小学三年级上学期思维逻辑训练第12讲--等差数列(一)【教师版】
北师大版2023-2024三年级数学上册思维拓展训练题及答案

北师大版2023-2024三年级数学上册思维拓展训练题及答案1.妈妈买了15条红鲤鱼和12条黑鲤鱼,把它们放到3个鱼缸里,平均每个鱼缸里放多少条?2.买杯子。
(1)买一个陶瓷杯和一个塑料杯,一共需要多少元?(2)丽丽买了一个玻璃杯,付给售货员20元,找回6.4元,一个玻璃杯多少元?3.图书馆星期六上午借出263本图书,下午借出的图书比上午多128本,图书馆星期六上午和下午一共借出多少本图书?4.如果要装1000箱饮料,6辆货车能装完吗?5.用一根铁丝可以围成边长是7厘米的正方形。
如果用同样长的铁丝围成一个长是9厘米的长方形,围成的长方形的宽是多少厘米?6.一艘船上午9时30分从甲港出发,下午3时30分到达乙港,这艘船从甲港到乙港用了多长时间?7.这本《儿童故事》有220页,笑笑每天看25页,看了一个星期,还剩多少页没有看?8.跑步可以锻炼身体,增强体质,早晨大课间活动,同学们都要沿着学校长65米,宽35米的操场跑3圈,同学们每天要跑多少米?9.森林公园的一角有一座假山,围绕假山有一条小路(如图),这条小路长多少米?10.2021年是红军长征胜利85周年,学校举行了“缅怀革命先烈,传承红色基因”读经典活动,活动期间,依依第一周读了387页,第二周读的页数比第一周的2倍少59页,依依第二周读了多少页?11.三年级有男生165人,女生比男生少10人。
学校组织三年级学生去社区开展社会实践活动,如果每8人分成一个小组,可以分成多少个小组?12.一本练习本比一把三角尺贵多少钱?13.王伯伯摘了141个西瓜,每个纸箱装7个,19个纸箱够装吗?14.星光小学4名老师带领123名学生参观博物馆,买门票一共需要多少元?成人票14元/张学生票7元/张15.在疫情期间,某爱心家长向学校捐赠了322瓶洗手液,捐赠的“84”消毒液的数量比洗手液少197瓶,该爱心家长一共捐赠了多少瓶洗手液和“84”消毒液?16.一辆汽车上午10时从甲地出发,当日下午3时25分到达乙地,这辆汽车从甲地到乙地用了多长时间?17.小猴子摘了100个桃子,送给小伙伴们64个,剩下的它6天吃完,小猴子平均每天吃多少个桃子?18.《太空历险记》共135页,笑笑看了一星期还剩58页,她平均每天看多少页?19.(1)买一盒儿童牙膏比买一盒白兔牙膏便宜多少钱?(2)淘气身上有20元,买两盒牙膏,可以怎样买?分别需要多少钱?20.新民小学原来有45本《童话故事》,又买来18本。
小学三年级上学期思维逻辑训练第12讲--等差数列(一)【学生版答案】

例 3、一个等差数列共有 10 项,每一项都比它的前一项小 2,末项为 75,那么 首项是多少? 【答案】57 【解析】 75-(10-1)×2=57
练 3、某露天剧场有 30 排座位,最后一排座位有 86 个,后面每排比前排多 2 个 座位,第一排有多少个座位? 【答案】28 个 【解析】 86-(30-1)×2=28(个)
第 12 讲——等差数列
【精讲精练】 例 1、有一个等差数列:4,7,10,13……,这个等差数列的第 28 项是多少? 【答案】85 【解析】 4+(28-1)×3=85
练 1、有一个等差数列:10、16、22、28……,这个等差数列的第 42 项是多少? 【答案】256 【解析】 10+(42-1)×6=256
例 4、(1)一个等差数列首项为 13,第 9 项为 29,这个等差数列的公差是多少? 【答案】2 【解析】 (29-13)÷(9-1)=2
(2)一个等差数列第 5 项是 16,第 11 项是 70,那么这个等差数列的公差是多 少? 【答案】9 【解析】 (70-16)÷(11-5)=9
2
练 4、一个等差数列第 4 项是 19,第 14 项是 79,那么这个等差数列的公差是多 少? 【答案】6 【解析】 (79-19)÷(14-4)=6
【课后作业】 1、等差数列:1,6,11,16……,那么第 11 项是多少? 【答案】3 【解析】 1+(11-1)×5=51
2、一个等差数列共有 12 项,每一项都比它的前一项大 2,并且首项为 20,那么 末项是多少? 【答案】42 【解析】 20+(12-1)×2=42
3、已知等差数列第 3 项等于 31,第 9 项等于 79,那么首项是多少? 【答案】15 【解析】 公差:(79-31)÷(9-3)=8 31-8×2=15
三年级华罗庚数学思维训练之等差数列

三年级华罗庚数学思维训练之等差数列1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、。
从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3 (1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100 2=50组,每组3个数,共有50 3=150,那么第100个不能被3除尽的数就是150-1=149.3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?.解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为:1988 14=142,最小数与最大数相差28-1=27个公差,即相差2 27=54,这样转化为和差问题,最大数为(142+54)2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34 28+28=35 28=980<1000,所以只有以下几个数:34 29+29=35 2934 30+30=35 3034 31+31=35 3134 32+32=35 3234 33+33=35 33以上数的和为35 (29+30+31+32+33)=54255、盒子里装着分别写有1、2、3、134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析:假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3++134+135=136 135 2=9180,9180 17=540,135个数的和除以17的余数为0,而19+97=116,116 17=6 14,所以黄卡片的数是17-14=3。
三年级数学思维专题训练—等差数列(含答案解析)

三年级数学思维专题训练—等差数列1、一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上两位,第三站上三位,依此下去,站以后,车上坐满乘客。
2、一个剧场设置了30排座位,第一排有28个座位,往后每一排都比前一排多2个座位,这个剧场一共有多少个座位?3、在6和26之间插入三个数,使它们每相邻两个数的差相同,这三个数的和是。
4、九个连续偶数,最大的一个是998,这九个连续偶数的平均数是。
5、下面这列数中,最大的三位数是。
1,8,15,22,29,36…6、计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-…-7-6+5+4-3-2+1= 。
7、思思每年的母亲节都会给妈妈折纸鹤,祝福妈妈健康快乐。
从第二年开始,每年都会比前一年多折七只,八年一共折了212只,那么,思思第一年折了只。
8、王芳大学毕业找工作,她找了两家公司,都要求签工作五年的合同,年薪开始都是一万元,但两个公司加薪的方式不同。
甲公司承诺每年加薪1000元,乙公司答应每半年加薪300元。
以五年计算,王芳应聘公司工作收入更高。
9、小青蛙沿着台阶往上跳,每跳一次都比上一次升高4厘米。
它从离地面10厘米处开始跳,这一处称为小青蛙的第一次的落脚点,那么它的第100个落脚点正好在台阶尽头的亭子内,这亭子高出地面厘米。
10、某校师生共为地震灾区捐款46200元,经统计发现,他们各自所捐的钱数,共有10种不同档次。
最低档次共有10人,而每上升一个档次,捐款人数就减少1人;且从第二档次开始,以后各档次的每人捐款钱数,分别为最低档次的2倍、3倍、4倍……10倍,那么捐款最多的人捐款元。
11、有37个人排成一行依次报数,第一个人报1,以后每人报的数都是把前一人报的数加3。
报数过程中有一个人报错了,把前一个人报的数减3报了出来,最后这37个人报的数加起来恰好等于2011。
那么是第个报数的人报错了。
(完整版)三年级数学上等差数列

等差数列假如一个数列,从第 2 项起,每一项与前一项的差是一个固定数,这样的数列叫做等差数列,这个差叫做这个数列的公差。
比如1,3,5,7,9 , ...,99 公差是 2数列的第一项叫首项,最后一项叫末项末项 = 首项 + (项数 -1 )×公差反之,项数 = (末项 - 首项)÷公差 +1下边议论怎样求等差数列的和【例 1】乞降:1+2+3+4+5+6+7+8=?随堂练习 1用上边的方法求出1+2+3+...+35+36【例 2】计算:1+2+3+...+98+99+100随堂练习 2计算: 2+4+6+8+...+200【例 3】乞降:( 1) 8+9+10+11+12+13(2)2+5+8+11+14+17+20随堂练习 3乞降:( 1) 4+6+8+10+12+14+16(2)2+3+4+5+6+7+8【例 4】求出下边各数列的和:( 1) 9,13,17,21,25,29(2)1,3,5,7,...,95,97,99随堂练习 4求出从 0 到 100 以内全部 3 的倍数的和。
【例 5】小红读一本长篇小说,第一天读了30 页,从次日起,每日读的页数都比前一天多 4 页,最后一天读了 70 页,恰好读完。
问:这本小说共有多少页?随堂练习 5小张看一本故事书,第一天看 25 页,此后每日比前一天多看 5 页,最后一天看 55 页,恰漂亮完,这本故事书共有多少页?练习题1、计算: 18+19+20+21+22+232、计算: 100+102+104+106+108+110+112+1143、计算: 73+77+81+85+89+934、计算: 995+996+997+998+9995、计算:(1999+1997+1995+...+13+11)-(12+14+16+...+1996+1998)6、计算: 1+3+5+7+...+37+397、计算: 2+6+10+14+...+210+2148、计算: 4+7+10+13+...+298+3019、计算: 1+11+21+31+...+101+11110、求出全部的 2 位数之和 .。
三年级数学思维训练:等差数列(三年级)竞赛测试.doc

三年级数学思维训练:等差数列(三年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】(1)2,5,8,11,14,….上面是按规律排列的一串数,其中第21项是多少?(2)把比100大的奇数从小到大排成一列,其中第21个是多少?【答案】(1)第21项是62.(2)第21个是141.【解析】试题分析:(1)该数列的首项是2,公差是5﹣2=3,根据第n项an=首项+(n﹣1)×公差,求出第21项是多少即可;(2)该数列的首项是101,公差是2,根据第n项an=首项+(n﹣1)×公差,求出第21个是多少即可.解:(1)该数列的首项是2,公差是5﹣2=3,第21项是:2+(21﹣1)×3=62答:第21项是62.(2)把比100大的奇数从小到大排成一列,该数列的首项是101,公差是2,第21个是:101+(21﹣1)×2=141.答:第21个是141.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:第n项an=首项+(n﹣1)×公差.【题文】如图,有一堆按规律摆放的砖.从上往下数,第1层有1块砖,第2层有5块砖,第3层有9块砖…按照这样的规律,第19层有多少块砖?【答案】73块.【解析】试题分析:首先根据题意,可得从上往下,每层砖的数量构成一个等差数列,数列的首项是1,公差是5﹣1=4;然后根据第n项an=首项+(n﹣1)×公差,求出第19层有多少块砖即可.解:每层砖的数量构成一个等差数列,数列的首项是1,公差是5﹣1=4;第19层砖的数量:1+(19﹣1)×(5﹣1)=73(块)答:第19层有73块砖.评卷人得分点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:第n项an=首项+(n﹣1)×公差.【题文】已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【答案】第1项是83,第19项是 191.【解析】试题分析:由题可知,本题是一个公差为137﹣131=6的等差数列,因此本题根据高斯求和的有关公式解答即可:末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.解:公差:137﹣131=6第1项:131﹣(9﹣1)×6=131﹣48=83第19项:83+(19﹣1)×6=83+18×6=83+108=191答:这个数列的第1项是83,第19项是 191.故答案为:191.点评:高斯求和的其它相关公式还有:项数=(末项﹣首项)÷公差+1,等差数列和=(首项+末项)×项数÷2.【题文】冬冬先在黑板上写了一个等差数列,刚写完阿奇就冲上讲台,擦去了其中的大部分数,只留下第四个数31和第十个数73.你能算出这个等差数列的公差和首项吗?【答案】公差是7,首项是10.【解析】试题分析:根据等差数列的第四个数=首项+(4﹣1)×公差,第十个数=首项+(10﹣1)×公差,列出二元一次方程组,求解,即可求出这个等差数列的公差和首项.解:这个等差数列的公差是d,首项是a,则,②﹣①,可得6d=42,解得d=7…③;把③代入①,可得a=10,即这个等差数列的公差是7,首项是10.答:这个等差数列的公差是7,首项是10.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:第n项an=首项+(n﹣1)×公差.【题文】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数.(1)如果冬冬报3,阿奇报25,每位同学报的数都比前一位多2,那么队伍里一共有多少人?(2)如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【答案】(1)12人;(2)20人.【解析】试题分析:(1)首先根据题意,可得每位学生报的数成等差数列,首项是3,末项是25,公差是2,然后根据项数=(末项﹣首项)÷公差+1解答即可;(2)首先根据题意,可得每位学生报的数成等差数列,首项是17,末项是150,公差是7,然后根据项数=(末项﹣首项)÷公差+1解答即可.解:(1)(25﹣3)÷2+1=22÷2+1=12(人)答:队伍里一共有12人.(2)(150﹣17)÷7+1=133÷7+1=20(人)答:队伍里一共有20人.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:项数=(末项﹣首项)÷公差+1.【题文】计算:(1)1+2+3+4+5+6+7+8+9+10+11+12;(2)11+12+13+14+15+16+17+18+19.【答案】78;135.【解析】试题分析:首先判断出每个算式中的各个加数构成等差数列,然后根据等差数列的求和公式计算即可.解:(1)1+2+3+4+5+6+7+8+9+10+11+12=(1+12)×12÷2=13×12÷2=78(2)11+12+13+14+15+16+17+18+19=(11+19)×9÷2=30×9÷2=135点评:此题主要考查了等差数列的求和公式的应用,解答此题的关键是要明确:前n项和=(首项+末项)×项数÷2.【题文】计算:(1)100+99+98+97+96+95+94+93+92+91+90;(2)21+19+17+…+3+1.【答案】1045;121;【解析】试题分析:首先判断出每个算式中的各个加数构成等差数列,然后根据等差数列的求和公式计算即可.解:(1)100+99+98+97+96+95+94+93+92+91+90=(100+90)×11÷2=190×11÷2=1045(2)21+19+17+…+3+1=(21+1)×11÷2=22×11÷2=121点评:此题主要考查了等差数列的求和公式的应用,解答此题的关键是要明确:前n项和=(首项+末项)×项数÷2.【题文】计算:(1)2+6+10+ (90)(2)41+44+47+ (101)【答案】1058;1491;【解析】试题分析:首先判断出每个算式中的各个加数构成等差数列,然后根据等差数列的求和公式计算即可.解:(1)该算式加数的个数是:(90﹣2)÷4+1=23,2+6+10+…+90=(2+90)×23÷2=92×23÷2=1058(2)该算式加数的个数是:(101﹣41)÷3+1=21,41+44+47+…+101=(41+101)×21÷2=142×21÷2=1491点评:此题主要考查了等差数列的求和公式的应用,解答此题的关键是要明确:项数=(末项﹣首项)÷公差+1,前n项和=(首项+末项)×项数÷2.【题文】已知一个等差数列第8项等于50,第15项等于71.请问:(1)这个等差数列的第1项是多少?(2)这个等差数列前10项的和是多少?【答案】(1)第1项是29.(2)前10项的和是425.【解析】试题分析:(1)根据等差数列的第8项=首项+(8﹣1)×公差,第15项=首项+(15﹣1)×公差,列出二元一次方程组,求解,即可求出这个等差数列的公差和首项;(2)首项求出这个等差数列的第10项,然后根据前n项和=(首项+末项)×项数÷2,求出这个等差数列前10项的和是多少即可.解:(1)这个等差数列的公差是d,首项是a,则,②﹣①,可得7d=21,解得d=3…③;把③代入①,可得a=29,答:这个等差数列的第1项是29.(2)这个等差数列第10项为:29+(10﹣1)×3=29+27=56这个等差数列前10项的和为:(29+56)×10÷2=85×10÷2=425答:这个等差数列前10项的和是425.点评:此题主要考查了等差数列的求和公式的应用,解答此题的关键是要明确:第n项an=首项+(n﹣1)×公差,前n项和=(首项+末项)×项数÷2.【题文】编号为1﹣9的九个盒子中央放有351颗小玻璃珠,除编号为1的盒子外,每个盒子里的玻璃珠都比前一号盒子多同样多的颗数.(1)如果1号盒子内放了11颗小玻璃球,那么后面的盒子比它前一号的盒子多放几颗?(2)如果3号盒子内放了23颗小玻璃珠,那么8号盒子放了几颗?【答案】(1)7颗.(2)63颗.【解析】试题分析:(1)首先分别求出2﹣9号盒子中放了多少颗玻璃球,然后根据九个盒子中央一共放有351颗,求出后面的盒子比它前一号的盒子多放几颗即可;(2)设1号盒子里放了a1颗,后面的盒子比它前一号的盒子多放d颗,根据题意,列出方程,求解即可,进而求出8号盒子放了几颗.解:(1)设后面的盒子比它前一号的盒子多放d颗,则11+(11+d)+(11+2d)+…+(11+8d)=35199+36d=35136d=25236d÷36=252÷36d=7答:后面的盒子比它前一号盒子多放7颗.(2)设1号盒子里放了a1颗,后面的盒子比它前一号的盒子多放d颗,则a1+2d=23…①,a1+(a1+d)+(a1+2d)+…+(a1+8d)=351…②,由①②,解得,7+(8﹣1)×8=63(颗)答:8号盒子放63颗.点评:此题主要考查了等差数列的性质的应用.【题文】(1)一个等差数列共有13项,每一项都比它的前一项大2,并且首项为23,求末项是多少;(2)一个等差数列共有13项,每一项都比它的前一项小7,并且末项为125,求首项是多少.【答案】末项是47;首项是209.【解析】试题分析:(1)等差数列的末项=首项+(项数﹣1)×公差,据此解答即可;(2)等差数列的首项=末项﹣(项数﹣1)×公差,据此解答即可.解:(1)23+(13﹣1)×2=23+24=47答:末项是47.(2)125﹣(13﹣1)×(﹣7)=125﹣12×(﹣7)=209答:首项是209.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.【题文】一个等差数列的首项为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?【答案】公差等于21;第19项等于389.【解析】试题分析:(1)根据一个等差数列的首项为11,第10项为200,公差=(第n项﹣首项)÷(n﹣1),用200减去11,再除以10﹣1,求出这个等差数列的公差等于多少即可;(2)根据第n项=首项+(n﹣1)×公差,用首项加上公差乘以19﹣1,求出第19项等于多少即可.解:(1)(200﹣11)÷(10﹣1)=189÷9=21即这个等差数列的公差等于21;(2)11+(19﹣1)×21=11+18×21=389即第19项等于389.答:这个等差数列的公差等于21,第19项等于多389.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:公差=(第n项﹣首项)÷(n ﹣1),第n项=首项+(n﹣1)×公差.【题文】小悦读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完.请问:小悦一共读了多少天?这本课外书共有多少页?【答案】小悦一共读了8天,这本课外书共有204页.【解析】试题分析:根据题意,可得小悦每天读课外书的页数是一个等差数列,数列的首项是15,末项是36,公差是3,所以求出等差数列的项数,即可求出一共读了多少天;然后根据等差数列的求和公式,求出这本课外书共有多少页即可.解:(36﹣15)÷3+1=21÷3+1=8(天)(15+36)×8÷2=51×8÷2=204(页)答:小悦一共读了8天,这本课外书共有204页.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:项数=(末项﹣首项)÷公差+1,前n项和=(首项+末项)×项数÷2.【题文】计算:(1)3+6+9+12+15+18+21+24+27+30.(2)41+37+33+29+25+21+17+13+9+5+1.【答案】165;231;【解析】试题分析:首先判断出每个算式中的各个加数构成等差数列,然后根据等差数列的求和公式计算即可.解:(1)3+6+9+12+15+18+21+24+27+30===165(2)41+37+33+29+25+21+17+13+9+5+1===231点评:此题主要考查了等差数列的求和公式的应用,解答此题的关键是要明确:前n项和=(首项+末项)×项数÷2.【题文】计算:(1)5+11+17+…+77+83;(2)193+187+181+ (103)【答案】616;2368;【解析】试题分析:首先判断出每个算式中的各个加数构成等差数列,然后根据等差数列的求和公式计算即可.解:(1)该算式加数的个数是:(83﹣5)÷6+1=14,5+11+17+…+77+83===616(2)该算式加数的个数是:(193﹣103)÷6+1=16,193+187+181+…+103===2368点评:此题主要考查了等差数列的求和公式的应用,解答此题的关键是要明确:前n项和=(首项+末项)×项数÷2.【题文】有一堆粗细均匀的圆木,堆成如图的形状,已知最上面一层有6根,共堆了25层.请问:这堆圆木共有多少根?【答案】450.【解析】试题分析:一堆圆木,从上往下,上面一层比下面一层少一根,也就是这些圆木堆成的是个梯形,求这堆圆木一共有多少根,也就是求这个梯形的面积是多少,两者数据应该是相等关系,已知共有25层即高为25,下底为6+25﹣1=30,再根据梯形面积=(上底+下底)×高÷2即可解答.解:(6+6+25﹣1)×25÷2=36×25÷2=900÷2=450(根).答:这堆圆木共有450根.点评:明确这堆圆木的根数与这堆圆木堆成梯形的面积数据,应该是相等关系是解答本题的关键.【题文】一个等差数列的第1项是21,前7项的和为105,这个数列的第10项是多少?【答案】3.【解析】试题分析:先根据等差数列求和公式得到前7项,进一步求得公差,再根据求项公式得到这个数列的第10项.解:105×2÷7﹣21=30﹣21=9(9﹣21)÷(7﹣1)=﹣12÷6=﹣221+(10﹣1)×(﹣2)=21+9×(﹣2)=21﹣18=3.答:这个数列的第10项是3.点评:考查了等差数列,等差数列和=(首项+末项)×项数÷2,末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.【题文】把248表示成8个连续偶数的和,其中最大的那个偶数是多少?【答案】38.【解析】试题分析:根据题意,可设最小的偶数是2N,因为是连续的8个偶数,从小到大排列出来,后一个都比前一个大2,再根据题意解答即可.解:设最小的一个偶数为2N,由题意可得:2N+2(N+1)+2(N+2)+…+2(N+7)=2488×2N+0+2+4+…+14=24816N+(0+14)×8÷2=24816N+14×4=24816N+56=24816N=192N=12那么最大的一个偶数是:2(N+7)=2×(12+7)=2×19=38.答:其中最大的那个偶数是38.点评:根据题意可知,连续的偶数每相邻的两个相差都是2,设出最小的,一次排列出来,再根据题意列出方程进一步解答即可.【题文】魔术师表演魔术,刚开始,桌上的盒子里放着3个乒乓球,第一次,他从盒子里拿出1个球,把它变成3个后全部放回盒子里;第二次,他从盒子里拿出2个球,把每个球变成3个后,又全部放回盒子里…第十次,他从盒子里拿出10个球,把每个球变成3个后,再全部放回盒子里.请你算一算,现在盒子里一共有几个乒乓球?【答案】113.【解析】试题分析:根据题意,一只球变成3只球,实际上多了2只球.第一次多了2只球,第二次多了2×2只球…第十次多了2×10只球.因此拿了十次后,多了:2×1+2×2+…+2×10=2×(1+2+…+10)=2×55=110(只).加上原有的3只球,盒子里共有球110+3=113(只).解:(3﹣1)×(1+2+…+10)+3=2×[(1+10)×10÷2]+3=2×55+3=113(只).答:盒子里一共有113个乒乓球.点评:此题考查了学生分析问题的能力,重点要弄清“一只球变成3只球,实际上多了2只球…第10次多了2×10只”.【题文】小王和小高同时开始工作,小王第一个月得到1000元工资,以后每月多得60元;小高第一个月得到500元工资,以后每月多得45元.两人工作一年后,所得的工资总数相差多少元?【答案】6990.【解析】试题分析:先分别求出12个月相差的钱数,再根据等差数列求和公式即可求解.解:1000﹣500=500(元)500+(60﹣45)×11=500+15×11=500+165=665(元).(500+665)×12÷2=1165×12÷2=6990(元).答:所得的工资总数相差6990元.点评:考查了等差数列及等差数列求和公式,关键是得到第12个月小王和小高的工资差.【题文】在一次考试中,第一组同学的分数恰好构成了公差为3的等差数列,总分为609,冬冬发现自己的分数算少了,找老师更正后,加了21分,这时他们的成绩还是一个等差数列.请问:冬冬正确的分数是多少?【答案】99分.【解析】试题分析:由冬冬加21分,依然是等差数列,可知冬冬的成绩从最低变成最高,依此可求第一组同学的总人数为21÷3=7人,再根据等差数列求项公式得到冬冬的正确成绩为609÷7+3×4=99分.解:21÷3=7(人)609÷7+3×4=87+12=99(分).答:冬冬正确的分数是99分.点评:考查了等差数列,本题关键是得到第一组同学的总人数.【题文】已知一个等差数列的前15项之和为450,前20项之和为750,请问:这个数列的公差是多少?首项是多少?【答案】公差是3,首项是9.【解析】试题分析:想求公差,公差=(第n项﹣第m项)÷(n﹣m),如果已知这个数列的任意两项那么公差就可以求了.根据中项定理:前15项之和为450,可推出第8项为450÷15=30,前20项之和为750,第16项到20项之和为750﹣450=300,可推出第18项为300÷5=60,依此求出这个数列的公差,进一步求出首项.解:450÷15=30750﹣450=300300÷5=60(60﹣30)÷(18﹣8)=30÷10=330﹣(8﹣1)×3=30﹣21=9.答:这个数列的公差是3,首项是9.点评:本题考查了公差公式,及首项公式,注意题中给出了前20项之和,而20是偶数,不能直接用中项公式,依此想到求第16项到20项之和,进而求出第18项,这是本题的难点.【题文】图是一个堆放铅笔的“V”形架.如果“V”形架上一共放有210支铅笔,那么最上层有多少支铅笔?【答案】20支;【解析】试题分析:根据图示,设“V”形架一共有n层,则最上层有n支铅笔;第1层、第2层、第3层…的铅笔的数量分别是1、2、3…n,根据它们的和等于210,列出等式,求出最上层有多少支铅笔即可.解:设“V”形架一共有n层,则最上层有n支铅笔,,所以n(n+1)=420,因为420=21×20,所以n=20,即“V”形架一共有n层,最上层有20支铅笔.答:最上层有20支铅笔.点评:此题主要考查了等差数列的求和问题的应用,解答此题的关键是要弄清楚:每一层的铅笔的数量和层数相等.【题文】下面的各算式是按规律排列的:1+1,2+3,3+5,1+7,2+9,3+11,1+13,2+15,3+17,…,请写出其中所有结果为98的算式.【答案】1+97=98或3+95=98.【解析】试题分析:观察可得,算式的第一个加数按1,2,3,1,2,3,1,2,3…循环排列,第二个加数是奇数列;然后分类讨论,当第一个加数是1、2、3,和为98时,求出第二个加数,进而求出所有结果为98的算式即可.解:算式的第一个加数按1,2,3,1,2,3,1,2,3…循环排列,第二个加数是奇数列,(1)当第一个加数是1,第二个加数是98﹣1=97,则算式为:1+97=98;(2)当第一个加数是2,第二个加数是98﹣2=96,因为96是偶数,所以不符合题意;(3)当第一个加数是1,l试题分析:设中间的数为x,则这11个数依次是:x﹣10,x﹣8,x﹣6,x﹣4,x﹣2,x,x﹣3,x﹣6,x﹣9,x﹣12,x﹣15,这11个数的总和是200,把这11个数加在一起等于200即可得方程,解方程即可.解:设中间的数是x,则这11个数依次是:x﹣10,x﹣8,x﹣6,x﹣4,x﹣2,x,x﹣3,x﹣6,x﹣9,x﹣12,x﹣15,可得方程:11x﹣(2+4+6+8+10)﹣(3+6+9+12+15)=200,11x=200+30+45,x=25.答:中间的数是25.点评:设出中间的数为x,则可得其余的数,再根据题干中的数量关系列方程解答即可.【题文】如图,有一个边长为1米的大等边三角形,将它分割成许多边长为2厘米的小等边三角形.请问:(1)边长为2厘米的小等边三角形共有多少个?(2)图中所有长度为2厘米的线段的总长度是多少?【答案】(1)2500个.(2)7650厘米.【解析】试题分析:(1)分别求出大等边三角形,小等边三角形的面积,用大等边三角形的面积除以小等边三角形的面积,即可求出边长为2厘米的小等边三角形共有多少个;(2)如图,第1行、第2行、第3行…的长度为2厘米的线段的个数分别是3、6、9…,求出线段的总个数,再乘以2,求出图中所有长度为2厘米的线段的总长度是多少厘米即可.解:(1)1米=100厘米,大等边三角形的面积:,小等边三角形的面积:,2500答:边长为2厘米的小等边三角形共有2500个.(2)(3+6+9+…+3×50)×2=(3+150)×50÷2×2=7650(厘米)答:图中所有长度为2厘米的线段的总长度是7650厘米.点评:此题主要考查了组合图形的计数问题的应用,注意观察总结出规律,并能利用总结出的规律解答实际问题.【题文】按规律写出一列算式:1000﹣1,993﹣4,986﹣7,979﹣10,…,如果要保证被减数比减数大,最多能写出几个算式?请写出最后的算式.【答案】最多能写出100个算式,最后的算式为:307﹣298=9.【解析】试题分析:首先根据题意,当被减数=减数时,可得1000﹣7(n﹣1)=1+3(n﹣1),整理,并求出n的值,然后分别求出此时的被减数和减数是多少,写出最后的算式即可.解:这列算式:1000﹣1,993﹣4,986﹣7,979﹣10…,所以当被减数=减数时,可得1000﹣7(n﹣1)=1+3(n﹣1),整理,可得:﹣7n+1007=3n﹣2,所以10n=1009,解得n=100.9,所以n=100,即最多能写出100个算式,最后的算式为:307﹣298=9.答:最多能写出100个算式,最后的算式为:307﹣298=9.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:第n项an=首项+(n﹣1)×公差.【题文】(100分)在一次数学竞赛中,获得一等奖的八名同学的分数恰好构成等差数列,总分为656,且第一名的分数超过了90分.已知同学们的分数都是整数,那么第三名的分数是多少?【答案】88分.【解析】试题分析:首先设第8名的分数是a,公差为d,则8a=656…①,a+7d>90…②,判断出a<74,16<7d<164,而且7d是偶数,解得7d=28、42、56、70、84、98、112、126、140、154;然后分类讨论,求出该等差数列的首项和公差,进而求出第三名的分数是多少即可.解:设第8名的分数是a,公差为d,则8a=656…①,a+7d>90…②,由①,可得2a+7d=164…③,由②③,可得a<74,则16<7d<164,而且7d是偶数,解得7d=28、42、56、70、84、98、112、126、140、154,(1)当7d=28时,解得d=4,a=68,则第三名的分数是:68+5×4=88(分);(2)当7d=42时,解得d=6,a=61,则第一名的分数是:61+7×6=103(分)>100分,不符合题意;同理,可得7d=56、70、84、98、112、126、140、154时,均不符合题意,所以第三名的分数是88分.答:第三名的分数是88分.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:前n项和=首项×n+,第n项an=首项+(n﹣1)×公差.【题文】三年级一班期末数学考试中,前10名的成绩恰好构成一个等差数列,已知考试满分100分,每个同学的得分都是整数,而且第3、4、5、6名同学一共得了354分,又知道小悦得了96分,那么第10名同学得了多少分?【答案】61分或72分.【解析】试题分析:首先设第10名同学得了a分,前10名的成绩由低到高构成的等差数列公差是d,则第3、4、5、6名同学分别得了a+7d、a+6d、a+5d、a+4d;然后根据第3、4、5、6名同学一共得了354分,小悦得了96分,列出等量关系,求出第10名同学得了多少分即可.解:设第10名同学得了a分,前10名的成绩由低到高构成的等差数列公差是d,则第3、4、5、6名同学分别得了a+7d、a+6d、a+5d、a+4d,第3、4、5、6名同学一共得分为:(a+7d)+(a+6d)+(a+5d)+(a+4d)=4a+22d=354,整理,可得2a+11d=177…①,设小悦第m名,则1≤m≤10,则a+(10﹣m)d=96…②,②×2﹣①,可得(9﹣2m)d=15,(1)当9﹣2m=3,d=5时,解得,此时a=61;(2)当9﹣2m=5,d=3时,解得,此时a=72;(3)当9﹣2m=1,d=15时,解得,此时小悦第4名,第三名的得分是96+15=111(分),因为111>100,所以不符合题意;综上,可得第10名同学得了61分或72分.答:第10名同学得了61分或72分.点评:此题主要考查了等差数列的性质的应用,解答此题的关键是要明确:第n项an=首项+(n﹣1)×公差.。
等差数列认识(教师版)三年级奥数

等差数列认识(教师版)三年级奥数第一篇:等差数列认识 (教师版)三年级奥数2013春季第一讲等差数列认识| 三年级·提高班·教师版 | 第1讲2013春季教学目标1、认识简单的数列;2、掌握什么是等差数列;3、会求解简单的等差数列和;知识点拨1、如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列,这个数叫做等差数列的公差。
2、等差数列求和:(首项+末项)×项数÷23、求项数:(末项-首项)÷公差+14、求末项:首项+(项数-1)×公差(一)课堂引入1.学生学情分析:(1)三年级暑假对数列有过认识,并且三年级孩子比较喜欢找规律,并且对找规律比较擅长,所以可以从此入手,让孩子认识等差数列。
此为切入点!(2)数列计算和中,学生已经经历了凑整求和,所以在学习等差数列求和时,并不陌生,可以以此切入!此为难点!2.引入-高斯‘神速求和’的故事讲故事:高斯出生于一个贫困家庭,幼时家境贫困,但是异常聪明。
就在像大家这么大的时候,一次老师出了一道非常难得数学题:把1到100的自然数加起来,和是多少?正在同学们苦思冥想的时候,高斯略加思索就说出了答案。
同学们你们知道答案是多少吗?你们知道高斯用了什么方法巧妙地计算出来的吗?情景1:学生对高斯的故事可能会比较熟悉,或许会清楚1到100的自然数之和,对于这种情况,可以根据学生回答的情况,提问——你们谁知道高斯用了什么方法巧妙地计算出来的呢?情景2:这个问题,学生回答会比较困难,在此情况下,问:同学们想不想像高斯这样厉害,掌握这种巧妙的方法呢?那么,我的小高斯们,下面我就先来认识下等差数列。
| 三年级·提高班·教师版 | 第1讲2013春季(二)探索新知(一)等差数列的认识例题精讲例1:1、3、5、7、9、()【教学建议】等差数列的认识。
先让孩子去找规律填数,并让孩子去总结其中的规律所在,并能用合适的语言表达。
小学三年级简单等差数列

计算等差数列中的任意一项
判断等差数列的性质
求解等差数列的和
求解等差数列的项数
04
等差数列的求和公式
等差数列的求和公式
添加标题
添加标题
添加标题
添加标题
公式:S_n=n/2*(2_1+(n-1)d)
定义:等差数列的求和公式是用于计算等差数列和的公式
公式解释:S_n表示等差数列的和_1表示首项d表示公差n表示项数
求和公式:Sn=(n/2)(1+n)其中Sn是前n项和1是首项n是第n项。
应用:等差数列在日常生活和科学研究中有着广泛的应用例如在计算、工程、物理等领域。
汇报人:
感谢观看
06
总结与回顾
本节课的重点与难点
重点:理解等差数列的概念掌握等差数列的通项公式及其推导过程。
难点:如何应用等差数列的通项公式解决实际问题理解等差数列的性质及其应用。
回顾等差数列的定义、通项公式、求和公式及应用
定义:等差数列是一种常见的数列其中任意两个相邻项的差相等。
通项公式:n=1+(n-1)d其中n是第n项1是首项d是公差。
日常生活中的楼梯:每两级台阶的高度差是固定的形成了一个等差数列。
音乐简谱中的音高:在音乐简谱中音高之间的关系是按照等差数列来排列的。
植物生长:有些植物的叶子按照等差数列的规律生长例如向日葵的花瓣。
建筑结构:有些古代建筑的结构设计中使用了等差数列的原理例如金字塔的层高。
用等差数列解决实际问题的方法
建立数学模型:将实际问题转化为等差数列问题确定首项、公差和项数等关键参数。
每一项与它后一项的差也是一个常数
每一项与它前一项的差是一个常数
等差数列的表示方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲——等差数列
【精讲精练】
例1、有一个等差数列:4,7,10,13……,这个等差数列的第28项是多少?【答案】85
【解析】
4+(28-1)×3=85
练1、有一个等差数列:10、16、22、28……,这个等差数列的第42项是多少?【答案】256
【解析】
10+(42-1)×6=256
例2、一个等差数列有12项,每一项都比它的前一项小2,并且首项为55,那么末项是多少?
【答案】77
【解析】
55-(12-1)×2=33
练2、一个等差数列共有15项,每一项都比它的前一项大2,并且首项为30,那么末项是多少?
【答案】58
【解析】
30+(15-1)×2=58
例3、一个等差数列共有10项,每一项都比它的前一项小2,末项为75,那么首项是多少?
【答案】57
【解析】
75-(10-1)×2=57
练3、某露天剧场有30排座位,最后一排座位有86个,后面每排比前排多2个座位,第一排有多少个座位?
【答案】28个
【解析】
86-(30-1)×2=28(个)
例4、(1)一个等差数列首项为13,第9项为29,这个等差数列的公差是多少?【答案】2
【解析】
(29-13)÷(9-1)=2
(2)一个等差数列第5项是16,第11项是70,那么这个等差数列的公差是多少?
【答案】9
【解析】
(70-16)÷(11-5)=9
练4、一个等差数列第4项是19,第14项是79,那么这个等差数列的公差是多少?
【答案】6
【解析】
(79-19)÷(14-4)=6
例5、(1)一个等差数列首项为13,末项为85,公差为8,那么这个等差数列一共有多少项?
【答案】10项
【解析】
(85-13)÷8+1=10(项)
(2)一个等差数列第3项为40,末项为100,公差为6,那么这个等差数列一共有多少项?
【答案】13项
【解析】
(100-40)÷6+3=13(项)
练5、已知等差数列2,9,16,23,30,…那么93是其中的第几项?
【答案】14
【解析】
(93-2)÷7+1=14
【课后作业】
1、等差数列:1,6,11,16……,那么第11项是多少?
【答案】3
【解析】
1+(11-1)×5=51
2、一个等差数列共有12项,每一项都比它的前一项大2,并且首项为20,那么末项是多少?
【答案】42
【解析】
20+(12-1)×2=42
3、已知等差数列第3项等于31,第9项等于79,那么首项是多少?
【答案】15
【解析】
公差:(79-31)÷(9-3)=8
31-8×2=15
4、一个等差数列共有10项,每一项都比它的前一项大2,末项为75,那么首项是多少?
【答案】57
【解析】
75-(10-1)×2=57
5、一个等差数列首项是12,第8项是82,这个等差数列的公差是多少?
【答案】10
【解析】
(82-12)÷(8-1)=10
6、一个等差数列第5项为25,第16项为91,那么这个等差数列的公差等于多少?
【答案】6
【解析】
(91-25)÷(16-5)=6。