难溶金属氢氧化物最佳沉淀条件
[理学]8沉淀-溶解平衡
![[理学]8沉淀-溶解平衡](https://img.taocdn.com/s3/m/4e0de1711fd9ad51f01dc281e53a580216fc5003.png)
第六章:沉淀-溶解平衡主要内容:溶解度和溶度积沉淀的生成和溶解沉淀的溶解重点难点:溶度积的概念。
系统达沉淀-溶解平衡时,存在以下平衡,溶度积:溶解度(S)与溶度积之间的关系和有关计算。
如:溶度积规则。
J > ,沉淀从溶液中析出,J = ,溶液为饱和溶液,J < ,无沉淀析出,若原来有沉淀,则沉淀溶解。
沉淀溶解平衡的移动。
通过改变溶液的pH值、生成配合物、转化为另一种沉淀的方法,都可以用来改变离子的浓度,使沉淀溶解平衡发生移动。
熟悉沉淀-溶解平衡移动问题关键是解决与沉淀反应油瓜不能的多重平衡问题,吃透几个典型例子,就可以作到举一反三,正确处理好各物种间的数量关系,得出合理的结果。
教学目的:熟悉难溶电解质的沉淀溶解平衡,掌握标准溶度积常数及其与溶解度的关系和有关计算。
掌握溶度积规则,能用溶度积规则判断沉淀的生成和溶解。
熟悉pH 值对难溶金属氢氧化物和金属硫化物沉淀溶解平衡的影响及有关计算。
熟悉沉淀的配位溶解 平衡的简单计算。
了解分步沉淀和两种沉淀间的转化及有关计算。
§6.2 沉淀的生成和溶解6.2.1溶度积规则对于难溶电解质的多相离子平衡 物质:反应商 J = { c (A m +) }n { c (B n -) }m沉淀-溶解平衡的反应商判据,即溶度积规则: ● ,平衡向左移动,沉淀析出;● ,处于平衡状态,饱和溶液; ●,平衡向右移动,无沉淀析出,若原来有沉淀存在,则沉淀溶解。
例6-3 25℃下,在1.00L ,,0.030mol·L -1 AgNO 3 溶液中加入0.50L 0.060 mol·L -1的 CaCl 2 溶液,能否生成 AgCl 沉淀,生成 AgCl 的质量是多少?最后溶液中c (Ag +)是多少?解:考虑混合稀释,所以有AgCl沉淀析出。
因为c0(Cl-) >c0(Ag+),生成 AgCl 沉淀时,Cl-是过量的。
设平衡时 c (Ag+) = x mol·L-1开始浓度/(mol·L-1) 0.020 0.040变化浓度/(mol·L-1) 0.020-x0.020-x平衡浓度/(mol·L-1) x0.040-(0.020-x)x [ 0.040 - ( 0.020-x ) ] = 1.80×10-10x = 9.0 ×10-9c (Ag+) = 9.0 ×10-9mol·L-1M r (AgCl ) = 143.3,析出AgCl 的质量:m ( AgCl ) = 0.020 mol·L-1× 1.50 L ×143.3 g· mol-1 = 4.3 g6.2.2 同离子效应与盐效应1.同离子效应在难溶电解质饱和溶液中,加入含有相同离子的易溶强电解质,而使难溶电解质的溶解度降低的作用称为同离子效应。
水滑石 两步沉淀法

水滑石两步沉淀法
水滑石(Layered Double Hydroxide, LDH)是一种层状双金属氢氧化物,由两种或两种以上金属离子组成,具有层状晶体结构。
在水滑石的制备过程中,有一种常用的方法是两步沉淀法。
两步沉淀法的具体步骤如下:
1. 第一步:制备金属氢氧化物沉淀
在这一步中,首先将金属盐(如镁盐和铝盐)溶解在水中,形成金属离子溶液。
然后,通过加入碱性物质(如氢氧化钠或氢氧化铵)使溶液中的金属离子与氢氧根离子结合,生成金属氢氧化物沉淀。
这一步可以通过控制溶液的pH值和反应时间来调节沉淀的量和质量。
2. 第二步:沉淀物的洗涤和干燥
将第一步生成的金属氢氧化物沉淀物进行洗涤,以去除杂质和残余的金属离子。
洗涤后的沉淀物可以通过真空干燥、冷冻干燥等方法进行干燥,得到纯净的水滑石。
两步沉淀法是一种简单、有效的水滑石制备方法。
通过调整沉淀条件,可以实现对水滑石的晶体结构、形貌和组成进行调控,从而满足不同应用领域的需求。
此外,这种方法具有原料成本低、环保无污染等优点。
需要注意的是,两步沉淀法并非唯一的水滑石制备方法。
还有其他方法,如共沉淀法、水热法、溶胶-凝胶法等。
不同方法制备的水滑石在性能和应用上可能存在差异,可以根据实际需求选择合适的制备方法。
化学八大沉淀及颜色

化学八大沉淀及颜色化学中,沉淀是指溶液中的物质在一定条件下失去溶解性,出现颗粒状固体物质的过程。
八大沉淀是指八种常见的沉淀反应,分别是氢氧化物沉淀、碳酸盐沉淀、氯化物沉淀、硫酸盐沉淀、磷酸盐沉淀、硫化物沉淀、氧化物沉淀和银盐沉淀。
这些沉淀的形成不仅有着学术上的作用,而且在日常生活中也有着非常广泛的应用。
首先,氢氧化物沉淀是指在酸性或弱酸性溶液中,加入氢氧化物产生的白色或棕色沉淀。
氢氧化物沉淀的反应常用于净化废水中的镉、铬等重金属离子。
其次,碳酸盐沉淀是指在水溶液中,加入碳酸盐产生的不溶性沉淀。
碳酸盐沉淀的反应可用于检测水中钙离子、镁离子等。
第三,氯化物沉淀是指在水溶液中,加入银离子或汞离子等产生的沉淀。
氯化物沉淀的反应可用于检测水中氯离子。
第四,硫酸盐沉淀是指在水溶液中,加入硫酸盐产生的沉淀。
硫酸盐沉淀的反应可用于检测水中钡离子、铅离子等。
第五,磷酸盐沉淀是指在水溶液中,加入磷酸盐产生的沉淀。
磷酸盐沉淀的反应可用于检测水中磷酸盐离子。
第六,硫化物沉淀是指在水溶液中,加入硫化物产生的沉淀。
硫化物沉淀的反应可用于检测水中汞离子、铜离子等。
第七,氧化物沉淀是指在水溶液中,加入氧化物产生的沉淀。
氧化物沉淀的反应可用于检测水中铁离子、锰离子等。
第八,银盐沉淀是指在水溶液中,加入银离子产生的沉淀。
银盐沉淀的反应可用于检测水中氯离子、溶解的无机物等。
总的来说,八大沉淀是化学中非常重要的基础实验,也是相关领域实验研究的基础。
同学们在学习实验操作时,一定要掌握好每一种沉淀的颜色、形态、反应条件等,这样才能够在实验操作中得心应手、安全高效。
化学沉淀法

溶度积常数LMmNn的影响因素: 1 )同名离子效应-当沉淀溶解平衡后,如果向溶液中加入含 有某一离子的试剂,则沉淀溶解度减少向沉淀方向移动→ 2)盐效应-在有强电解质存在状况下,溶解度随强电解质浓度 的增大而增加,反应向溶解方向转移←。 4)络合效应-若溶液中存在可能与离子生成可溶性络合物的络 合剂,则反应向相反方向进行,沉淀溶解,甚至不发生沉淀。
注意:加热温度要注意控制,温度过高,氧化反应过快, 会使Fe(Ⅱ)不足而Fe(Ⅲ)过量。 反应温度60~80°C ,时间20min ,比较合适。 加热充氧的方式有二: (1)一种是对全部废水加热充氧; (2)另一种是先充氧,然后将组成调整好了的氢氧化物沉 淀分离出来,再对沉淀物加热。
(4)固液分离 沉降过滤、浮上分离、离心分离和磁力分离。 由于铁氧体的比重较大(4.4~5.3),采用沉降过滤和 离心分离都能获得较好的分离效果。 (5)沉渣处理
LMmNn=[Mn+]m•[Nm-]n=k•[MmNn]=常数
根据溶度积原理,可以判断溶液中是否有沉淀产生:
A 、离子积[Mn+]m•[Nm-]n <
B 、离子积[Mn+]m•[Nm-]n = C 、离子积[Mn+]m•[Nm-]n >
LMmNn时,
LMmNn时, LMmNn时,
Байду номын сангаас
溶液未饱和,全溶,无沉淀。
代入上式
[ M n ]
LM (OH ) n ( KH 2O ) n [H ]
将上式取对数
lg[ M n ] lg L n lg KH 2O n lg[ H ] PL nPKH 2O nPH x nPH
金属离子氢氧化物沉淀完全时的ph值

金属离子氢氧化物沉淀完全时的ph值
镁离子在ph值大于12以上的时候,能全部沉淀完全成为氢氧化物,所以用edta测钙离子时,溶液的ph要控制在12以上。
氢氧化镁的溶度积为2.06×10^-13,如以10^-4 mol/l 作为沉淀完全的标志,则氢氧根浓度为4.54×10^-5,此时ph=9.66。
ph = 7,镁离子最小浓度 20.6mol/l,也就是约50克每再升,ph=6.5的时候就更高了。
5克每再升的话须要ph=8,1克每再升须要ph=8.4。
氢氧化物具有碱的特性。
能与酸生成盐和水。
可溶性氢氧化物与可溶的盐进行复分解反应。
难溶于水或微溶于水的氢氧化物受热分解为相应的氧化物和水。
一般碱金属氢氧化物强热或灼热分解。
活性较弱的金属氢氧化物微微加热即分解,如氢氧化铁。
化学沉淀法

(1)配料反应 为了形成铁氧体,通常要有足量的Fe2+和Fe3+。通常要额 外补加硫酸亚铁和氯花亚铁等。
投加二价铁离子的作用有三: 1)补充Fe2+; 2)通过氧化,补充Fe3+; 3)如废水中有六价铬,则Fe2+能将其还原为Cr3+,作为形成
废水中其它金属氢氧化物的反应大致相同,二价金属离子 占据部分Fe(Ⅱ)的位置,三价金属离子占据部分Fe( Ⅲ)的 位置,从而使其它金属离子均匀地混杂到铁氧体晶格中去, 形成特性各异的铁氧体。
例x)O如3,。Cr2+离子存在时形成铬铁氧体FeO(Fex+xCr1—
注意:加热温度要注意控制,温度过高,氧化反应过快, 会使Fe(Ⅱ)不足而Fe(Ⅲ)过量。
mg/L。
三、 铁氧体沉淀法
1 铁氧体(Ferrite)概述
物理性质----是指一类具有一定晶体结构的复合氧化物, 它具有高的导磁率和高的电阻率(其电阻率比铜大 1013~1014倍),是一种重要的磁性介质。铁氧体不溶 于酸、碱、盐溶液,也不溶于水。
铁氧体沉淀法
铁氧体的组成----尖晶石型铁氧体化学组成BO•A2O3。
3)酸效应-溶液的PH值可影响沉淀物的溶解度,称为酸效应。
4)络合效应-若溶液中存在可能与离子生成可溶性络合物的络 合剂,则反应向相反方向进行,沉淀溶解,甚至不发生沉淀。
应用:如果污水中含有大量的Mn+离子,要降低[浓M n度 ]m,[N可m向]n 污 水中投入化学物质,提高污水中Nm-浓度,使离子积大于溶度积L, 结果MmNn从污水中沉淀折出,降低 Mm+浓度。
化学沉淀法

Ph.D. Dissertation
7/27/2013
Ph.D. Dissertation
7/27/2013处理残渣的方法源自 部分沉淀渣泥返回处理流程等。(葫芦
岛Zn厂废水) 固化沉淀渣,如制砖、水泥等。 充填。(干尾砂制浆) 湿法处理沉淀渣以回收有用金属。(铜 镍)
Ph.D. Dissertation
7/27/2013
硫化物沉淀法
向废液中加入硫化氢、硫酸铵或碱金属的 硫化物,与处理物质反应生成难溶硫化物沉淀, 已达到分离净化的目的。
氢氧化物:M(OH)n == Mn+ + OHLM(OH)n = [Mn+]•[OH]n
Ph.D. Dissertation
7/27/2013
同时水的离子积: Kw [ H ][OH _ ] 10 14 得: M n ] 14 n npH lg LM (OH ) n lg[ 1 LM (OH ) n pH 14 lg n [M n ]
不足:不能单独回收有用金属,处理成本高,硫酸盐含 量高。
Ph.D. Dissertation
7/27/2013
结束语
化学沉淀法是一种传统的水处理方法,具有
技术成熟、投资少、处理成木低、自动化程度 高等诸多优点,在国内外得到广泛应用。 目前,如何既满足废水处理的需要,又实现废 水中重金属回收和处理出水资源化的技术,是 化学沉淀法处理含重金属废水研究的一个重要 方向。 由于含重金属废水产生的过程不同,废水中重 金属离子存在的状态与价态各异,对于不同的 含重金属废水,应采取不同的废水处理工艺或 工艺组合,以强化废水处理的效果。
催化剂制备原理-沉淀法

速
率
快,易产生错位和晶格缺陷,但 也易包藏杂质、晶粒较小 沉淀剂应在搅拌下均匀缓慢加 入,以免局部过浓
非晶形沉淀应在较浓溶液中进
溶液过饱和度
行,沉淀剂应在搅拌下迅速加 入
生成速率或长大速率
➢ 温度
晶
晶核生成速率
核
长
大
速
率
晶体颗粒大小
温度
结论: 晶核生成速率、长大速率存 在极大值〔晶核生成速率最 大时的温度比晶核长大速率 最大时的温度低得多〕 低温有利于晶核生成,不利于 晶核长大,一般得到细小颗粒 晶形沉淀应在较热溶液中进 行,并且热溶液中沉淀吸附杂 质少、沉淀时间短〔一般7080 oC〕
导向剂
• 配位〔共〕沉淀法
先在金属盐溶液中加入配位剂,形成金属配位物溶液,然后与沉淀剂一起并 流到沉淀槽中进行沉淀.由于配位剂的加入,控制金属离子的浓度,使得沉 淀物的粒径分布均匀
• 沉淀的后处理过程
➢ 老化 ➢ 过滤 ➢ 洗涤 ➢ 干燥 ➢ 焙烧 ➢ 成型 ➢ 活化
小结:
晶形沉淀形成条件: 沉淀应在稀溶液中进行 沉淀剂应在搅拌下均匀缓慢加入 较热溶液中进行 老化 非晶形沉淀形成条件: 沉淀应在较浓溶液中进行 沉淀剂应在搅拌下迅速加入 沉淀后,加入较大量热水稀释〔减少杂质〕,
〔防止形成结构或组成不均匀的沉淀〕
Ni(NO3)2 + HNO3溶液 = 1.1
NaNO3溶液 = 1.2
Na2SiO3溶液 = 1.3
Ni/SiO2制备 〔苯选择加氢催化剂〕
形成均匀的水溶胶或胶冻,再经分离、 洗涤、干燥、焙烧、还原即得催化剂
• 导晶沉淀法
借助晶化导向剂〔晶种〕引导非晶型沉淀转化为晶型沉淀的快速有效 方法 — 预加少量晶种引导结晶快速完整形成 例:制备高硅钠型分子筛〔丝光沸石、X型、Y型分子筛〕