电化学反应动力学Butler-Volmer-模型.
反应工程公式总结

反应速率为:
������������
=
−
1 ������
������������������ ������������
;������������
=
−1
������
������������������ ������������
;������������
=
1 ������
������������������ ������������
因此 tafel方程只适用于强极化范围。
《反应工程》学习总结
参考资料: 《反应工程》第二版 李绍芬
主要学习:
1.反应动力学基础 2.吸附与脱附
1.反应动力学基础
化学反应速率:以反应
������������������ + ������������������ → ������������������ 为例:
又因为
������������
=
������������������,所以对于恒容过程,������������
= − ������������������
������������
该式以浓度对时间的变化率表
示化
学反应速率
2.动力学方程
基元反应的速率方程(幂函数型速率方程):
������:反应速率常数,是温度的函数
总之不论是可逆还是不可逆反应。反应速率 都是随着转化率增大而降低的。
4.反应速率与转化率的关系
单一反应:������������������ + ������������������ → ������������������
������������ = ������0[exp
]电化学知识点总结
![]电化学知识点总结](https://img.taocdn.com/s3/m/be715be17e192279168884868762caaedd33baf2.png)
]电化学知识点总结电化学是研究化学变化与电能之间的关系的一个学科,它是化学和物理学的交叉学科。
电化学的研究对象是电解过程和电池,并且在化学分析、电镀、腐蚀、电解制氧等领域应用广泛。
下面是一些电化学的基本知识点总结。
1. 电化学基础概念- 电池:由阳极和阴极以及连接二者的电解质构成,能够将化学能转化为电能的装置。
- 电解:在电解质中施加外加电势,使其发生化学反应,将化学能转化为电能。
- 氧化还原反应:电化学过程中的基本反应类型,包括氧化(电子流从物质中流出)和还原(电子流进入物质)两个反应。
2. 电解过程中的电解质和电极- 电解质:电解质是指携带电荷的溶液或熔融物质,可以将其称为离子液体,它在电解过程中离子扮演着重要的角色。
- 电极:电解过程中用于传输电子的导体,包括阳极(电流从电池中流出的极)和阴极(电流流入电池的极)。
3. 电势和电位- 电势:电势是指电池两个电极之间的电势差,用于描述电化学反应的驱动力。
单位是伏特(V)。
- 电位:电位是电池中某个电极的电势,用于描述物质的氧化还原能力,单位也是伏特(V)。
4. 电极电势和标准电极电势- 电极电势:电极电势是单个电极与某种参考电极之间的电势差,用于表示电极的氧化还原能力。
- 标准电极电势:标准电极电势是指在特定条件下,使用标准氢电极作为参照电极时,其他电极与标准氢电极之间的电势差。
标准氢电极的电极电势被定义为0V。
5. 动力学和热力学电极反应- 动力学电极反应:描述电极反应速率的反应动力学方程,例如质子还原动力学反应可以用Tafel方程或Butler-Volmer方程表示。
- 热力学电极反应:描述电极反应发生与否以及方向的反应热力学条件。
通过比较标准电极电势可以得知电极反应的方向。
6. 电化学电池- 电化学电池分类:电化学电池分为两大类,即原电池和电解池。
原电池直接将化学能转化为电能,如干电池;电解池则是利用外部电势来促进电解反应。
- 实例:常见的电化学电池有锌-铜电池、铅蓄电池、锂离子电池等。
电子转移步骤的动力学

在平衡条件时,电位又满足Nernst方程式,即:
平
0 平
co RT ln O nF C o R
o O
代入上式有: nF RT c o O j nFKc exp * ln o RT nF c R
0 (1 ) j 0 nFKc0 cR O
上式为O,R均可溶,若R为独立相,则由于 动力学研究和热力学研究对浓度单位处理不一 致:热力学为mol/dm3,动力学为mol/cm3 or mol/m3。 因此将Nerst方程代入内电流表达式时,要将浓度 单位化为一致。因此当O为独立相时,Nernst方程 中cR=1,化简时要乘以10-3 or103,故有:
并且当对该体系进行电化学极化在电位偏离达到100nmv及以上时这两个反应的极化规律仍满足tafel极化规律则通过的外电流极化电流与过电位与的差值之间的表达式与巴伏公式的表达形式相同物理意义绝对不同则可利用巴伏相类似的极化曲线形式
第六章.电子转移步 骤的动力学
6-1改变电极电位对电子转移步骤 反应速度的影响
v
0 c 0 va
G o z c exp( ) CO RT 0 G 0 z a exp CR RT
0 G : 0时还原反应的活化能, c0 O:O粒子的浓度 0 G : 0时氧化反应的活化能, c0 R:R粒子的浓度
将上式写成电流密度形式有,
0 G 0 jc nFzc exp c0 O RT 0 G 0 ja nFza exp c0 R RT
j0=nFK cO1-α10-3α j0=nFK cO1-α103α
(g.s.cm制) (Kg.s.cm制)
6-3 稳定条件下的电化学极化规律 一 .电子交换步骤极化的基本实验
电化学动力学

q M Cd E
• 表面张力对电极电势差的二 阶导数,可获得双电层电容。 而其一次导数将提供界面电 荷密度,这就是所谓的李普 曼方程: • 如果用相对电极电势代替 (42) 式中的金属电极 / 溶液界面 电势差,(Δ )~δ (EΔ ) 。 • 实际上,李普曼方程式就是 电毛细曲线的微分方程。
三、电极电势对电子转移步骤 活化能的影响
• 电子转移步骤(电化学反应步骤)系指反应物在电极/ 溶液界面得到电子或失去电子,从而还原或氧化成新 物质的过程。这一步骤包含了化学反应和电荷传递两 个内容,是整个电极过程的核心步骤。 • 在电子转移步骤中,两相界面间的双电层结构起着一 种特殊作用。 • 电极过程的其它步骤如物质的输送或均相化学转变虽 然也在电极/溶液界面附近,但都发生在远离双电层的 地方。 • 而电化学反应步骤则完全发生在双电层内部。因此, 在双电层中电势的分布及反应质点的状态肯定要显著 地影响电化学步骤的反应过程和速度。
• 上两式也可重新表示为,
k k ,0 exp nF / RT
k k , 0 expnF / RT
平衡态的一级反应
k O* k R*
• 这里[O]* 和[R]* 为O粒子和R 粒子在电极表面(OHP平面)
• 如果[O]*= [R]*,此时电 势为 θ ‘(称之为形式电 势),
第一节 双电层理论及其对电化学反 应的影响
• 上述章节,并没有考虑电极反应界面的物理性质。而电化学热力学驱动
力和电极反应过程动力学都依赖于界面结构,这是由于各类电极反应都
发生在电极/溶液的界面上,界面的结构和性质对电极反应有很大影响。 当电极和溶液两相接触时,就会出现带电粒子或偶极子在界面层中的非 均匀分布。这个过程最初(即金属和溶液进行接触的一瞬间)是非等当 量离子的交换,结果两个接触相都获得了相反符号的过剩电荷密度,形 成了所谓的“双电层”。双电层结构对平衡电极电势值不起决定作用, 平衡电极电势是由相应电化学反应的自由能变化决定的。因而,双电层 结构在电极过程动力学中起着重要作用,包括在平衡条件下的离子交换 动力学,因为离子交换强度依赖于双电层结构。因此,双电层界面结构 理论是作为联系电极平衡和电极过程动力学(非平衡过程动力学)的中
光电化学课件-电化学研究方法第3讲-电化学体系的传质

任何一个广度性质的通量都正比于其相对应强度性质的梯度
例如:
j
1 A
dQ dt
dV dx
E
扩散流量与浓度梯度之间的关系
粒子在溶液相的化学势
i
i0
RT
ln
ci ci0
一旦建立浓度梯度,粒子将在扩散驱动力的作用下加速,扩散 的驱动力来自粒子在空间的化学势梯度
di
dx
RT
1 ci
d
ci dx
RT
A -e
Cathode
+-
扩散区
特点:
+
• 电极/溶液界面的对 流速度较小
• 荷电反应物电迁移速
率取决于溶液组成 Anode • 反应开始后,电极/
溶液界面液相一定存
扩散区
在反应物(和产物)的 扩散区
• 静止溶液,短时内可忽略对流过程 (或有对流, 仅存在于溶液深部)
Ji Uici Dici Nernst-Plank 方程
电化学势梯度
溶液中离子的电化学势: 是溶液的内电势
i i0 RT ln ci ziF
溶液中的离子除了可跟着溶液发生对流外,还可在电化学势梯度
的作用下发生定向移动,电化学势梯度产生的作用力为
F
1 NA
grad
1 mol 离子的电化学势 NA:Avgerdero 常数
对球形离子:
6r
Forces acting on a species in a viscous medium
t
)
x
ci (x,t) x
dx
x处粒子浓度随时间的变化率等于该处的流量变化率, 正比于 浓度对x的二阶导数
电化学缩写

电化学缩写电化学是一门涉及电荷迁移的化学,它也是“给予物体能量的技术”。
电化学可以被用来描述电荷的运动,以及它们之间的相互作用。
电化学的应用非常广泛,其中包括工业用途、航空、船舶、能源等等。
在每个领域中,电化学都发挥着重要的作用。
电化学的词汇中有许多缩写,同学们需要对它们有所熟悉,以便在学习过程中能够准确地理解电化学概念。
下面介绍一些常用的电化学缩写:1. NHE:正确的缩写为“等电位线”,指的是在水的混合体系中,电位相等的体系中的电荷分布情况。
2. Nernst方程:缩写为“Nernst Eq”,它描述了等电位线处的电位变化和电解质解离常数之间的关系。
3. Arrhenius理论:缩写为“Arr Eq”,它描述了离子迁移反应速率与温度之间的关系。
4. Butler-Volmer方程:缩写为“B-V Eq”,它描述了电极反应速率与电位及电解质度之间的关系。
5.特尔-玻森方程:缩写为“D-B Eq”,它描述了电极反应速率与电荷转移的速率常数之间的关系。
6.伦兹方程:缩写为“L Eq”,它描述了电极反应与活度和温度之间的关系。
7.斯托尔定律:缩写为“B-law”,它描述了电极的传导特性与电位、温度和比电容之间的关系。
8.密斯定律:缩写为“S-law”,它描述了电极反应速率和复用电位之间的关系。
9.尔伯特-史密斯方程:缩写为“C-S Eq”,它描述了电极反应速率和反应扩散体积之间的关系。
10. 伽马-实验:缩写为“G-exp”,它是一种测定电极反应速率和电位之间关系的实验方法。
电化学缩写是电化学学习过程中必不可少的一环,通过对它们的熟悉了解,可以更好地掌握电化学的基本概念,并运用它们来解决问题。
然而,要想更好地理解电化学,还要靠广泛的实践,增强学习能力,提高知识水平。
第7章 电化学极化

2021/10/10 26
7.2.3 动力学参数k
• k--- 电极反应标准速率常数(standard rate
constant) – 定义:当电极电势等于形式电势时,正逆反应速
率常数相等,称为标准速率常数。 – 物理意义:可以度量氧化还原电对的动力学难易
程度,体现了电极反应的反应能力与反应活性, 反映了电极反应的可逆性。 • 在形式电势下,反应物与产物浓度都为1时,
2021/10/10 47
(1)普遍的巴伏公式
2021/10/10 48
• 将控制步骤前后的平衡步骤合并,简化为以 下三个步骤:
2021/10/10 49
2021/10/10 50
2021/10/10 51
多电子反应的电流密度—过电势公式
2021/10/10 52
只发生电化学极化
2021/10/10 53
ห้องสมุดไป่ตู้
β=0.5
36
2021/10/10 37
传递系数对电化学极化曲线的影响
2021/10/10 38
(2)高过电势下的近似公式:Tafel公式
2021/10/10 39
• η>118mV或J>10J0时,可使用Tafel公式, 误差<1%
• 如果电荷传递速率相当快,当施加大于118mV的过 电势时,体系将受到液相传质的影响,甚至达到极 限电流。在这样的情况下,就观察不到Tafel关系。 因此必须排除物质传递过程对电流的影响,才能得 到很好的Tafel关系。
2021/10/10 17
2021/10/10 18
2021/10/10 19
(3)电极电势与电流密度的特征关系式
不同充电模式对锂离子电池极化特性影响

不同充电模式对锂离子电池极化特性影响杨帆;乔艳龙;甘德刚;王谦;陈伟【摘要】锂离子电池大电流快速充电成为近年来的发展趋势,但大电流充电很容易在电池内部引起严重极化,影响电池的性能与寿命.本文研究不同充电模式对锂离子电池极化特性的影响规律,首先,建立基于LiMn2O4/石墨电池的电化学-热耦合瞬态计算模型,充分考虑充电过程中电池内部的电化学过程和内热源实时变化,通过变电流充电时电池端电压变化和电解液浓度的空间分布规律,研究电池内三种极化的时变特性.然后,研究不同恒流充电倍率下电池端电压和极化电压随SOC的变化规律,提出表征电池极化程度和极化电压对电池充电过程影响的变量PA与SOCc,定量分析不同充电条件下极化电压对锂离子电池充电过程的影响.最后,研究Reflex快速充电条件下极化电压的变化规律,分析不同正向充电时间tch对电池极化及充电过程的影响,并给出了建议tch值.结果表明,极化电压受充电电流和SOC的直接影响,而其变化又直接影响电池端电压的变化,Reflex快充方法能有效抑制电池极化,减弱其对充电的影响.%High current fast charging of Lithium-ion battery has become a developing trend in recent years. However, high current charging will cause great polarization within the battery, which has great influence on its performance and cycle life. Lithium-ion battery polarization characteristics at different charging methods were investigated. Firstly, an electrochemical-thermal transient numerical model based onLiMn2O4/graphite was established. Herein, the electrochemical process and real-time heat source change were taken into full consideration. Secondly, variation current charging was utilized, and time-varying characteristics of three polarizations were analyzed based on cell voltageand spatial distributions of electrolyte salt concentration. Then cell voltage and polarization voltage along with SOC at different constant current charging rates were analyzed. Subsequently, two variablesPA and SOCc were defined to represent the degree of polarization and available capacity. Polarization voltage characteristics under different charging conditions were analyzed quantitatively. Finally, polarization of reflex fast charging influence of differenttch on charging was studied. The results show that polarization voltage is affected by charging current and SOC directly, while the polarization affects cell voltage on the other hand. Reflex fast charging can suppress the polarization voltage and weaken its influence on charging.【期刊名称】《电工技术学报》【年(卷),期】2017(032)012【总页数】8页(P171-178)【关键词】锂离子电池;电池极化;充电方式;电池产热【作者】杨帆;乔艳龙;甘德刚;王谦;陈伟【作者单位】输配电装备及系统安全与新技术国家重点实验室(重庆大学) 重庆400044;输配电装备及系统安全与新技术国家重点实验室(重庆大学) 重庆 400044;国网四川省电力公司电力科学研究院成都 610000;国网重庆市电力公司电力科学研究院重庆 400000;国网重庆市电力公司电力科学研究院重庆 400000【正文语种】中文【中图分类】TM911锂离子电池具有循环寿命长、比能量大、体积小、自放电率小等优点,已经广泛应用于消费电子、电动汽车等领域[1-3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,双电层结构
电化学体系,研究的是电荷在化学相界面之间迁移 的过程和因素。 这个化学相界面就是由电子导体 (电极)和离子导体(电解质溶液)所构成。
The Helmholtz Model
介电常数
q Cd 4d
双电层电容 双电层厚度
紧密排列
实验得到的结果:双电层电容Cd随电位而变,亦随电 解质溶液浓度而变,它不是常数。只有在浓电解质溶 液中,特别是在电位差较大的情况下,按照这一模型 计算得到的电容值与实验得到的结果才会比较相符。
得到:
i nFAk {c Ox (0, t ) exp[anf ( )] 1 )nf ( )]} c Rd (0, t ) exp[(
电流-电势方程
Butler-Volmer模型在电 化学动力中的推论及应用
一,平衡条件及交换电流
平衡时净电流为零,对于电流-电势方程则有:
c.电位向负方向移动,
Na+ +e能垒上升
设
G0,c
和
为0V时的阴极和阳极反应活化能 G0 ,a
当电压从 0V→+E时
设G0 ,a减小的分数取为(1-α),0< α<1,则有:
Ga =G0 ,a (1 )nFE
Gc G0 ,c nFE
i ic ia nFA [k f cOx (0, t ) kb cRd (0, t )]
电极/溶液 界面面积 电极表面处的浓度
电化学动力学的ButlerVolmer 模型
电极电势对能垒的影响
a.氧化和还原能垒相等,处
于平衡态,电势是φeq
b.电位向正方向移动,Na+ +e
能垒下降
RT
G a G0 ,c
) k exp[nf ( )]
kb kb exp(
RT
) k exp[( 1 )nf ( )]
将上述关系式代入
i ic ia nFA [k f cOx (0, t ) kb cRd (0, t )]
α称为电子传递系数,表示电极电位对电极反 应活化能的影响程度。是电化学反应动力学的 参数之一。
电化学反应速率与电极电势的关系
Gc G0 ,c nFE
Ga =G0 ,a (1 )nFE
k Ae
G RT
k f k f exp(
Gc G0 ,c
i0
和 k 是密切相关的两个动力学参数,它们之间成正比关系。 (1)式两边同乘(1-α)次方,(2)式两边同乘α次方,即得:
b (1 ) b i0 nFAk (cOx ) (cRd )
二,电流-过电势方程
过电势η:
= eq
电流通过电极时,电极电位偏离平衡电位的值。
电流—过电势方程:
a,电容随电解质溶液浓度变化 b,电容随电极电位变化 c,稀溶液中电容有一最小值
不能解释的:
a,
Cd理 Cd测
b,电容曲线上的平台区
Stern’s Model
--整个双电层的电位差。
面一个水化离子半径处的平 均电位。
1 --分散层电位,距离电极表
d
1 --紧密层电位。
- 1 1 d x
1 d d ( 1 ) d1 1 1 Cd dq dq dq CH CD
二,电化学反 Rd kb
kf
它是发生在电极-电解质溶液界面上的异相氧 化还原反应,这种氧化还原反应是通过电极和电 解液界面上的电荷传递来实现的
Nernst公式
交换电流 i0:在电极反应处于平衡状态下(即外电 路电流为零时)的阴极电流和阳极电流
i0 nFAk cOxexp[ nf( eq )]
b
1
2
b i0 nFAk cRd (0, t ) exp[( 1 )nf (eq )]
nFAk cOx(0, t ) exp[anf ( eq )] nFAk cRd (0, t ) exp[( 1 )nf (eq )]
平衡态,本体浓度与表面浓度相等,所以:
e
f ( eq )
C C
b Ox b Rd
b C RT eq ln Ox b F C Rd
The Gouy-Chapman Model
分散排列 除了电极和离子之间存在静电引力之外,离子还受到分子热 运动的作用 该模型认为电极附近溶液中离子应按照势能场中粒子分配规律 分布在邻近界面的液层中,即符合Boltzmann分布
Boltzmann equation ci ( x) ci e Poisson equation
cOx (0, t ) c Rd (0, t ) i i0 { b exp(nf ) exp[( 1 )nf ]} b cOx c Rd
电流-过电势曲线
三,i-η公式的近似形式
如果在电化学反应过程中对溶液进行充分搅拌,或者是电极反应电流 很小,离子扩散过程比电极/溶液界面的电荷迁移过程快得多,使得电 解质在电极表面的浓度与溶液本体中的浓度基本相等,即
外加负电势时,电 子能量升高,
还原电流
外加正电势时,电 子能量降低。
氧化电流
正逆向反应速度可分别表示为:
ic v f k f cOx (0, t ) nFA ia vb kb c Rd (0, t ) nFA
上式中cOx(0,t)和cRd(0,t)分别为氧化剂和还原剂在电极表 面处的浓度 总的电化学反应为阴极电流和阳极电流之差,即
zi F 0 RT ( x )
2 ( x) 4 qx 2 x
q Cd 228z c 0 cosh( 19.46z1 ) 1
0
x
1--- x=0
处的电位
q Cd 228z c 0 cosh( 19.46z1 ) 1
扩散层模型可以解释的: