二次函数与幂函数_PPT课件
合集下载
二次函数幂函数课件.ppt

基础诊断
考点突破
课堂总结
4.函数 y=x 的图像是
()
解析 显然 f(-x)=-f(x),说明函数是奇函数,同时由当 0<x <1 时,x >x;当 x>1 时,x <x,知只有 B 选项符合. 答案 B
基础诊断
考点突破
课堂总结
5.已知幂函数 y=f(x)的图像过点2, 22,则此函数的解析式为 ________;在区间________上递减.
a-2,a<1, 综上所述,f(x)min=-1a,a≥1.
基础诊断
考点突破
课堂总结
规律方法 (1)二次函数在闭区间上的最值主要有三种类型:轴 定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的 关键是考查对称轴与区间的关系,当含有参数时,要依据对称 轴与区间的关系进行分类讨论.(2)二次函数的单调性问题则主 要依据二次函数图像的对称轴进行分析讨论求解.
基础诊断
考点突破
课堂总结
规律方法 (1)识别二次函数的图像主要从开口方向、对称轴、 特殊点对应的函数值这几个方面入手.(2)而用数形结合法解决 与二次函数图像有关的问题时,要尽量规范作图,尤其是图像 的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样 在解题时才不易出错.
基础诊断
考点突破
课堂总结
在 x∈-2ba,+∞上 单调递减
对称性
函数的图象关于 x=-2ba对称
基础诊断
考点突破
课堂总结
2. 幂函数 (1)幂函数的定义 如果一个函数,底数是自变量x,指数是常量α,即y=xα,这 样的函数称为幂函数. (2)常见的5种幂函数的图像
基础诊断
考点突破
课堂总结
(3)常见的5种幂函数的性质
二次函数与幂函数一轮复习课件(共21张PPT)

4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,
第5讲二次函数与幂函数PPT课件

或1a≥4, f4=16a-8+2≥0,
∴aa≥≥10, 或14a<>a12<1,
或aa≤≥1438,.
∴a≥1 或12<a<1 或∅,即 a>12;
(2)当 a<0 时, f1=a-2+2≥0, f4=16a-8+2≥0, 解得 a∈∅; (3)当 a=0 时, f(x)=-2x+2,f(1)=0,f(4)=-6, ∴不合题意.
,
增
[0,+∞)增
(0,0),(1,1)
[0,+∞) 非奇非偶
增
y=x-1
{x|x∈R且 x≠0}
{y|y∈R 且y≠0}
奇 (-∞,0)减
, (0,+∞)减
(1,1)
2.二次函数 (1)二次函数的定义 形如 f(x)=ax2+bx+c(a≠0) 的函数叫做二次函数. (2)二次函数的三种常见解析式 ①一般式:f(x)=ax2+bx+c(a≠0); ②顶点式:f(x)=a(x-m)2+n(a≠0); ③两根式:f(x)=a(x-x1)(x-x2)(a≠0).
答案 f(x)= x
5.二次函数y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1, x2,则x1+x2=________.
解析 由 f(3+x)=f(3-x),知函数 y=f(x)的图象关于直线 x=3 对称,
应有x1+2 x2=3⇒x1+x2=6.
答案 6
考点一 幂函数的图象与性质
【训练3】 函数f(x)=-x2+4x-1在区间[t,t+1](t∈R)上的最大值为g(t).
(1)求g(t)的解析式; 请先暂停,完成题目后继续观看!
(2)求g(t)的最大值. 解 (1)f(x)=-x2+4x-1=-(x-2)2+3.对称轴x=2. ①当t+1<2,即t<1时,函数f(x)在区间[t,t+1]上为增函数,
专题10二次函数与幂函数ppt课件

D.5a<5-a<0.5a
解析 5-a=15a,因为 a<0 时,函数 y=xa 在(0,+∞)上单调递减,且15<0.5<5, 所以 5a<0.5a<5-a.
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
函数、导数及其应用
3.(2019·山东威海模拟)若a<0,则0.5a,5a,5-a的大小关系是( B )
A.5-a<5a<0.5a
B.5a<0.5a<5-a
C.0.5a<5-a<5a
在 x∈-2ba,+∞上单调递增
在 x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba对称
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
函数、导数及其应用
1.幂函数的图象和性质
(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
函数、导数及其应用
考向 1:二次函数的图象
已知函数 f(x)=ax2-x-c,且 f(x)>0 的解集为(-2,1),则函数 y=f(-x) 的图象为( D )
幂函数_PPT

Δ=k2-8m>0, ∵f(0)=2,故需满足0<2km<1,
m>0, f1>0
k2>8m m>0, ⇒0m<-k<k2+m2,>0,
将 k 看做函数值,m 看做自变量,画出可行域如图阴影部分所示,
因为 m,k 均为整数,结合可行域可知 k=7,m=6 时,m+k 最小,最
小值为 13.
答案:D
幂函数
幂函数与性质
+ 二、二次函数的表示形式 + 1.一般式:y= ax2+bx+c(a≠0) . + 2.顶点式:y= a(x-h)2+k(a≠0) ,其中 (h,k) 为抛物线的顶
点坐标. + 3.零点式:y= a(x-x1)(x-x2)(a≠0) ,其中x1、x2是抛物线与x轴交
[答案] -21
+ 2.(2013年济南质检)如图是一个二次函数y=f(x)的图象. + (1)写出这个二次函数的零点; + (2)写出这个二次函数的解析式及x∈[-2,1]时函数的值域.
+ 解析:(1)由图可知这个二次函数的零点为x1=-3,x2=1. + (2)可设两点式f(x)=a(x+3)(x-1),又图象过(-1,4)点,代入得a=
+ (2)f(x)>x+k在区间[-3,-1]上恒成立,转化为x2+x+1>k在[-3, -1]上恒成立.设g(x)=x2+x+1,x∈[-3,-1],则g(x)在[-3, -1]上递减.∴g(x)min=g(-1)=1.
+ ∴k<1,即k的取值范围为(-∞,1).
+ 在本例(1)的条件下,若存在x∈[-3,-1]使f(x)>x+k在[-3,-1] 上成立,试求k的取值范围.
高考数学《二次函数与幂函数》公开课优秀课件(经典、完美、值得收藏)

在 0, 上递增
0, ,0 0,
0,
非奇非 偶函数
增函数
,0 0,
奇函数
在 , 0和
0, 上递减
定点
0, 0 , 1,1
1,1
2.二次函数
(1)二次函数的解析式
ax2 bx c
h, k
(2)二次函数的图象与性质
函数
y ax2 bx c (a 0)
图象
y ax2 bx c (a 0)
例1(2)已知
2,1,
1 2
,
1 2
,1,2,3.
若幂函数
f (x) x为奇函数,
且在 (0,) 上递减,则 =____1____.
解:(2)由题意知 α 可取-1,1,3. 又 y=xα 在(0,+∞)上是减函数,
∴α<0,取 α=-1.
考点二 二次函数的解析式
例2 已知二次函数 f (x)满足 f (2) 1, f (1) 1 ,且 f (x) 的最大值是8, 试确定该二次函数的解析式.
分析: f (x) x2 2ax 1 a
当 a≥1 时 ymax a
当0 a 1时 ymax a2 a 1
当a ≤0 时 ymax 1 a
根据已知条件得
a≥1 a 2
或
0 a 1 a2 a 1 2
或
a≤0 1 a 2
解之得 a 2 或 a 1
五、总结提升
1.与二次函数单调性有关的问题. 2.求二次函数最值的类型及解法. 3.不等式恒成立问题的解法.
考点二 二次函数的解析式
例2 已知二次函数 f (x)满足 f (2) 1, f (1) 1 ,且 f (x) 的最大值是8, 试确定该二次函数的解析式.
0, ,0 0,
0,
非奇非 偶函数
增函数
,0 0,
奇函数
在 , 0和
0, 上递减
定点
0, 0 , 1,1
1,1
2.二次函数
(1)二次函数的解析式
ax2 bx c
h, k
(2)二次函数的图象与性质
函数
y ax2 bx c (a 0)
图象
y ax2 bx c (a 0)
例1(2)已知
2,1,
1 2
,
1 2
,1,2,3.
若幂函数
f (x) x为奇函数,
且在 (0,) 上递减,则 =____1____.
解:(2)由题意知 α 可取-1,1,3. 又 y=xα 在(0,+∞)上是减函数,
∴α<0,取 α=-1.
考点二 二次函数的解析式
例2 已知二次函数 f (x)满足 f (2) 1, f (1) 1 ,且 f (x) 的最大值是8, 试确定该二次函数的解析式.
分析: f (x) x2 2ax 1 a
当 a≥1 时 ymax a
当0 a 1时 ymax a2 a 1
当a ≤0 时 ymax 1 a
根据已知条件得
a≥1 a 2
或
0 a 1 a2 a 1 2
或
a≤0 1 a 2
解之得 a 2 或 a 1
五、总结提升
1.与二次函数单调性有关的问题. 2.求二次函数最值的类型及解法. 3.不等式恒成立问题的解法.
考点二 二次函数的解析式
例2 已知二次函数 f (x)满足 f (2) 1, f (1) 1 ,且 f (x) 的最大值是8, 试确定该二次函数的解析式.
高中数学必修1课件 第二章基本初等函数之二次函数和幂函数

2.二次函数y=f(x)与y=g(x)的图像开口大 小相同, 开口方向也相同,已知函数g(x)=x2+1, f(x)图像 的顶点为(3,2),则f(x)的表达式为Y=(x-3) 2+2
发展性训练 1.由y=3(x+2)2+4的图像经过怎样的平移 变换, 可以得到y=3x2的图像. 右移2单位,下移4单位 2.把函数y=x2-2x的图像向右平移2个单 位, 再向下平移3个单位所得图像对应的函 数 2 -2(x-2)-3=x 2 -6x+5= (x-3) 2 -4 Y=(x-2) 解析式为
2、(2002河南两广高考)已知 a>0,f(x)=ax-bx2. (1)b>0时,若对任意x ∈ R都有 f(x)≤ 1,证明a≤ 2 . b (2)b>1时,证明 对任意 x ∈[ 0,1 ], │ f(x) │≤1的充要条件是 b-1 ≤ a ≤ 2 b
(3)0<b ≤ 1时, 求 对任意 x∈[ 0, 1 ], │ f(x) │≤ 1的充要条件。
求下列函数的定义域和值域:
x 3 x 4 (1) y= 2 x 3 x 4
2
(2) y= 1 2x x (3) y= 1 x x 3
作函数的图象的常用方法
1. 描点作图法; 2. 变换作图法.
基础练习
画出下列函数的图象, 并 说明它们的关系:
(1) (2)
(3)
变换作图法
平移变换
对称变换
作 业
画出下列函数的图象:
(1) (2) y=x2+2 x +1 y= x 2 x
2
② y=-x2-2x+3, x∈[-5, 0] ③ y= x 1 x
二次函数与幂函数

������ ������
4 已知函数 f( x) =ax2+x+5 的图象在 x 轴上方, 则 a 的取值范围 是
.
������ -������������
5 幂函数 y=������������
( m∈Z) 的图象如图所示, 则 m 的值为
.
4【 . 解析】 因为 f(x)=ax2+x+5 的图象在 x 轴上方, 所以 Δ=1-20a<0 且 a>0, 解得 a>������������. 【答案】
������ , ������������ ������
+∞
������ -������������
5.【解析】∵y=������������ 即 0<m<4.
(m∈Z)的图象与坐标轴没有交点, ∴m2-4m<0,
又∵该函数的图象关于 y 轴对称, 且 m∈Z, ∴m2-4m 为偶数, ∴m=2. 【答案】2
1 2
2 3
,b=
1 5
2 3
,c=
1 2
1 3
,则 a,b,c 的大小关系
) B. c<a<b D. b<a<c
(2)因为 y=������ (x>0)是增函数,所以 a= a=
1 2 1 2
2 3 2 3
2 3
> <
1 5 1 2
2 3 1 3
=b.因图像
{x|x≥0} {y|y≥0}
{x|x≠0} {y|y≠0} 奇
函数 在 (-∞,0) 和 (0,+∞) 上 单调递减
奇
函数 在R上
{y|y≥0} 偶
函数 在 (-∞,0) 上 单调递减,
4 已知函数 f( x) =ax2+x+5 的图象在 x 轴上方, 则 a 的取值范围 是
.
������ -������������
5 幂函数 y=������������
( m∈Z) 的图象如图所示, 则 m 的值为
.
4【 . 解析】 因为 f(x)=ax2+x+5 的图象在 x 轴上方, 所以 Δ=1-20a<0 且 a>0, 解得 a>������������. 【答案】
������ , ������������ ������
+∞
������ -������������
5.【解析】∵y=������������ 即 0<m<4.
(m∈Z)的图象与坐标轴没有交点, ∴m2-4m<0,
又∵该函数的图象关于 y 轴对称, 且 m∈Z, ∴m2-4m 为偶数, ∴m=2. 【答案】2
1 2
2 3
,b=
1 5
2 3
,c=
1 2
1 3
,则 a,b,c 的大小关系
) B. c<a<b D. b<a<c
(2)因为 y=������ (x>0)是增函数,所以 a= a=
1 2 1 2
2 3 2 3
2 3
> <
1 5 1 2
2 3 1 3
=b.因图像
{x|x≥0} {y|y≥0}
{x|x≠0} {y|y≠0} 奇
函数 在 (-∞,0) 和 (0,+∞) 上 单调递减
奇
函数 在R上
{y|y≥0} 偶
函数 在 (-∞,0) 上 单调递减,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增增
时,减x∈(-
经 典
∈(-∞,0]
考
∞,0)时,减
题
时,减
课 时
规
定点
(0,0),(1,1)
范
(1,1)
训
练
【基础自测】
基
础
知
1.已知点
33,3
3 在幂函数f(x)的图象上,则f(x)的表达式是
识 梳 理
聚
焦
()
考 向
透
A.f(x)=x3
B.f(x)=x-3
析
感
C.f(x)=x12
D.f(x)=x-12
焦 考
向
(1)求f(x)解析式;
透 析
感
(2)若g(x)与f(x)图象关于原点对称,求g(x)解析式.
悟 经
典
【审题视点】 对于(1),可设二次函数的零点式,再结合最值
考 题
课
求出系数a即得;对于(2),可通过图象上点的对应关系求g(x)解析
时 规
范
式.
训 练
【解】 (1)由于f(x)有两个零点0和-2,
基
础
知
所以可设f(x)=ax(x+2)(a≠0),
识 梳
理
这时f(x)=ax(x+2)=a(x+1)2-a,
聚
焦
考
由于f(x)有最小值-1,
向 透
析
所以必有-a>a=0 -1 ,
感 悟 经 典
考
题
解得a=1.
课
时
因此f(x)的解析式是f(x)=x(x+2)=x2+2x.
规 范
训
练
基
础
知
(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点
典
求解,最值一般在区间的端点或顶点处取得.
考 题
(2)二次函数单调性问题的解法
课 时
规
范
结合二次函数图象的升、降对对称轴进行分析讨
训
练
论求解.
2.(2013·无锡联考)设函数f(x)=mx2-mx-1,若f(x)<0的解集
基
础
为R,则实数m的取值范围是________.
知 识
梳
解析:当m=0时,f(x)=-1<0,适合x∈R.
课 时 规
范
训
练
基
础
知
识
梳
理
对称轴
x=-2ba
聚 焦 考
向
顶点坐标
-
b
,4ac-|b2
透 析
2a 4a
感 悟
经
奇偶性
b=0⇔y=ax2+bx+c(a≠0)是偶函数
典 考
题
课 时 规 范 训 练
基
础
在-∞,-2ba上是减函 在-∞,-2ba上是增函
知 识 梳 理
单调性 数;在-2ba,+∞上是 数;在-2ba,+∞上是减
典 考 题
课 时 规
范
训
答案:C
练
基 础 知 识 梳 理
聚
4.(教材改编)当α∈ -1,12,1,3 时,幂函数y=xa的图象不
焦 考 向 透
析
可能经过第________象限.
感
悟
经
答案:二 四
典 考
题
课 时 规 范 训 练
基
础
5.(教材改编)已知函数y=x2-2x+3在闭区间[0,m]上有最大
基
∴f(x)min=f(1)=-2.2分
础 知
识
(2)当a>0时,f(x)=ax2-2x的图象的开口方向向上,且对称轴
梳 理
感 悟
经
典
∴抛物线对称轴为x=2+2-1=12.
考 题
课
时
∴m=12.
规 范 训 练
基
础
又根据题意函数有最大值为n=8,
知 识
梳
理
∴y=f(x)=ax-122+8.
聚 焦
考
向
∵f(2)=-1,∴a2-122+8=-1,
透 析
感
悟
解之,得a=-4.
经 典
考
题
∴f(x)=-4x-122+8=-4x2+4x+7.
【审题视点】 对于(1)和(2)可根据对称轴与区间的关系直接求
考 题
课
解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数
时 规
范
定义域的限制.
训 练
【解】 (1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x
基 础
知
识
∈[-4,6],
梳 理
∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,
悟 经 典 考
题
答案:B
课 时
规
范
训
练
2.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件
基 础
知
是( )
识 梳
理
A.m=-2 C.m=-1
B.m=2
聚 焦
考
D.m=1
向 透
析
解析:函数f(x)=x2+mx+1的图象的对称轴为x=-m2 ,且只有
感 悟 经 典
考
一条对称轴,所以-m2 =1,即m=-2.
题
课 时
规
范
答案:A
训 练
3.已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b 基
础
=( )
知 识
梳
理
A.3
B.2或3
聚
焦
C.2
D.1或2
考 向
透
析
解析:函数f(x)=x2-2x+2在[1,b]上递增,
感
悟
经
f1=1 由已知条件fb=b
b>1
,即bb2>-13b+2=0 ,解得b=2.
梳 理
下降,反之也成立.
聚 焦
考
向
(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;
透 析
0<α<1时,曲线上凸;α<0时,曲线下凸.
感 悟
经
典
(3)幂函数的图象最多只能出现在两个象限内;
考 题
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.
课 时
规
范
训
练
3.幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的
焦
考
的位置,两点不应忽视.
向
透
析
2.幂函数的图象一定会出现在第一象限,一定不会出现在第 感 悟 经
四象限,至于是否出现在第二、三象限,要看函数的奇偶性;幂函 典 考 题
数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标 课
时
规
轴相交,则交点一定是原点.
范
训
练
基 础 知 识 梳 理
3.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底
(3)当a=1时,f(x)=x2+2x+3,
聚
焦
考
∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],
向 透
析
且f(x)=xx22-+22xx++33,,xx∈∈[-0,6,6] 0] ,
感 悟 经 典 考
题
∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].
课
时
规
范
理
聚
焦
当m≠0时,f(x)=mx2-mx-1的图象开口向下,且与x轴无交
考 向
透
点.
析
感
悟
∴m-<m02+4m<0 ,∴0>m>-4.
经 典 考 题
课
综上,-4<m≤0.
时 规
范
训
答案:(-4,0]
练
基
考向三 幂函数图象性质及应用
础 知
识
梳
(1)(2013·山西太原模拟)当0<x<1时,f(x)=x2,g(x)=x
当m=1时,m2-2m-3=1-2-3=-4(舍去).
课 时
规
范
当m=2时,m2-2m-3=22-2×2-3=-3,∴m=2.
训 练
【答案】 (1)h(x)>g(x)>f(x) (2)2
【方法总结】 (1)α的正负:α>0时,图象过原点和(1,1),在
基 础
知
识
第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象
课 时 规
范
训
练
考向二 二次函数图象与性质的应用
基
已知函数f(x)=x2+2ax+3,x∈[-4,6].
础 知
识
(1)当a=-2时,求f(x)的最值;
梳 理
聚
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函
焦 考
向
数;
透 析
感
(3)当a=1时,求f(|x|)的单调区间.
悟 经
典
课 时
规
范
训
练
【解析】 (1)分别作出f(x),g(x),h(x)的图象,如图所示.
可知h(x)>g(x)>f(x). 基 础 知 识 梳 理
聚 焦 考 向 透 析
(2)由题意知m2-2m-3为奇数且m2-2m-3<0,由m2-2m-3
感 悟
经
典
<0得-1<m<3,又m∈N*,故m=1,2.
考 题
聚 焦 考
向
x为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要
透 析
感
依据和唯一标准.应当注意并不是任意的一次函数、二次函数都是 悟
经