.05
• 在考虑到节能降耗时,由于冷却水要回收 至投料利用,所以冷却器出水温度应该保 持在60℃以上,而加大冷却器的冷却面积 可以提高冷却器出水温度,提高热能的利 用,以此降低蒸汽的消耗。

热水冷却器课程设计

热水冷却器课程设计

南京工业大学《材料工程原理B》课程设计设计题目:热水冷却器的设计专业:班级:高材学号:姓名:日期:指导教师:设计成绩:日期:设计任务书(一)设计题目热水冷却器的设计(二)设计任务及操作条件1.处理能力40.5 t/a热水102.设备型式锯齿形板式换热器3.操作条件(1)热水:入口温度80℃,出口温度60℃(2)冷却介质:循环水,入口温度32℃,出口温度 40℃(3)允许压强降:不大于5×105Pa(4)每年按330天计,每天24小时连续运行4.建厂地址天津地区(三)设计要求选择适宜的锯齿形式板式换热器并进行核算。

目录1 概述1.1 板式换热器的基本结构 (4)1.2板式换热器的优缺点 (6)1.3板式换热器与管式换热器的比较 (7)1.4板式换热器的实际应用 (8)2 设计方案简介2.1板式换热器的选型 (9)2.2板式换热器的优化设计方向 (10)2.3 工艺流程简图 (13)3 热水冷却器的设计工艺计算3.1符号说明 (14)3.2定性温度下的物性数据 (14)3.3计算热负荷 . (15)3.4计算平均温度差 (15)3.5初估换热面积及初选板型 (15)3.6核算总传热系数K (16)3.7估算传热面积 (18)3.8计算压力降 (18)4 辅助设备的选择与计算4.1泵的选择 (19)5 设计结果概要 (21)附录工艺流程图 (23)主体设备图 (24)参考资料 (25)设计小结 (26)1 概述板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。

各种板片之间形成薄矩形通道,通过半片进行热量交换。

板式换热器是液—液、液—汽进行热交换的理想设备。

1.1 板式换热器的基本结构1.1.1整体结构1.1.2 组装型式板式换热器的流程是根据实际操作的需要设计和选用的,而流程的选用和设计是根据板式换热器的传热方程和流体阻力进行计算的。

图为三种典型的组装型式。

串联流程并联流程混合流程板式换热器组装型式的表示方法为: 22112211b n b n a m a m ++ 式中:1m ,2m ,1n ,2n 表示程数;1a ,2a ,1b ,2b 表示每程流道数;原则上规定分子上为热流体流程,分母上为冷流体流程。

冷却器设计方案

冷却器设计方案

冷却器设计方案在现代工业生产中,冷却器是一种重要的设备,用于将高温的物体或介质冷却至所需的温度范围内。

本文将讨论冷却器的设计方案,包括冷却原理、设计要素和优化方法。

一、冷却原理冷却器的工作原理基于热传导和对流传热。

当高温物体或介质与冷却器接触时,传热会通过物体与冷却介质之间的热传导,以及冷却介质与周围环境的对流传热来实现。

二、设计要素1. 散热面积:合理确定冷却器的散热面积是设计的重要一环。

散热面积越大,冷却效果越好。

因此,在设计中应尽量增大散热面积,可以通过增加冷却器的长度、宽度或增加散热片的数量来实现。

2. 冷却介质选择:不同的冷却介质对于冷却效果有着重要的影响。

一般情况下,水具有良好的导热性和对流性能,是较常用的冷却介质。

但在特殊情况下,也可以选择其他介质,如油、空气等,根据具体要求进行选择。

3. 冷却速度:冷却速度是指冷却器在单位时间内冷却物体或介质的能力。

为了提高冷却速度,可以采用增设风机、增加水流速度等方法,增强对流传热效果。

4. 材料选择:冷却器所使用的材料直接影响到其散热效果和使用寿命。

一般而言,具有良好导热性的金属材料,如铜、铝等,可以更好地传导热量,提高散热效果。

三、优化方法1. 流动分析:通过数值模拟或实验方法,进行流动分析,优化冷却器的结构和设计。

在不同工况下,根据流体的流动情况和热传导特性,进行优化,以提高冷却效果。

2. 散热片设计:合理设计散热片的形状、间距和数量,以增大散热面积,提高传热效率。

同时,对散热片进行表面处理,增强其导热性能。

3. 热交换器应用:冷却器可以与热交换器相结合,通过增加热交换面积,提高冷却效果。

在选择热交换器时,应考虑其传热系数、压降和占用空间等因素。

4. 温度控制:根据冷却的要求,设计合适的温度控制系统,能够精确控制冷却介质的温度,提高冷却器的工作效率。

结论冷却器设计方案的选择和优化对于工业生产中的热管理至关重要。

通过合理确定散热面积、冷却介质选择、冷却速度和材料选择,可以提高冷却器的效果和寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东交通大学课程设计说明书设计题目:热水冷却器的设计学院:基础科学学院专业班级:应用化学一班学生姓名:***学号:211指导教师:周枚花老师完成日期:2013.6.28目录任务书 (3)一、设计题目: (3)二、设计目的: (3)三、设计任务及操作条件 (3)四、设计内容 (3)五、课程设计说明书的内容 (4)六、主要参考书 (4)七、设计时间 (4)前言 (5)一、设计方案简介 (6)1.1换热器的选择 (6)1.2设计概述 (7)1.3设计方案 (7)1.4管程安排 (8)二、确定物性数据 (8)三、主要工艺参数计算 (9)3.1热负荷 (9)3.2平均传热温差 (9)3.3冷却水用量 (9)3.4初算传热面积 (9)3.5工艺结构尺寸 (10)3.5.1管径和管内流速 (10)3.5.3平均传热温差校正及壳程数 (10)3.5.4传热管排列和分程方法 (11)3.5.5壳体直径 (11)3.5.6折流板 (11)3.5.7接管 (12)四、压降核算 (12)4.1传热面积校核 (12)4.1.1管程传热膜系数 (12)4.1.2壳程传热膜系数 (13)4.1.3污垢热阻和管壁热阻 (14)4.1.4总传热系数K (14)4.1.5传热面积校核 (14)4.2换热器内压降的核算 (15)4.2.1管程阻力 (15)4.2.2壳程阻力 (16)五、主要结构尺寸和计算结果 (17)六、心得体会 (18)七、参考文献 (18)八、附图(工艺流程、主体设备工艺条件图) (18)任务书一、设计题目:热水冷却器的设计二、设计目的:通过对热水冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

三、设计任务及操作条件1.热水2.设备型式列管换热器3.操作条件(1)热水:入口温度80 ℃,出口温度55 ℃(2)冷却介质:循环水,入口温度25 ℃,出口温度37 ℃(3(4)每年按330天计,每天24小时连续运行。

4.建厂地址:江西地区四、设计内容(1)设计计算列管换热器的热负荷、传热面积、换热管、壳体、管板、封头、隔板及接管等。

)(2)绘制列管式换热器的装配图。

(3)编写课程设计说明书。

五、课程设计说明书的内容设计说明书中应包括所有论述、原始数据、计算、表格等,编排顺序如下:(1)标题页;(2)设计任务书;(3)目录;(4)设计方案1.选择换热器的类型2.管程安排(5)确定物性数据(6)主要工艺参数计算(热负荷,平均温差、总换热系数、换热面积等);(7)压降计算;(8)设计结果概要或设计一览表(9)附图(工艺流程简图、主体设备工艺条件图);(10)参考文献;六、主要参考书1.钱颂文主编,《换热器设计手册》,化学工业出版社,2002.2.贾绍义,柴诚敬等,《化工原理课程设计》,天津大学出版社,1994.3.匡国柱,史启才等《化工单元过程及设备课程设计》,化学工业出版社,2002.4.王志魁主编,《化工原理》,化学工业出版社,2004.5.姚玉英主编,《化工原理》天津大学出版社,1992.6.陈恒敏,丛德兹等《化工原理》(上、下册)(第二版),北京:化学工业出版社,2000.7.何潮洪等编,《化工原理》,科学出版社,2001年。

七、设计时间一周前言换热器是化学,石油化学及石油炼制工业以及其它一些行业中广泛使用的热量交换设备。

它不仅可以单独作为加热器,冷凝器使用而且是一些化工单元操作的重要附属设备。

因此在化工生产中占有重要的地位。

在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

主要的换热器有:1.固定管板式换热器:2.浮头式换热器:3.U型管式换热器:4. 填料函式换热器:这次的化工原理课程设计,热水冷却器的设计。

通过对热水冷却的列管式换热器设计,了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

通过这次课程设计,养成科学探索精神,细心钻研,自己动手设计,理论联系实际,并进一步熟练相关的软件,Microsoft office,ChemBioOffice,Origin85,AutoCAD2008等。

一、设计方案简介1.1换热器的选择列管式换热器是目前化工上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:1.固定管板式换热器:这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。

一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

2.浮头式换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

3.U型管式换热器:U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。

管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。

其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

优点是结构简单,质量轻,适用于高温高压条件。

4. 填料函式换热器:这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

热流体进口温度80℃,出口温度55℃;冷流体进口温度25℃,出口温度37℃。

换热器用循环冷却水(自来水)冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定用浮头式换热器。

1.2设计概述根据估算数据,先选取一比估算面积稍大的换热器,然后进行换热器换热面积的校核及管程、壳程的阻力压降,逐步调节折流挡板间距等措施,最终使所选取的换热器符合要求,同时要认真总结经验,为以后做准备。

本设计是在给定部分任务和条件下,估算所需换热器的换热面积,然后选择一标准列管换热器,再对换热器进行验证,符合要求者合格。

估算K值大小,应首先估计对流传热系数较小一侧的对流传热系数。

设计换热设备既要考虑设备费用,也就是既要使阻力降不能太高,也不能使传热面积较大,使管程的冷却水有一个合适的流速。

设计中应注意的几点:恰当估算换热面积;正确选取换热器的型号;认真校核换热面积及阻力压降。

1.3设计方案1)估算所需要的换热面积,选取一个合适的换热器。

2)校核传热面积及管程、壳程的压力降。

3) 结果汇总及评述。

4) 符号说明、参考文献及附图。

1.4管程安排在列管式换热器设计中,冷、热流的流程,进行合理安排,一般应考以下原则。

①易结垢流体应走易于清洗的侧.对于固定管板式、浮头式换热器,一般应使易结垢流体流经管程,而对于l一I钾换热器,易结垢流体应走壳程、③有时在设计上需要提高流体的速度,以提高其表面传热系数,在这种情况下,应将需要提高流速的流体放在管程。

这是因为管程流通截面积一般较小,且易于采用多用管程结构以提高流速.③其有腐蚀性的流体应走管程,这样可以节约耐腐蚀材料用降低换热器成本:,④压力高的流体应走管程。

这是因为管子直径小,承压能力强,能够避免采用耐压的壳体和密封措施。

⑤具有饱和蒸汽冷凝的换热器,应使饱和蒸汽走壳程,便于排出冷凝液。

,⑥粘度大的流体应走壳程,因为壳程内的流体在拆流板的作用下,流通截面和方向都不断变化,在较低的雷诺数下就可达揣流状态。

应该说明的是,上述要求常常不能同时满足,在设计中应考虑其中的主要问题,首先满足其中较为重要的要求。

由于当液体温度升高时,粘度随着减小,故有循环水走壳程,因为壳程内的流体在拆流板的作用下,流通截面和方向都不断变化,在较低的雷诺数下就可达揣流状态。

在两流体的粘度力看,应该使热水走管程,循环冷却水走壳程,但是由于循环冷却水易结垢,若其流速太低,将会加快污垢的增长速率,使换热器热流量下降,所以,从总体考虑,应该使热水走壳程,循环冷却水走管程。

二、确定物性数据定性温度:壳程热水的定性温度为管程循环冷却水的定性温度为已知循环水在31℃下的物性参数为:密黏度Cp=4.174KJ/kg.℃,热导率λ又知67.5℃热水下的物性参数密度,黏度Cp=4.187KJ/kg.三、主要工艺参数计算 3.1热负荷4.4h =m h m h q C T =∆=161.38kW=3.2平均传热温差3.3冷却水用量3.4初算传热面积由于壳程热水的压力较高,故可选取较大的K 值,假定总传热系数)T Q 161.38700m K t =∆3.5工艺结构尺寸3.5.1管径和管内流速×2.5mm 碳钢管,取管内流速为1.3m/s 。

3.5.2管程数和传热管数根据传热管内径和流速确定单程传热管数:按单程管计算,所需要的传热管的长度为:管程数:按单程管设计传热管太长,采用多管程结构,传热管总根数:3.5.3平均传热温差校正及壳程数平均温差校正系数:由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。

3.5.4传热管排列和分程方法采用正三角形排列,取管心距025.1d P t =,则()mm P t 3225.312525.1≈=⨯=隔板中心到离其最近的一排管中心距离为:22623262=+=+=t p Z ()mm 各程相邻管心距为2Z=44mm 。

相关文档
最新文档