PN结及其单向导电特性半导体二极管的伏安特性曲线.
电工电子学第二版第六章

硅0.6~0.7V 锗0.2~0.3V
例:
D2 D1
求:UAB
两个二极管的阴极接在一起 A 取 B 点作参考点,断开二极管, + 分析二极管阳极和阴极的电位。 U
AB
6V
3k 12V
–
B
自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复合。在一 定温度下,载流子的产生和复合达到动态平衡,半导体中载 流子便维持一定的数目。
注意: (1) 常温下本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性能也就愈 好。所以,温度对半导体器件性能影响很大。 (3)相同条件下,本征半导体较一般半导体导电性弱很多。
Si
Si
Si 空穴
Si
价电子
在外电场的作用下,空穴吸引相邻原子的价电子来填 补,而在该原子中出现一个空穴,其结果相当于空穴的运动 (相当于正电荷的移动)称为复合运动。
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出现两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
DB导通
DA导通 均导通
当输入均为同3V时,输出才为3V 当输入有一为0V时,输出为0V 实现了“与”门逻辑
总结:
2、多个二极管连接: 若 共阴极,阳级最高一个先导通
若 共阳级,阴级最低一个先导通
先导通的一个二极管起嵌位作用。
例3限幅作用:R + ui – D + uo –
8V
已知:ui 18sin t V 二极管是理想的,试画 出 uo 波形。
第一章半导体器件的特性讲解

主要内容及要求
1.1 半导体的导电特性 1.2 PN结 1.3 二极管 1.4 双极型晶体管(BJT) 1.5 场效应管(FET)
基础,必须掌握: 基本概念,原理, 特征曲线、参数, 应用等。
了解原理,掌握特 征曲线、参数。
1.1 半导体的导电特性
半导体材料:
物质根据其导电能力(电阻率)的不同,可划分 导体、绝缘体和半导体。 -4 导 体:ρ<10 Ω·cm 9 绝缘体:ρ>10 Ω·cm 半导体:导电性能介于导体和绝缘体之间。 典型的元素半导体有硅Si和锗Ge ,此外,还有 化合物半导体砷化镓GaAs等。
1.5 场效应管
二、工作原理
VDS=0时, VGS 对沟道的控制作用
当VGS<0时, PN结反偏,| VGS | 耗尽层加厚沟道变窄。 VGS继续 减小,沟道继续变窄,当沟道夹断时, 对应的栅源电压VGS称为夹断电压VP ( 或VGS(off) )。 对于N沟道的JFET,VP <0。 若在漏源极间加上适当电压,沟道中有 电流ID流过。 VGS=0时,ID较大; VGS=VGS(off)时,ID近似为零, 这时管子截止。
1.5 场效应管
特点:
利用输入回路的电场效应控制输出回路的电流;仅靠半导体 中的多数载流子导电(单极型晶体管);输入阻抗高 (107~1012),噪声低,热稳定性好,抗辐射能力强,功 耗小。
分类:
1.5 场效应管
1.5.1结型场效应管 一、结构
N沟道结型场效应管结构示意图
N沟道管符号
P沟道管符号
晶体管结构示意图
晶体管符号
1.4 双极型晶体管
生成类型:合金型和平面型
要实现电流放大作用,要求: 发射区掺杂浓度高; 基区薄且掺杂浓度低; 集电结面积大。
半导体的导电特性

半导体
本征半导体 杂质半导体
P型半导体(空穴型) N型半导体(电子型)
常用半导体材料硅和锗的原子结构
价电子:最外层的电子受原子核的束缚最 小,最为活跃,故称之为价电子。 最外层有几个价电子就叫几价元素, 半导体材料硅和锗都是四价元素。
Si+14 2 8 4
Ge+32 2 8 18 4
2. 半导体的内部结构及导电方式:
一是势垒电容CB 二是扩散电容CD
(1) 势垒电容CB
势垒电容是由空间电荷区的离子薄层形成的。 当外加电压使PN结上压降发生变化时,离子薄层 的厚度也相应地随之改变,这相当PN结中存储的 电荷量也随之变化,犹如电容的充放电。
图 01.09 势垒电容示意图
(2) 扩散电容CD
扩散电容是由多子扩散后,在PN结的另一侧 面积累而形成的。因PN结正偏时,由N区扩散 到P区的电子,与外电源提供的空穴相复合,形 成正向电流。刚扩散 过来的电子就堆积在P 区内紧靠PN结的附近, 形成一定的多子浓度 梯度。
vi
RL vo
vo
t
例3:设二极管的导通电压忽略,已知
vi=10sinwt(V),E=5V,画vo的波形。
vi 10v
5v
R
t
D
vo
vi
E
vo
5v
t
例4:电路如下图,已知v=10sin(t)(V),
E=5V,试画出vo的波形
vi
解:
t
vD
t
例5:VA=3V, VB=0V,求VF (二极管的导 通电压忽略)
根据理论推导,二极管的伏安特性曲线可用下式表示
V
I IS (e VT 1)
式中IS 为反向饱和电流,V 为二极管两端的电压降 ,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数 ,q 为电子电荷量,T 为热力学温度。对于室温(相 当T=300 K),则有VT=26 mV。
模拟电子线路(模电)二极管和三极管

1.2 半导体二极管
结构
二极管 = PN结 + 管壳 + 引线
——成为硬件电路设计人才
学好模电、数电、单片机、DSP等。 初步具备 “看、算、选、干”能力
三、学什么?(What)
系 细化 电 细化 器 统 路 件 1、本课程研究内容: 各种半导体器件的性能、电路及应用 2、具体研究对象:
(1)按处理信号:1)模拟(A) 2)数字(D) (2)按信号频率:1)高频 2)中频 3)低频
耗尽层宽度一定
PN结
2. PN结的单向导电性
1.1 半导体的基本知识
(1) 加正向电压(正偏)——电源正极接P区,负极接N区 外电场的方向与内电场方向相反。 外电场削弱内电场 →耗尽层变窄 →扩散运动>漂移运动 →多子扩散形成正向电流I F
N型半导体 P型半导体 空间电荷区 耗尽层 N型半导体 P型半导体 + + + + - - - - + - + + + - - - 正向电流 - - - + - + + + - - - + - + + + + - - - + + + - - + - - + + + - 内电场 E
,所有的价电子都紧紧束 缚在共价键中,不会成为 自由电子,因此本征半导 体的导电能力很弱,接近
模拟电子技术学习指导与习题解答分析

把电路分成两个部分,一部分是由二极管组成的非线性电路,另一部分则是由电源、 电阻等线性元件组成的线性部分。分别画出非线性部分(二极管)的伏安特性曲线和线性部
分的特性曲线,两条特性曲线的交点即为电路的工作电压和电流。
2)等效模型分析法
二极管的等效模型有四种:理想、恒压降、折线和微变等效模型。一般情况下,理想 模型和恒压降模型用得较多。
还兼作阴极),其中,阴极有发射电子的作用,阳极有接收电子的作用。二极管具有单向导 电的特性,可用作整流和检波。在二极管的基础上增加一个栅极就成了电子三极管,栅极
能控制电流,栅极上很小的电流变化,都会引起阳极很大的电流变化,所以,电子三极管 有放大作用。
5.晶体管和集成电路
1)晶体管
通俗地说,晶体管是半导体做的固体电子元件。像金、银、铜、铁等金属,它们导电 性能好,叫做导体。木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体。导电性能介于导 体和绝缘体之间的物质,叫半导体。晶体管就是用半导体材料制成的,这类材料中最常见 的便是锗和硅两种。晶体管的出现是电子技术之树上绽开的一朵绚丽多彩的奇葩。
图2.5 PN结的形成
当浓度差引起的多子的扩散运动和内电场引起的少子的漂移运动达到动态平衡时,就 形成了PN结。
2)PN结的单向导电性
PN结加正向偏置时,能形成较大的正向电流,PN结正向电阻很小;加反向偏置时,
反向饱和电流很小,PN结呈高阻这就是PN结的单向导电性。
3.半导体二极管
1)二极管的伏安特性
PN结外加正向电压一一正向偏置时, 由于是多子导电,因而外加电压的微小变化将使
电流有较大的变化。结果,扩散力大于电场力 一一由多子形成的扩散(正向)电流起主导地
位,而少子形成的漂移电流可忽略不计, 空间电荷区变窄,电阻变小。当外加负向电压 ——
半导体二极管及其应用习题解答

半导体二极管及其应用习题解答Document number:NOCG-YUNOO-BUYTT-UU986-1986UT第1章半导体二极管及其基本电路教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表第1章教学内容与要求内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。
N 型半导体呈电中性。
(2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。
P 型半导体中的多子是空穴,少子是自由电子。
P 型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN 结及其特性1.PN 结的形成在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
单向导电实验报告(3篇)

第1篇一、实验目的1. 了解二极管的基本结构和工作原理。
2. 验证二极管的单向导电特性。
3. 掌握使用万用表测试二极管的方法。
4. 分析二极管伏安特性曲线。
二、实验原理二极管是由P型半导体和N型半导体构成的半导体器件,其核心是PN结。
PN结具有单向导电性,即当P型半导体接正极,N型半导体接负极时,电流可以顺利通过;而当N型半导体接正极,P型半导体接负极时,电流无法通过。
二极管的单向导电性主要由PN结的特性决定。
在PN结的交界面附近,由于N区的自由电子浓度大于P区,自由电子会从N区向P区扩散,形成空间电荷区。
这个空间电荷区会形成一个内电场,阻碍电子的进一步扩散,从而形成阻挡层。
当PN结加上正向电压时,内电场被削弱,电子可以顺利通过;而当PN结加上反向电压时,内电场被加强,电子难以通过,从而实现单向导电。
三、实验仪器与材料1. 万用表2. 二极管3. 电阻4. 电源5. 连接线6. 电路板四、实验步骤1. 搭建实验电路,将二极管、电阻、电源和连线连接好。
2. 使用万用表设置在二极管测试模式。
3. 首先进行正向测试,将万用表的正极接二极管的正极,负极接负极,观察万用表的读数。
4. 然后进行反向测试,将万用表的正极接二极管的负极,负极接正极,观察万用表的读数。
5. 重复以上步骤,多次测试,观察结果。
6. 分析实验数据,绘制二极管伏安特性曲线。
五、实验结果与分析1. 正向测试:在正向测试中,万用表显示正向导通,电流值较大,说明二极管处于导通状态。
2. 反向测试:在反向测试中,万用表显示反向截止,电流值非常小,说明二极管处于截止状态。
3. 伏安特性曲线:根据实验数据,绘制二极管伏安特性曲线,可以看出二极管在正向电压下导通,反向电压下截止。
六、实验结论通过本次实验,我们验证了二极管的单向导电特性。
实验结果表明,二极管在正向电压下导通,反向电压下截止,这与二极管的结构和工作原理相符。
七、实验心得1. 本次实验让我们深入了解了二极管的基本结构和工作原理,提高了我们对电子电路的认识。
模电教材(PDF)

1.正向特性2.反向特性3.反向击穿特性4.温度对特性的影响1.2.3 半导体二极管的主要参数1.最大整流电流IF2.最大反向工作电压URM3.反向饱和电流IR4.二极管的直流电阻R5.最高工作频率fM1.2.4 半导体二极管的命名及分类1.半导体二极管的命名方法第2章半导体三极管及其放大电路本章重点内容�晶体三极管的放大原理、输入特性曲线、输出特性曲线�基本放大电路的工作原理及放大电路的三种基本偏置方式�利用估算法求静态工作点�微变等效电路及其分析方法�三种基本放大电路的性能、特点2.1 半导体三极管2.1.1 三极管的结构及分类1.三极管的内部结构及其在电路中的符号N PP2.输出特性曲线(1)放大区(2) 饱和区(3) 截止区2.1.4 三极管正常工作时的主要特点1.三极管工作于放大状态的条件及特点2.三极管工作于饱和状态的条件及特点3.三极管工作于截止状态时的条件及特点*2.1.5 特殊晶体管简介1.光电三极管2.1.6 三极管的主要参数1.电流放大系数2.反向饱和电流ICBO3.穿透电流ICEO4.集电极最大允许电流ICM5.集电极、发射极间的击穿电压UCEO。
6.集电极最大耗散功率PCM2.1.7 三极管的检测与代换1.国产三极管的命名方法简介2.三极管三个电极(管脚)的估测(aωωωωω2.4.2 放大电路的图解分析法1.用图解法确定静态工作点的步骤:(1)在i c 、u ce 平面坐标上作出晶体管的输出特性曲线。
(2)根据直流通路列出放大电路直流输出回路的电压方程式:U CE = V CC -I C ·R C(3)根据电压方程式,在输出特性曲线所在坐标平面上作直流负载线。
因为两点可决定一条直线,所以分别取(I C =0,U CE =V CC )和(U CE =0,I C =E C /R c )两点,这两点也就是横轴和纵轴的截距,连接两点,便得到直流负载线。
(4)根据直流通路中的输入回路方程求出I BQ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(b)晶体的共价键结构及电子空穴对的产生
图 1.1硅、锗原子结构模型及共价键结构示意图
1.1.2 杂质半导体 1.N型半导体 2.P型半导体
+4
+4
+4
+4
+5
+4
+4
+4
+4
磷原子 自由电子
电子一空穴对
图1.2 N型半导体的结构
空穴
+4
+4
+4
+4
+3
+4
硼原子
+4
+4
3. PN结的形成 P区
1.2.4 半导体二极管的命名及分类
1.半导体二极管的命名方法
用数字表示规格 用数字表示序号 用字母表示类型 用字母表示材料和极性 用数字表示电极数目
图1.8 半导体器件的型号组成 2.半导体二极管的分类 1.2.5 二极管的判别及使用注意事项 1.二极管的判别(用万用表进行检测) (1)二极管正、负极性及好坏的判断
(3)集电极最大允许功耗PCM 。
1.3.5 三极管的检测与代换
1.国产三极管的命名方法简介
2.三极管三个电极(管脚)的估测
EBC
EBC
B E
C1397
3.南韩、日本三极管介绍。
BCE
C
4.彩电和彩显行输出管简介
5.三极管好坏的判别
(a)
(b)
图1.17 三极管引脚识别示意图
6.三极管的代换原则
(2)三极管内部载流子的 传输过程
a)发射区向基区注入电子
,形成发射极电流 iE b)电子在基区中的扩散与 IB
复合,形成基极电流 iB c)集电区收集扩散过来的
RB
电子,形成集电极电流 iC
(3)电流分配关系:
UBB
IE
iE = iC + iB
IC N RC
P UCC N
实验表明IC比IB大数十至数百倍,因而有。IB虽然很 小,但对IC有控制作用,IC随IB的改变而改变,即基 极电流较小的变化可以引起集电极电流较大的变化,
(2) PN结的反向截止特性
(b)反向偏置
1.2 半导体二极管
1.2.1 半导体二极管的结构及其在电路中的符号
外壳
(阳极)
PN
阳极引线
(a) 结构
(阴极) -
VD (阴极)
+
-
阴极引线
(b)电路符号
(c)实物外形
图1.6 二极管结构、符号及外形
1.2.2 半导体二极管的伏安特性
iv/m A
锗
硅
1
B′
三极管的输入特性曲线
2.输出特性曲线
(1)放大区:发射极正向偏置,集电结反向偏置
(2)截止区:发iC射结反i向B 偏置,集电结反向偏置
(3)饱和区:iB发射0结,正iC向偏0置,集电结正向偏置
iB 0, uBE 0, uCE uBE
此时 iC iB
截止区
IC /mA 4
3
表明基极电流对集电极具有小量控制大量的作用,这
就是三极管的电流放大作用。
1.3.3 三极管的特性 工作状态及接法
1.输入特性曲线 IC mA
IB μA
+ UCE
RC
RB
+ -V
V UBE
UCC
UBB
-
测量三极管特性的实验电路
与二极管类似
IB /mA
40
30 20
UCE≥1V
10
0 0.4 0.8 UBE /V
(2)二极管好坏的判别 (3)硅二极管和锗二极管的判断
(4)普通二极管和稳压管的判别
2.二极管使用注意事项
1.2.6 几种常用的特殊二极管
1. 稳压二极管
(1).稳压二极管的工作特性
I/mA
UZ
ΔUZ
UB
UA
0
VD
U/V
A
IA(Izmin)
ΔIZ
IZ
IA(Izmax) B
(a) 伏安特性 图1.9 稳压二极管的特性曲线和符号
B
5
-U(
BR)
I
-R 30
1 00
A′ 0.2A 0.4Fra bibliotekuv/
C
5 - 0.6 0.8
V
C′
5
D D′
(μA )
图1。.7 二极管伏安特性曲线
1.正向特性 2.反向特性 3.反向击穿特性 4.温度对特性的影响
1.2.3 半导体二极管的主要参数
1.最大整流电流IF 2.最大反向工作电压URM
3.反向饱和电流IR 4.二极管的直流电阻R 5.最高工作频率fM
第1章 半导体器件
本章重点内容 PN结及其单向导电特性 半导体二极管的伏安特性曲线 二极管在实际中的应用 三极管的结构和工作原理 三极管的放大作用 三极管的测量
1.1 PN结
+4
+4
+4
1.1.1 本征半导体
价电子
+4
+4
+4
+4
c
b
a
+4
+4
+4
共价键的两 个价电子
自由电子
空穴
(a)硅和锗原子的简化结构模型
+4
电子一空穴对
图1.3 P型半导体的结构
N区
P区
空间电荷区 N区
内电场
图1.4 PN结的形成
4. PN结的单向导电特性 (1) PN结的正向导通特性
P
空穴 (多数)
变薄
IR
内电场
外电场
N
电子 (多数)
R
P
电子 (少数)
变厚
IR≈0
内电场
外电场
N
空穴 (少数)
R
(a) 正向偏置 图1.5 PN结的导电特性
(b)符号
(2).稳压管的主要参数 2. 发光二极管
(1).普通发光二极管 (2).红外线发光二极管 3.激光二极管 4 光电二极管 5 变容二极管
CJ/p F
80
60
40
20
VD
0
2 4 6 8 10 12 14 U/V
(a) 压控特性曲线
(b) 电路符号
图1.10 变容二极管的压控特性曲线和电路符号
2
1
饱和区 100μ A
放 大
80μ A 60μ A 40μ A
区 20μ A
IB=0
0
36
9 12 UCE /V
1.3.4 三极管的主要参数
1、电流放大系数β:iC= β iB 2、极间反向电流iCBO、iCEO:iCEO=(1+ β )iCBO 3、极限参数 (1)集电极最大允许电流 ICM:下降到额定值的 2/3时所允许的最大集电极电流。 (2)反向击穿电压U(BR)CEO:基极开路时,集电 极、发射极间的最大允许电压。
1.3 半导体三极管
1.3.1 三极管的结构及类型
半导体三极管是由两个背靠背的PN结构成 的。在工作过程中,两种载流子(电子和空 穴)都参与导电,故又称为双极型晶体管, 简称晶体管或三极管。
两个PN结,把半导体分成三个区域。 这三个区域的排列,可以是N-P-N,也可以 是P-N-P。因此,三极管有两种类型:NPN 型和PNP型。
NPN型
集电结
B 发射结
C 集电区
N P 基区 B
N 发射区
E
PNP型
集电结 B 发射结
C 集电区
P
N 基区 B
P
发射区
E
C
正箭
E
向头
电方
压向
时表
的示
电发
C
流射
方结
向加
E
1.3.2 电流分配和电流放大作用
(1)产生放大作用的条件 内部:a)发射区杂质浓度>>基区>>集电区 b)基区很薄 外部:发射结正偏,集电结反偏