二次函数ppt课件演示文稿
合集下载
二次函数的应用课件ppt课件ppt课件ppt

要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
二次函数性质ppt课件

二次函数性质ppt课 件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的图象变换 • 二次函数的应用 • 习题与解答
01
二次函数的基本概 念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$ 。
详细描述
二次函数是数学中一种常见的函 数形式,其定义是基于变量的二 次方。在定义中,$a$、$b$和 $c$是常数,且$a neq 0$。
最值
总结词
当a>0时,二次函数有最小值;当a<0时,二次函数有最大 值。最值出现在对称轴上,即x=-b/2a处。
详细描述
由于抛物线的开口方向由系数a决定,当a>0时,抛物线有最 小值;当a<0时,抛物线有最大值。这些最值出现在对称轴 上,即x=-b/2a处。最值的y坐标可以通过公式c-b^2/4a计 算得出。
03
二次函数的图象变 换
平移变换
平移变换是指将二次 函数的图象沿x轴或y 轴进行移动。
如果将二次函数 y=ax^2+bx+c的图 象沿y轴平移k个单位 ,得到新的函数为 y=ax^2+bx+c-k。
如果将二次函数 y=ax^2+bx+c的图 象沿x轴平移k个单位 ,得到新的函数为 y=ax^2+(b2ak)x+c+ak^2。
翻折变换
翻折变换是指将二次函数的图 象沿某条直线进行翻折。
如果将二次函数 y=ax^2+bx+c的图象沿x轴翻 折,得到新的函数为y=-ax^2bx-c。
如果将二次函数 y=ax^2+bx+c的图象沿y轴翻 折,得到新的函数为y=ax^2+bx-c。
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的图象变换 • 二次函数的应用 • 习题与解答
01
二次函数的基本概 念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$ 。
详细描述
二次函数是数学中一种常见的函 数形式,其定义是基于变量的二 次方。在定义中,$a$、$b$和 $c$是常数,且$a neq 0$。
最值
总结词
当a>0时,二次函数有最小值;当a<0时,二次函数有最大 值。最值出现在对称轴上,即x=-b/2a处。
详细描述
由于抛物线的开口方向由系数a决定,当a>0时,抛物线有最 小值;当a<0时,抛物线有最大值。这些最值出现在对称轴 上,即x=-b/2a处。最值的y坐标可以通过公式c-b^2/4a计 算得出。
03
二次函数的图象变 换
平移变换
平移变换是指将二次 函数的图象沿x轴或y 轴进行移动。
如果将二次函数 y=ax^2+bx+c的图 象沿y轴平移k个单位 ,得到新的函数为 y=ax^2+bx+c-k。
如果将二次函数 y=ax^2+bx+c的图 象沿x轴平移k个单位 ,得到新的函数为 y=ax^2+(b2ak)x+c+ak^2。
翻折变换
翻折变换是指将二次函数的图 象沿某条直线进行翻折。
如果将二次函数 y=ax^2+bx+c的图象沿x轴翻 折,得到新的函数为y=-ax^2bx-c。
如果将二次函数 y=ax^2+bx+c的图象沿y轴翻 折,得到新的函数为y=ax^2+bx-c。
22.1.1 二次函数 课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.
二次函数ppt课件演示文稿

方法二: 利用二次函数的顶点式. 设f(x)=a(x-m)2+n(a≠0). ∵f(2)=f(-1), 1 2 1 1 m ∴抛物线对称轴为x= 2 2 2 又根据题意函数有最大值y=8, 1 x 8 ∴y=f(x)=a 2 ∵f(2)=-1,∴a=-4
3. f(x)=x2+2(2-a)x+2在(-∞,2]上是减函数 ,则a的取值范围是________.
4, 解析:
要使f(x)在(-∞,2]上是减函数,只要对称轴 2 2 a x 2 ≥2即可,解得a≥4.
4. (教材改编题)函数y=x2+4x+3在[-1,0]上 的最大值是________,最小值是________. 3 0 解析:
第五节 二次函数
基础梳理 1.二次函数的性质与图像 y=ax2+bx+c(a≠0)叫做二次函数,它的 (1)函数_______________ 定义域是______ . R (2)二次函数有如下性质: 一条抛物线 ①函数的图象是__________ ,抛物线顶点的坐 b b 4ac b , x 标是________ ; 4a ,抛物线的对称轴是________ 2a 2a b ②当a>0时,抛物线开口______ ,函数在x= 2a 向上 b b f , 处取____ 最小 值________ 2a 上是减 2a ;在区间________ b 函数,在________ 上是增函数; 2a 向下,函数在 ③当a <0 时,抛物线开口 ______ b b f x 2a ________ 处取最大值________ ;在区间 2a b b , 2a ________ 上是增函数,在_______ 2a 上是减函数; (0,c ) ④与y轴的交点是______ ;
《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c
二次函数的课件ppt课件ppt课件

二次函数的极坐标表示
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则
解
根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则
解
根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。
二次函数ppt课件

22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾
观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×
√
×
√
√
例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾
观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×
√
×
√
√
例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
初中数学九年级PPT课件二次函数可编辑全文

2
解:根据题意,得
k
1 2
0
①
2k 2 k 1 2
②
由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1
∴
k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上
,
顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
解:根据题意,得
k
1 2
0
①
2k 2 k 1 2
②
由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1
∴
k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上
,
顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判别式 Δ=b2-4ac
ax2+bx+ c>0(a>0)的 解集
ax2+bx+ c<0(a>0)的解 集
Δ>0
Δ=0 Δ<0
{x|x<x1或x>x2} {x|x≠x1}
{x|x∈R}
{x|x1<x<x2}
∅ ∅
3. 二次函数在闭区间上的最值问题 y=f(x)=a(x-h)2+k(a>0)在[m,n]上的最值问题. k , (1)h∈[m,n]时,ymin=____ ymax=max{f(m),f(n)}; (2)h∉[m,n]时,当h<m时,f(x)在[m,n]上 f(m) ,y f(n) 单调______ 递增 ,ymin=______ max=______; 递减 , 当h>n时,f(x)在[m,n]上单调______ f(n) f(m) ymin=______ ,ymax=______.
第五节 二次函数
基础梳理 1.二次函数的性质与图像 y=ax2+bx+c(a≠0)叫做二次函数,它的 (1)函数_______________ 定义域是______ . R (2)二次函数有如下性质: 一条抛物线 ①函数的图象是__________ ,抛物线顶点的坐 b b 4ac b , x 标是________ ; 4a ,抛物线的对称轴是________ 2a 2a b ②当a>0时,抛物线开口______ ,函数在x= 2a 向上 b b f , 处取____ 最小 值________ 2a 上是减 2a ;在区间________ b 函数,在________ 上是增函数; 2a 向下,函数在 ③当a <0 时,抛物线开口 ______ b b f x 2a ________ 处取最大值________ ;在区间 2a b b , 2a ________ 上是增函数,在_______ 2a 上是减函数; (0,c ) ④与y轴的交点是______ ;
3. f(x)=x2+2(2-a)x+2在(-∞,2]上是减函数 ,则a的取值范围是________.
4, 解析:
要使f(x)在(-∞,2]上是减函数,只要对称轴 2 2 a x 2 ≥2即可,解得a≥4.
4. (教材改编题)函数y=x2+4x+3在[-1,0]上 的最大值是________,最小值是________. 3 0 解析:
y=x2+4x+3=(x+2)2-1,对称轴x=-2在[-1,0]的 左侧,所以函数在[-1,0]上单调递增. 故当x=0时,f(x)取最大值f(0)=3; 当x=-1时,f(x)取最小值f(-1)=0.
经典例题
题型一 二次函数的解析式 【例2】 已知二次函数f(x)对任意实数t满足关系 f(2+t)=f(2-t),且f(x)有最小值-9,又知函数 f(x)的图象与x轴有两个交点,它们之间的距离为6, 求函数f(x)的解析式. 分析:由f(2+t)=f(2-t)知函数有对称轴x=2,又最小 值为-9,故二次函数可设顶点式y=a(x-2)2-9,再根 据另一个条件求出a即可.另外,也可以根据第二 个条件设解析式的形式,由两根之间的距离为6及 对称轴为x=2可知f(x)=0的两根x1=-1,x2=5,据此设 二次函数为y=a(x+1)(x-5).
方法二: 利用二次函数的两根式. 由题意知f(x)=0的两根:x1=-1,x2=5, 故设f(x)=a(x+1)(x-5), 又顶点坐标为(2,-9), 代入解析式得-9=a(2+1)(2-5), ∴a=1,∴f(x)=(x+1)(x-5)=x2-4x-5.
变式1-1
已知二次函数f(x)满足f(2)=-1,f(-1)=-1, 且f(x)的最大值是8,求此二次函数的解析式.
2. 二次函数、一元二次方程、一元二次 不等式三者之间的关系
判别式Δ= b2-4ac 二次函数 y=ax2+bx +c(a>0) 的图象
一元二次 方程ax2+ bx+c= 0(a>0) 的根
Δ>0
Δ=0
Δ<0
有两相异 实根x1两相等 没有实数 实数根 b 根 x1 =x2 = 2 a
解:方法一: 利用二次函数的顶点式. 由f(2+t)=f(2-t)知函数对称轴为x=2,又最小值 为-9,故设f(x)=a(x-2)2-9, 由题意得:f(x)的图象与x轴的两个交点关于x=2 对称,又因为距离为6,所以两交点为(-1,0),(5,0). 将点(-1,0)代入函数解析式:0=a×(-1-2)2-9, ∴a=1,∴f(x)=(x-2)2-9=x2-4x-5.
基础达标
1. 已知二次函数y=ax2+bx+c满足a>b>c, 且a+b+c=0,那么它的图象是图中的( )
A 解析: ∵a>b>c且a+b+c=0, ∴a>0,c<0,b2-4ac>0,f(1)=a+b+c=0, ∴图象开口向上,与y轴的截距为负,且过(1,0)点.
2. 若函数f(x)=(m-1)x2+2mx+3是定义在R上的 偶函数,则f(x)在(0,+∞)上( ) A. 为增函数 B. 为减函数 C. 先减后增 D. 先增后减 B 解析: ≧f(x)为R上的偶函数, ≨m=0,≨f(x)=-x2+3. 由二次函数的图象易知f(x)=-x2+3在(0,+≦)上为减函 数.
2
⑤当Δ=b2-4ac>0时,与x轴两交点的 横坐标x1、x2分别是方程______________ ax2+bx+c=0(a≠0) 的 两根; b 0 ; 当Δ=0时,与x轴切于一点________ 2a 没有交点 当Δ<0时,与x轴________ ; ⑥当b≠0时,是非奇非偶函数;当b=0时, 是________ 偶函数 ; ⑦对于函数f(x),若对任意自变量x的值, 都有f(a+x)=f(a-x),则f(x)的图象关于 x=a 对称. 直线______